pytorch/test/cpp/jit/test_misc.cpp
Zachary DeVito 99349defc1 remove unnecessary Node* ops (#32760)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32760

Minor changes to the way ops are implemented to remove incidental use of Node*
in the operator implementation.

Current state for operators that previously took Node:

```
TBD:

USES NODE: prim::DifferentiableGraph(...) -> (...)
USES NODE: prim::profile(...) -> (...)
USES NODE: prim::FusionGroup(...) -> (...)
USES NODE: prim::PythonOp(...) -> (...)
USES NODE: prim::ImplicitTensorToNum(Tensor a) -> Scalar # next PR

Should be made interpreter primitives:

USES NODE: prim::TupleUnpack(...) -> (...)
USES NODE: prim::TupleSlice(...) -> (...)
USES NODE: prim::TupleConstruct(...) -> (...)
USES NODE: prim::ListUnpack(...) -> (...)
USES NODE: prim::ListConstruct(...) -> (...)
USES NODE: prim::DictConstruct(...) -> (...)
USES NODE: prim::Constant() -> (...)
USES NODE: prim::isinstance(...) -> (...)
USES NODE: prim::CreateObject(...) -> (...)
USES NODE: prim::fork(...) -> (...)
USES NODE: aten::warn(str message, *, int stacklevel=2) -> () # need stack level information, so ideally in interpreter so it can look at the stack

Should be made into vararg operators, i.e. the operators last argument should be an IValue
that contains the number of arguments.

USES NODE: prim::FusedConcat(...) -> (...)
USES NODE: prim::MMTreeReduce(...) -> (...)
USES NODE: prim::MMBatchSide(...) -> (...)
USES NODE: prim::ConstantChunk(...) -> (...)
USES NODE: prim::AutogradAnyNonZero(...) -> bool
USES NODE: prim::BroadcastSizes(...) -> (...)
USES NODE: prim::ChunkSizes(...) -> (...)
USES NODE: aten::format(str self, ...) -> str
USES NODE: prim::Print(...) -> (...)

fixed:

USES NODE: aten::extend(Tensor[](a!) self, Tensor [] other) -> ()
USES NODE: aten::copy(Tensor[](a) self) -> Tensor[]
USES NODE: aten::extend(int[](a!) self, int [] other) -> ()
USES NODE: aten::copy(int[](a) self) -> int[]
USES NODE: aten::extend(float[](a!) self, float [] other) -> ()
USES NODE: aten::copy(float[](a) self) -> float[]
USES NODE: aten::extend(bool[](a!) self, bool [] other) -> ()
USES NODE: aten::copy(bool[](a) self) -> bool[]
USES NODE: aten::extend(t[](a!) self, t [] other) -> ()
USES NODE: aten::copy(t[](a) self) -> t[]
USES NODE: aten::keys(Dict(str, t) self) -> str[](*)
USES NODE: aten::values(Dict(str, t) self) -> t[](*)
USES NODE: aten::dict((str, tVal)[] inputs) -> Dict(str, tVal)
USES NODE: aten::keys(Dict(int, t) self) -> int[](*)
USES NODE: aten::values(Dict(int, t) self) -> t[](*)
USES NODE: aten::dict((int, tVal)[] inputs) -> Dict(int, tVal)
USES NODE: aten::keys(Dict(float, t) self) -> float[](*)
USES NODE: aten::values(Dict(float, t) self) -> t[](*)
USES NODE: aten::dict((float, tVal)[] inputs) -> Dict(float, tVal)
USES NODE: aten::keys(Dict(Tensor, t) self) -> Tensor[](*)
USES NODE: aten::values(Dict(Tensor, t) self) -> t[](*)
USES NODE: aten::dict((Tensor, tVal)[] inputs) -> Dict(Tensor, tVal)
USES NODE: aten::test_vartype2(t a, t[] b) -> (t[])
USES NODE: aten::_ncf_unsqueeze(Tensor self, int ndim) -> Tensor
USES NODE: aten::_ncf_view(Tensor self, int[] input_shape, int normalized_ndim) -> Tensor
USES NODE: prim::is_none(int? a) -> bool
USES NODE: aten::__interpolate(Tensor input, int? size = None, float[]? scale_factor = None, str mode = 'nearest', bool? align_corners = None, bool? recompute_scale_factor = None) -> Tensor
USES NODE: aten::__interpolate(Tensor input, int[]? size = None, float[]? scale_factor = None, str mode = 'nearest', bool? align_corners = None, bool? recompute_scale_factor = None) -> Tensor
USES NODE: aten::__interpolate(Tensor input, int? size = None, float? scale_factor = None, str mode = 'nearest', bool? align_corners = None, bool? recompute_scale_factor = None) -> Tensor
USES NODE: aten::__interpolate(Tensor input, int[]? size = None, float? scale_factor = None, str mode = 'nearest', bool? align_corners = None, bool? recompute_scale_factor = None) -> Tensor
USES NODE: aten::sorted(t[](a) self) -> (t[])
USES NODE: aten::sort(t[](a!) self, bool reverse=False) -> ()
USES NODE: aten::test_vartype(t[] a, t b) -> (t)
USES NODE: prim::unchecked_unwrap_optional(t(a)? optional) -> t(a)
USES NODE: prim::unchecked_cast(...) -> (...)
USES NODE: aten::dict() -> Dict(str, Tensor)
USES NODE: prim::Load(...) -> (...)
USES NODE: prim::Store(...) -> (...)
USES NODE: prim::Drop(...) -> (...)
USES NODE: aten::tensor(t[] data, *, ScalarType? dtype=None, Device? device=None, bool requires_grad=False) -> Tensor
USES NODE: aten::as_tensor(t[] data, *, ScalarType? dtype=None, Device? device=None) -> Tensor
```

Test Plan: Imported from OSS

Differential Revision: D19615387

Pulled By: zdevito

fbshipit-source-id: 95298c3c4249b9f812c332d13f0fb79daeecb662
2020-02-12 14:49:02 -08:00

1335 lines
41 KiB
C++

#include <ATen/ATen.h>
#include <ATen/core/interned_strings.h>
#include <ATen/core/ivalue.h>
#include <ATen/Parallel.h>
#include <ATen/ThreadLocalDebugInfo.h>
#include "test/cpp/jit/test_base.h"
#include "test/cpp/jit/test_utils.h"
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/type_hashing.h>
#include "torch/csrc/autograd/generated/variable_factories.h"
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/jit/argument_spec.h"
#include "torch/csrc/jit/attributes.h"
#include "torch/csrc/jit/autodiff.h"
#include "torch/csrc/jit/code_template.h"
#include "torch/csrc/jit/custom_operator.h"
#include "torch/csrc/jit/fuser/interface.h"
#include "torch/csrc/jit/import.h"
#include "torch/csrc/jit/interpreter.h"
#include "torch/csrc/jit/irparser.h"
#include "torch/csrc/jit/pass_manager.h"
#include "torch/csrc/jit/passes/alias_analysis.h"
#include "torch/csrc/jit/passes/bailout_graph.h"
#include "torch/csrc/jit/passes/common_subexpression_elimination.h"
#include "torch/csrc/jit/passes/constant_propagation.h"
#include "torch/csrc/jit/passes/create_autodiff_subgraphs.h"
#include "torch/csrc/jit/passes/dead_code_elimination.h"
#include "torch/csrc/jit/passes/graph_fuser.h"
#include "torch/csrc/jit/passes/guard_elimination.h"
#include "torch/csrc/jit/passes/inline_autodiff_subgraphs.h"
#include "torch/csrc/jit/passes/insert_guards.h"
#include "torch/csrc/jit/passes/liveness.h"
#include "torch/csrc/jit/passes/lower_grad_of.h"
#include "torch/csrc/jit/passes/lower_tuples.h"
#include "torch/csrc/jit/passes/requires_grad_analysis.h"
#include "torch/csrc/jit/passes/shape_analysis.h"
#include "torch/csrc/jit/passes/utils/subgraph_utils.h"
#include "torch/csrc/jit/scope.h"
#include "torch/csrc/jit/symbolic_script.h"
#include "torch/csrc/jit/tracer.h"
#include "torch/csrc/autograd/engine.h"
#include "torch/csrc/autograd/variable.h"
#include <torch/csrc/jit/testing/file_check.h>
#include "torch/csrc/jit/profiling_record.h"
#include "torch/csrc/jit/script/compiler.h"
#include "torch/csrc/jit/script/module.h"
#include "torch/jit.h"
#include <torch/script.h>
#include "onnx/onnx_pb.h"
#include <c10/util/Exception.h>
#include <algorithm>
#include <cstddef>
#include <functional>
#include <iostream>
#include <memory>
#include <stdexcept>
#include <string>
#include <tuple>
#include <unordered_set>
#include <utility>
#include <vector>
namespace torch {
namespace jit {
inline c10::OperatorOptions aliasAnalysisFromSchema() {
c10::OperatorOptions result;
result.setAliasAnalysis(c10::AliasAnalysisKind::FROM_SCHEMA);
return result;
}
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& list) {
size_t i = 0;
out << "{";
for (auto&& e : list) {
if (i++ > 0)
out << ", ";
out << e;
}
out << "}";
return out;
}
void testInternedStrings() {
ASSERT_EQ(prim::Param, Symbol::prim("Param"));
ASSERT_EQ(prim::Return, Symbol::prim("Return"));
ASSERT_EQ(prim::Return.toUnqualString(), std::string("Return"));
ASSERT_EQ(prim::Return.toQualString(), std::string("prim::Return"));
Symbol newsym = Symbol::aten("__NEW_SYMBOL");
size_t symstart = newsym;
ASSERT_EQ(newsym.toQualString(), std::string("aten::__NEW_SYMBOL"));
// TODO: This test is a bit too close to the implementation details.
ASSERT_EQ(Symbol::aten("What"), symstart + 1);
ASSERT_EQ(Symbol::aten("What2"), symstart + 2);
ASSERT_EQ(Symbol::aten("What"), symstart + 1);
ASSERT_EQ(Symbol::aten("What2"), symstart + 2);
ASSERT_EQ(Symbol(symstart + 2).toUnqualString(), std::string("What2"));
}
void testFromQualString() {
ASSERT_EQ(Symbol::fromQualString("prim::Param"), Symbol::prim("Param"));
ASSERT_EQ(Symbol::fromQualString("aten::mm"), Symbol::aten("mm"));
ASSERT_EQ(Symbol::fromQualString("onnx::LSTM"), Symbol::onnx("LSTM"));
ASSERT_EQ(Symbol::fromQualString("attr::value"), Symbol::attr("value"));
ASSERT_EQ(Symbol::fromQualString("scope::"), Symbol::scope(""));
ASSERT_EQ(Symbol::fromQualString("::").toUnqualString(), std::string(""));
ASSERT_EQ(
Symbol::fromQualString("::").ns().toQualString(),
std::string("namespaces::"));
ASSERT_EQ(
Symbol::fromQualString("new_ns::param").toUnqualString(),
std::string("param"));
ASSERT_EQ(
Symbol::fromQualString("new_ns::param").ns().toUnqualString(),
std::string("new_ns"));
ASSERT_EQ(
Symbol::fromQualString("new_ns::param").ns(),
Symbol::fromQualString("namespaces::new_ns"));
auto bad_inputs = {"scope", ":", ""};
for (auto input : bad_inputs) {
try {
Symbol::fromQualString(input);
ASSERT_TRUE(0);
} catch (const std::exception& c) {
}
}
}
void testTHNNConv() {
std::vector<int64_t> input_size = {4, 3, 15, 17}; // B x C x H x W
std::vector<int64_t> kernel_size = {3, 5};
std::vector<int64_t> stride = {1, 2};
std::vector<int64_t> padding = {2, 1};
constexpr int out_channels = 5;
// make inputs
at::Tensor input = torch::randn(input_size);
at::Tensor weight = torch::randn(
{out_channels, input_size[1], kernel_size[0], kernel_size[1]});
at::Tensor bias = torch::randn({out_channels});
// run forward eagerly
at::Tensor output, finput, fgradinput;
std::tie(output, finput, fgradinput) = at::thnn_conv2d_forward(
input, weight, kernel_size, bias, stride, padding);
// make grad_outputs
at::Tensor grad_output =
torch::randn_like(output, at::MemoryFormat::Preserve);
at::Tensor grad_finput =
torch::zeros_like(finput, at::MemoryFormat::Preserve);
at::Tensor grad_fgradinput =
torch::zeros_like(fgradinput, at::MemoryFormat::Preserve);
// run backward eagerly
at::Tensor grad_input, grad_weight, grad_bias;
std::tie(grad_input, grad_weight, grad_bias) = at::thnn_conv2d_backward(
grad_output,
input,
weight,
kernel_size,
stride,
padding,
finput,
fgradinput,
{true, true, true});
// make JIT graph
auto graph = std::make_shared<Graph>();
auto ksz_val = graph->insertConstant(kernel_size);
auto kst_val = graph->insertConstant(stride);
auto pad_val = graph->insertConstant(padding);
auto inputg = graph->addInput("self");
auto weightg = graph->addInput("weight");
auto biasg = graph->addInput("bias");
Value* conv = graph->insert(
aten::thnn_conv2d_forward,
{inputg, weightg, ksz_val, biasg, kst_val, pad_val});
auto outputs = conv->node()->outputs();
for (auto output : outputs) {
graph->registerOutput(output);
}
LowerAllTuples(graph);
graph->lint();
// differentiate JIT graph
EliminateDeadCode(graph); // Tracing of some ops depends on the DCE trick
ConstantPropagation(graph);
auto grad_spec = differentiate(graph);
LowerGradOf(*grad_spec.df);
// prepare JIT inputs / gradients
tensor_list tensors_in;
tensors_in.push_back(input);
tensors_in.push_back(weight);
tensors_in.push_back(bias);
tensor_list tensor_grads_in;
tensor_grads_in.push_back(grad_output);
tensor_grads_in.push_back(grad_finput);
tensor_grads_in.push_back(grad_fgradinput);
// Get outputs from the interpreter
tensor_list tensors_out, tensor_grads_out;
std::tie(tensors_out, tensor_grads_out) =
runGradient(grad_spec, tensors_in, tensor_grads_in);
// prepare expected structs
tensor_list expected_tensors_out, expected_tensor_grads_out;
expected_tensors_out.push_back(output);
expected_tensors_out.push_back(finput);
expected_tensors_out.push_back(fgradinput);
expected_tensor_grads_out.push_back(grad_input);
expected_tensor_grads_out.push_back(grad_weight);
expected_tensor_grads_out.push_back(grad_bias);
// Compare results
assertAllClose(tensors_out, expected_tensors_out);
assertAllClose(tensor_grads_out, expected_tensor_grads_out);
}
void testATenNativeBatchNorm() {
// aten::native_batch_norm(Tensor input, Tensor weight, Tensor bias, Tensor
// running_mean, Tensor running_var, bool training, float momentum, float eps)
// -> (Tensor, Tensor, Tensor)
std::vector<int64_t> input_size = {4, 3, 15, 17}; // B x C x H x W
bool training = true;
float momentum = 0.9;
float eps = 1e-5;
// make inputs
at::Tensor input = torch::randn(input_size);
at::Tensor weight = torch::randn({input_size[1]});
at::Tensor bias = torch::randn({input_size[1]});
at::Tensor running_mean = torch::randn({input_size[1]});
at::Tensor running_var = torch::randn({input_size[1]});
// running_mean and running_var are changed in-place, so clone and send them
at::Tensor running_mean_eager = running_mean.clone();
at::Tensor running_var_eager = running_var.clone();
at::Tensor running_mean_jit = running_mean.clone();
at::Tensor running_var_jit = running_var.clone();
// run forward eagerly
at::Tensor output, savemean, saveinvstd;
std::tie(output, savemean, saveinvstd) = at::native_batch_norm(
input,
weight,
bias,
running_mean_eager,
running_var_eager,
training,
momentum,
eps);
// make grad_outputs
at::Tensor grad_output =
torch::randn_like(output, at::MemoryFormat::Preserve);
at::Tensor grad_savemean =
torch::zeros_like(savemean, at::MemoryFormat::Preserve);
at::Tensor grad_saveinvstd =
torch::zeros_like(saveinvstd, at::MemoryFormat::Preserve);
// run backward eagerly
at::Tensor grad_input, grad_weight, grad_bias;
// aten::native_batch_norm_backward(Tensor grad_out, Tensor input, Tensor
// weight, Tensor running_mean, Tensor running_var, Tensor save_mean, Tensor
// save_invstd, bool train, float eps, bool[3] output_mask) -> (Tensor,
// Tensor, Tensor)
std::tie(grad_input, grad_weight, grad_bias) = at::native_batch_norm_backward(
grad_output,
input,
weight,
running_mean_eager,
running_var_eager,
savemean,
saveinvstd,
training,
eps,
{true, true, true});
// make JIT graph
auto graph = std::make_shared<Graph>();
auto training_val = graph->insertConstant(IValue(training));
auto momentum_val = graph->insertConstant(IValue(momentum));
auto eps_val = graph->insertConstant(IValue(eps));
auto inputg = graph->addInput("self");
auto weightg = graph->addInput("weight");
auto biasg = graph->addInput("bias");
auto running_meang = graph->addInput("running_mean");
auto running_varg = graph->addInput("running_var");
Value* bn = graph->insert(
aten::native_batch_norm,
{inputg,
weightg,
biasg,
running_meang,
running_varg,
training_val,
momentum_val,
eps_val});
auto outputs = bn->node()->outputs();
for (auto output : outputs) {
graph->registerOutput(output);
}
LowerAllTuples(graph);
graph->lint();
// differentiate JIT graph
EliminateDeadCode(graph); // Tracing of some ops depends on the DCE trick
ConstantPropagation(graph);
auto grad_spec = differentiate(graph);
LowerGradOf(*grad_spec.df);
// prepare JIT inputs / gradients
tensor_list tensors_in;
tensors_in.push_back(input);
tensors_in.push_back(weight);
tensors_in.push_back(bias);
tensors_in.push_back(running_mean_jit);
tensors_in.push_back(running_var_jit);
tensor_list tensor_grads_in;
tensor_grads_in.push_back(grad_output);
tensor_grads_in.push_back(grad_savemean);
tensor_grads_in.push_back(grad_saveinvstd);
// Get outputs from the interpreter
tensor_list tensors_out, tensor_grads_out;
std::tie(tensors_out, tensor_grads_out) =
runGradient(grad_spec, tensors_in, tensor_grads_in);
// prepare expected structs
tensor_list expected_tensors_out, expected_tensor_grads_out;
expected_tensors_out.push_back(output);
expected_tensors_out.push_back(savemean);
expected_tensors_out.push_back(saveinvstd);
expected_tensors_out.push_back(running_mean_eager);
expected_tensors_out.push_back(running_var_eager);
expected_tensor_grads_out.push_back(grad_input);
expected_tensor_grads_out.push_back(grad_weight);
expected_tensor_grads_out.push_back(grad_bias);
tensors_out.push_back(running_mean_jit);
tensors_out.push_back(running_var_jit);
// Compare results
assertAllClose(tensors_out, expected_tensors_out);
assertAllClose(tensor_grads_out, expected_tensor_grads_out);
}
void testCustomFusion() {
auto graph_string = R"IR(
graph(%0 : Float(2, 3, 4),
%1 : Float(2, 3, 4)):
%2 : Tensor = aten::mul(%0, %1)
%3 : Tensor = aten::mul(%2, %0)
return (%3))IR";
auto g = std::make_shared<Graph>();
torch::jit::script::parseIR(graph_string, g.get());
torch::jit::overrideCanFuseOnCPU(true);
CustomFuseGraph(
g,
[](Node* n) { return n->kind() != prim::Param; },
Symbol::fromQualString("prim::FusionGroup"));
torch::jit::overrideCanFuseOnCPU(false);
const auto& nodes = g->nodes();
auto fusion_group =
std::find_if(nodes.begin(), nodes.end(), [](const Node* node) {
return node->kind() == Symbol::fromQualString("prim::FusionGroup");
});
AT_ASSERT(fusion_group != nodes.end());
auto subgraph = fusion_group->g(attr::Subgraph);
auto hits = 0;
// two multiplications
for (const auto& n : subgraph->nodes()) {
(void)n;
hits++;
}
AT_ASSERT(hits == 2);
}
void testCustomFusionNestedBlocks() {
auto graph_string = R"IR(
graph(%0 : Float(2, 3, 4),
%1 : Float(2, 3, 4),
%2 : Float(2, 3, 4)):
%3 : int = prim::Constant[value=1]()
%4 : Tensor = prim::If(%2)
block0():
%5 : Tensor = aten::mul(%0, %2)
%6 : Tensor = aten::mul(%5, %1)
-> (%6)
block1():
%7 : Tensor = aten::add(%0, %2, %3)
%8 : Tensor = aten::add(%7, %1, %3)
-> (%8)
%9 : Tensor = aten::add(%4, %2, %3)
return (%4))IR";
auto g = std::make_shared<Graph>();
torch::jit::script::parseIR(graph_string, g.get());
CustomFuseGraph(
g,
[](Node* n) { return n->kind() == aten::mul; },
Symbol::fromQualString("prim::FusionGroup"));
// Could be done in more efficient ways, but this is only a test.
std::function<bool(const Block*, Symbol)> dfs = [&](const Block* b, Symbol s) {
for (auto node : b->nodes()) {
if (node->kind() == s)
return true;
for (auto nested_b : node->blocks())
if (dfs(nested_b, s))
return true;
}
return false;
};
AT_ASSERT(dfs(g->block(), Symbol::fromQualString("prim::FusionGroup")));
}
static const auto cf_examples = R"JIT(
def if_test(a, b):
# FIXME: use 0 instead of a.
# c = 0
c = a
if bool(a < b):
c = b
else:
c = a
return c
def if_one(a, b):
c = b
if bool(a < b):
c = a
return c
def while_test(a, i):
while bool(i < 3):
a *= a
i += 1
return a
)JIT";
void testControlFlow() {
auto cu = compile(cf_examples);
auto run = [&](const std::string& name, std::vector<IValue> stack) {
auto graph = cu->get_function(name).graph();
Code code(graph);
InterpreterState interp(code);
interp.run(stack);
return stack;
};
auto L = [](int64_t l) {
return IValue(scalar_to_tensor(at::Scalar(l)));
};
auto V = [](IValue t) { return std::move(t).toTensor().item<int64_t>(); };
auto run_binary = [&](const std::string& name, int64_t a, int64_t b) {
return V(run(name, {L(a), L(b)})[0]);
};
ASSERT_EQ(2, run_binary("if_test", 1, 2));
ASSERT_EQ(3, run_binary("if_test", 3, 2));
ASSERT_EQ(2, run_binary("if_one", 2, 3));
ASSERT_EQ(2, run_binary("if_one", 3, 2));
ASSERT_EQ(256, run_binary("while_test", 2, 0));
}
void testProto() {
::ONNX_NAMESPACE::ModelProto proto;
proto.set_producer_name("foo");
}
void testEvalModeForLoadedModule() {
if (isSandcastle())
return; // The module file to load is not generated in Sandcastle
std::string module_path = "dropout_model.pt";
torch::jit::script::Module module = torch::jit::load(module_path);
AT_ASSERT(module.attr("dropout").toModule().is_training());
module.eval();
AT_ASSERT(!module.attr("dropout").toModule().is_training());
module.train();
AT_ASSERT(module.attr("dropout").toModule().is_training());
}
void testSerializationInterop() {
if (isSandcastle()){
// The module file to load is not generated in Sandcastle
return;
}
// This should be generated by `test/cpp/jit/tests_setup.py`
std::ifstream input_stream("ivalue.pt");
std::vector<char> input;
input.insert(
input.begin(),
std::istream_iterator<char>(input_stream),
std::istream_iterator<char>());
IValue ivalue = pickle_load(input);
auto elements = ivalue.toTuple()->elements();
auto ones = torch::ones({2, 2});
ASSERT_TRUE(ones.equal(elements.at(0).toTensor()));
auto twos = torch::ones({3, 5}) * 2;
ASSERT_TRUE(twos.equal(elements.at(1).toTensor()));
}
void testTorchSaveError() {
if (isSandcastle()){
// The file to load is not generated in Sandcastle
return;
}
// This should be generated by `test/cpp/jit/tests_setup.py`
bool passed = true;
try {
torch::jit::load("eager_value.pt");
passed = false;
} catch (const std::exception& c) {
}
// Ensure torch::jit::load did not run
ASSERT_TRUE(passed);
}
// test a few features that are not directly used in schemas yet
void testSchemaParser() {
// nested arrays
auto s = parseSchema("at::what(int[][4] foo) -> ()");
ASSERT_TRUE(s.arguments().at(0).N() == 4);
ASSERT_TRUE(IntType::get()->isSubtypeOf(s.arguments()
.at(0)
.type()
->expect<ListType>()
->getElementType()
->expect<ListType>()
->getElementType()));
auto s2 = parseSchema("at::what(int[][] foo) -> ()");
ASSERT_TRUE(IntType::get()->isSubtypeOf(s2.arguments()
.at(0)
.type()
->expect<ListType>()
->getElementType()
->expect<ListType>()
->getElementType()));
// named returns
parseSchema("at::what(Tensor! i_will_be_written_to) -> ()");
auto s3 =
parseSchema("at::what() -> (Tensor the_return, Tensor the_return2)");
ASSERT_TRUE(s3.returns().at(0).name() == "the_return");
ASSERT_TRUE(s3.returns().at(1).name() == "the_return2");
// futures
auto s4 = parseSchema("at::what(Future(int) foo) -> ()");
ASSERT_TRUE(IntType::get()->isSubtypeOf(
s4.arguments().at(0).type()->expect<FutureType>()->getElementType()));
// test tensor with annotated alias sets
parseSchema("at::what(Tensor(a) foo) -> (Tensor(a))");
{
const auto s = parseSchema(
"at::what(Tensor(b|c)[](a!) list, Tensor(c) element)"
" -> (Tensor(b|c)[](a!))");
// The list itself is annotated with `a`
const auto& aliasInfo = *s.arguments().at(0).alias_info();
ASSERT_TRUE(
aliasInfo.beforeSets() ==
std::unordered_set<Symbol>{Symbol::fromQualString("alias::a")});
ASSERT_TRUE(aliasInfo.isWrite());
// Check the contained types
ASSERT_TRUE(!aliasInfo.containedTypes().empty());
const auto& containedAliasInfo = aliasInfo.containedTypes()[0];
const auto expected = std::unordered_set<Symbol>{
Symbol::fromQualString("alias::b"),
Symbol::fromQualString("alias::c"),
};
ASSERT_TRUE(containedAliasInfo.beforeSets() == expected);
ASSERT_TRUE(containedAliasInfo.afterSets() == expected);
ASSERT_FALSE(containedAliasInfo.isWrite());
}
{
const auto s = parseSchema(
"at::what(Tensor(b -> b|c)[](a!) list, Tensor(c) element)"
" -> (Tensor(b|c)[](a!))");
// The list itself is annotated with `a`
const auto& aliasInfo = *s.arguments().at(0).alias_info();
ASSERT_EQ(
aliasInfo.beforeSets(),
std::unordered_set<Symbol>{Symbol::fromQualString("alias::a")});
ASSERT_EQ(
aliasInfo.afterSets(),
std::unordered_set<Symbol>{Symbol::fromQualString("alias::a")});
ASSERT_TRUE(aliasInfo.isWrite());
ASSERT_EQ(aliasInfo.containedTypes().size(), 1);
// Check the contained types
ASSERT_TRUE(!aliasInfo.containedTypes().empty());
const auto& containedAliasInfo = aliasInfo.containedTypes()[0];
const auto expectedBefore = std::unordered_set<Symbol>{
Symbol::fromQualString("alias::b"),
};
const auto expectedAfter = std::unordered_set<Symbol>{
Symbol::fromQualString("alias::b"), Symbol::fromQualString("alias::c")};
ASSERT_TRUE(containedAliasInfo.beforeSets() == expectedBefore);
ASSERT_TRUE(containedAliasInfo.afterSets() == expectedAfter);
ASSERT_FALSE(containedAliasInfo.isWrite());
}
}
void testTopologicalIndex() {
{
Graph graph;
auto node1 = graph.create(prim::AutogradZero);
auto node2 = graph.create(prim::AutogradZero);
auto node3 = graph.create(prim::AutogradZero);
auto node4 = graph.create(prim::AutogradZero);
graph.appendNode(node4);
graph.prependNode(node1);
node2->insertAfter(node1);
node3->insertBefore(node4);
// nodes should be in numerical order
ASSERT_TRUE(node1->isBefore(node2));
ASSERT_TRUE(node1->isBefore(node3));
ASSERT_TRUE(node1->isBefore(node4));
ASSERT_TRUE(node2->isAfter(node1));
ASSERT_TRUE(node2->isBefore(node3));
ASSERT_TRUE(node2->isBefore(node4));
ASSERT_FALSE(node3->isBefore(node1));
ASSERT_FALSE(node3->isBefore(node2));
ASSERT_FALSE(node3->isAfter(node4));
// Built up a block structure
// node3
// /\ ...
// A B block1
// \ ...
// C block2
auto block1 = node3->addBlock();
auto A = graph.create(prim::AutogradZero);
block1->appendNode(A);
auto B = graph.create(prim::AutogradZero);
block1->appendNode(B);
auto block2 = B->addBlock();
auto C = graph.create(prim::AutogradZero);
block2->appendNode(C);
// Check isAfter on different block levels
ASSERT_TRUE(node1->isBefore(A));
ASSERT_TRUE(A->isBefore(B));
ASSERT_TRUE(A->isBefore(C));
// make sure things don't blow up on deletions
node2->destroy();
auto node2p = graph.create(prim::AutogradZero);
node2p->insertAfter(node1);
ASSERT_TRUE(node1->isBefore(node2p));
ASSERT_TRUE(node2p->isBefore(node3));
}
{
// Induce reindexing to test that path
Graph graph;
std::map<size_t, Node*> nodes;
auto anchor = graph.create(prim::AutogradZero);
graph.appendNode(anchor);
// Inserting to the same place a lot will trigger reindexing
for (auto i = 0; i < 100; ++i) {
auto n = graph.create(prim::AutogradZero);
n->insertAfter(anchor);
nodes[i] = n;
}
// Nodes should be in reverse order
for (auto i = 0; i < 100; ++i) {
for (auto j = i + 1; j < 100; ++j) {
ASSERT_TRUE(nodes[i]->isAfter(nodes[j]));
}
}
}
}
at::Tensor invokeTestRecordFunction(at::Tensor& t) {
RECORD_FUNCTION("test", std::vector<c10::IValue>({t}));
auto t2 = t.pow(2);
return t2;
}
static const auto invokeTestRecordFunction_JIT = R"JIT(
def forward(t):
t2 = t.pow(2)
return t2
)JIT";
at::Tensor invokeTestRecordFunctionJIT(at::Tensor& t) {
RECORD_FUNCTION("test", std::vector<c10::IValue>({t}));
auto cu = compile(invokeTestRecordFunction_JIT);
return cu->get_function("forward")({t}).toTensor();
}
using TracedTestInputs =
std::vector<std::tuple<std::string, std::vector<std::vector<int64_t>>>>;
void checkTracedInputs(const TracedTestInputs& inputs) {
bool found_test = false;
bool found_pow = false;
bool found_mul = false;
for (const auto& input : inputs) {
const auto& fn = std::get<0>(input);
const auto& sizes = std::get<1>(input);
if (fn == "test") {
found_test = true;
TORCH_CHECK(sizes.size() == 1);
TORCH_CHECK(sizes[0] == std::vector<int64_t>({1, 2, 3}));
} else if (fn == "test::pow") {
found_pow = true;
TORCH_CHECK(sizes.size() == 2);
TORCH_CHECK(sizes[0] == std::vector<int64_t>({1, 2, 3}));
TORCH_CHECK(sizes[1].empty());
} else if (fn.find("::mul") != std::string::npos) {
found_mul = true;
TORCH_CHECK(sizes.size() > 1);
TORCH_CHECK(sizes[0] == std::vector<int64_t>({1, 2, 3}));
}
}
TORCH_CHECK(found_test);
TORCH_CHECK(found_pow);
TORCH_CHECK(found_mul);
}
std::string getFullName(const autograd::profiler::RecordFunction* fn_ptr) {
std::string full_name = "";
while (fn_ptr != nullptr) {
if (!full_name.empty()) {
full_name = std::string(fn_ptr->name().str()) + "::" + full_name;
} else {
full_name = fn_ptr->name().str();
}
fn_ptr = fn_ptr->parent();
}
return full_name;
}
void testRecordFunction() {
// [(fn, [[sizes], [sizes], ...]), ...]
TracedTestInputs traced_inputs;
autograd::profiler::pushCallback(
[&traced_inputs](const autograd::profiler::RecordFunction& fn) {
auto inputs = fn.inputs();
std::vector<std::vector<int64_t>> sizes;
for (const auto& input : inputs) {
if (input.isTensor()) {
sizes.push_back(input.toTensor().sizes().vec());
} else if (input.isScalar()) {
sizes.push_back(std::vector<int64_t>());
}
}
traced_inputs.push_back(
std::make_tuple(std::string(getFullName(&fn)), sizes));
},
[](const autograd::profiler::RecordFunction&) {},
/* needs_inputs */ true);
auto t = torch::randn({1, 2, 3}, at::kCPU);
t.set_requires_grad(true);
auto t2 = invokeTestRecordFunction(t);
t2.backward(torch::ones_like(t2, at::MemoryFormat::Preserve));
auto eager_inputs = traced_inputs;
traced_inputs.clear();
t = torch::randn({1, 2, 3}, at::kCPU);
t.set_requires_grad(true);
t2 = invokeTestRecordFunctionJIT(t);
t2.backward(torch::ones_like(t2, at::MemoryFormat::Preserve));
auto jit_inputs = traced_inputs;
traced_inputs.clear();
autograd::profiler::popCallback();
checkTracedInputs(eager_inputs);
checkTracedInputs(jit_inputs);
// test sampled callbacks
int sampled_cb_ctr = 0;
autograd::profiler::pushCallback(
[&sampled_cb_ctr](const autograd::profiler::RecordFunction& fn) {
if (std::string(fn.name().str()) == "test") {
++sampled_cb_ctr;
}
},
[](const autograd::profiler::RecordFunction&) {},
/* needs_inputs */ false,
/* sampled */ true);
int non_sampled_cb_ctr = 0;
autograd::profiler::pushCallback(
[&non_sampled_cb_ctr](const autograd::profiler::RecordFunction& fn) {
if (std::string(fn.name().str()) == "test") {
++non_sampled_cb_ctr;
}
},
[](const autograd::profiler::RecordFunction&) {},
/* needs_inputs */ false,
/* sampled */ false);
auto run_test_function = []() {
auto t = torch::randn({1, 2, 3}, at::kCPU);
for (auto k = 0; k < 1000; k++) {
invokeTestRecordFunction(t);
}
};
autograd::profiler::setSamplingProbability(0.5);
run_test_function();
TORCH_CHECK(non_sampled_cb_ctr == 1000);
TORCH_CHECK(sampled_cb_ctr > 0 && sampled_cb_ctr < 1000);
sampled_cb_ctr = 0;
autograd::profiler::setSamplingProbability(0.0);
run_test_function();
TORCH_CHECK(non_sampled_cb_ctr == 2000);
TORCH_CHECK(sampled_cb_ctr == 0);
sampled_cb_ctr = 0;
autograd::profiler::setSamplingProbability(1.0);
run_test_function();
TORCH_CHECK(non_sampled_cb_ctr == 3000);
TORCH_CHECK(sampled_cb_ctr == 1000);
autograd::profiler::popCallback();
autograd::profiler::popCallback();
}
class TestThreadLocalDebugInfo
: public at::ThreadLocalDebugInfoBase {
public:
int getModelId() const {
return model_id_;
}
void setModelId(int model_id) {
model_id_ = model_id;
}
virtual ~TestThreadLocalDebugInfo() {}
private:
int model_id_ = 0;
};
void testThreadLocalDebugInfo() {
auto checkDebugInfo = [](){
auto debug_info = at::getThreadLocalDebugInfo();
TORCH_CHECK(debug_info != nullptr);
auto* test_debug_info = dynamic_cast<TestThreadLocalDebugInfo*>(
debug_info.get());
TORCH_CHECK(test_debug_info != nullptr);
TORCH_CHECK(test_debug_info->getModelId() == 42);
};
TORCH_CHECK(at::getThreadLocalDebugInfo() == nullptr);
auto debug_info = std::make_shared<TestThreadLocalDebugInfo>();
debug_info->setModelId(42);
at::setThreadLocalDebugInfo(debug_info);
checkDebugInfo();
// check that thread local debug info is propagated through fork calls
std::atomic<bool> done {false};
at::launch([checkDebugInfo, &done](){
checkDebugInfo();
done = true;
});
while (!done) {}
checkDebugInfo();
// check that thread local debug info is propagated through backward pass
autograd::profiler::pushCallback(
[&checkDebugInfo](const autograd::profiler::RecordFunction& fn) {
checkDebugInfo();
},
[](const autograd::profiler::RecordFunction&) {});
{
auto t = torch::randn({1, 2, 3}, at::kCPU);
t.set_requires_grad(true);
auto t2 = t.pow(2);
t2.backward(torch::ones_like(t2, at::MemoryFormat::Preserve));
}
autograd::profiler::popCallback();
checkDebugInfo();
at::setThreadLocalDebugInfo(nullptr);
TORCH_CHECK(at::getThreadLocalDebugInfo() == nullptr);
}
void testAutogradProfiler() {
constexpr int batch_size = 4;
constexpr int input_size = 256;
constexpr int seq_len = 32;
int hidden_size = 2 * input_size;
auto input = torch::randn({seq_len, batch_size, input_size}, at::kCPU);
auto hx = torch::randn({batch_size, hidden_size}, at::kCPU);
auto cx = torch::randn({batch_size, hidden_size}, at::kCPU);
auto w_ih = t_def(torch::randn({4 * hidden_size, input_size}, at::kCPU));
auto w_hh = t_def(torch::randn({4 * hidden_size, hidden_size}, at::kCPU));
std::stringstream ss;
{
autograd::profiler::RecordProfile guard(ss);
for (size_t i = 0; i < 100; ++i) {
std::tie(hx, cx) = lstm(input[0], hx, cx, w_ih, w_hh);
}
}
std::string result = ss.str();
size_t count = 0;
for (size_t pos = 0; (pos = result.find("tanh", pos)) != std::string::npos;
count++, pos++) {
}
TORCH_CHECK(count == 200);
}
void testNoneSchemaMatch() {
RegisterOperators reg({
Operator(
"prim::test_none() -> int?",
[](Stack& stack) {
push(stack, IValue());
return 0;
},
aliasAnalysisFromSchema()),
Operator(
"prim::is_none(int? a) -> bool",
[](Stack& stack) {
IValue a = pop(stack);
if (a.isNone()) {
push(stack, true);
} else {
push(stack, false);
}
return 0;
},
aliasAnalysisFromSchema()),
});
// Constant propagation will run test_none and produce a None,
// testing that its type is set appropriately and schema matching doesn't
// fail when running is_none
auto r = std::make_shared<Graph>();
auto& g = *r;
auto opt_int = g.insert(Symbol::fromQualString("prim::test_none"), {});
auto out_bool = g.insert(Symbol::fromQualString("prim::is_none"), {opt_int});
g.registerOutput(out_bool);
ConstantPropagation(r);
auto nodes = r->block()->nodes();
// checking that constant propagation ran wo/failure
AT_ASSERT(std::distance(nodes.begin(), nodes.end()) == 1);
}
void testModuleDefine() {
script::Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add_it(self, x, b : int = 4):
return self.foo + x + b
)");
auto result = m.run_method("add_it", torch::ones({}));
AT_ASSERT(result.toTensor().item<float>() == 6);
}
void testModuleConversion() {
script::Module m("test");
{
// test cuda to cpu for params and buffers
m.register_parameter("foo", torch::ones({}, at::kCUDA), false);
m.register_buffer("bar", torch::ones({}, at::kCUDA));
m.to(at::kCUDA);
m.to(at::kCPU);
AT_ASSERT(m.attr("foo").toTensor().device().is_cpu());
AT_ASSERT(m.attr("bar").toTensor().device().is_cpu());
}
{
// test cpu to cuda for params and buffers
m.register_parameter("foo", torch::ones({}), false);
m.register_buffer("bar", torch::ones({}));
m.to(at::kCUDA);
AT_ASSERT(m.attr("foo").toTensor().device().is_cuda());
AT_ASSERT(m.attr("bar").toTensor().device().is_cuda());
}
}
static int testPassValue = 0;
void fakePass(std::shared_ptr<Graph>& g) {
testPassValue++;
return;
}
RegisterPass p(fakePass);
void testPassManagement() {
std::shared_ptr<Graph> graph = std::make_shared<Graph>();
script::parseIR(
R"IR(
graph(%a):
return (%a))IR",
&*graph);
std::vector<IValue> stack = {IValue(torch::randn({22}, at::kCPU))};
auto run = [&](std::shared_ptr<Graph>& graph, std::vector<IValue> stack) {
GraphExecutor executor(graph);
executor.run(stack);
return stack;
};
run(graph, stack);
// we will not run fusion in simple mode
if (!getExecutorMode()) {
AT_ASSERT(testPassValue);
}
}
static void checkShape(
Node* n,
std::vector<int64_t> expected,
bool prev = true) {
auto profile = (prev) ? n->inputs().at(0)->node() : n;
auto tp = profile->output()->type();
auto ptp = tp->expect<TensorType>();
ASSERT_EQ(ptp->sizes().concrete_sizes().value(), expected);
}
void testInsertAndEliminateRedundantGuards() {
static const auto basic_example = R"JIT(
def basic(x, y):
a = x + y
b = x * y
c = x + 1
d = a - c
e = b - c
return d + e
)JIT";
auto cu = compile(basic_example);
auto& fun = cu->get_function("basic");
auto pr = ProfilingRecord::instrumentGraph(fun.graph());
auto x = at::randn({2, 3}, at::kCPU);
auto y = at::randn({2, 3}, at::kCPU);
auto stack = createStack({x, y});
// introduce some profiling information
Code cd(pr->profiled_graph_);
InterpreterState is{cd};
is.run(stack);
auto copy = pr->profiled_graph_->copy();
InsertGuards(copy);
auto nodes = copy->block()->nodes();
auto guard = std::find_if(nodes.begin(), nodes.end(), [](Node* n) {
return n->kind() == prim::Guard;
});
ASSERT_NE(guard, nodes.end());
ASSERT_EQ(
guard->input()->type()->expect<TensorType>()->sizes().size(),
c10::nullopt);
checkShape(*guard, {2, 3}, false);
auto is_guard = [](Node* n) { return n->kind() == prim::Guard; };
int num_guards = std::count_if(nodes.begin(), nodes.end(), is_guard);
ASSERT_EQ(num_guards, 12);
// now eliminate as many guards as possible
// we should be left with two guards on x and y's defs
EliminateRedundantGuards(copy);
num_guards = std::count_if(nodes.begin(), nodes.end(), is_guard);
ASSERT_EQ(num_guards, 2);
}
void testInsertBailOuts() {
static const auto basic_example = R"JIT(
def basic_loop(x, y):
a = x + 1
b = y + 2
c = x + y + 3
for i in range(10):
a = a + b
# invariant
d = b * c
#
a = a - d
e = a + 4
return e
)JIT";
auto cu = compile(basic_example);
auto& fun = cu->get_function("basic_loop");
auto pr = ProfilingRecord::instrumentGraph(fun.graph());
auto x = at::randn({2, 3}, at::kCPU);
auto y = at::randn({2, 3}, at::kCPU);
auto stack = createStack({x, y});
// introduce some profiling information
Code cd(pr->profiled_graph_);
InterpreterState is{cd};
is.run(stack);
auto copy = pr->profiled_graph_->copy();
InsertGuards(copy);
EliminateRedundantGuards(copy);
auto nodes = copy->block()->nodes();
auto is_guard = [](Node* n) { return n->kind() == prim::Guard; };
auto num_guards = std::count_if(nodes.begin(), nodes.end(), is_guard);
ASSERT_EQ(num_guards, 3);
InsertBailOuts(copy);
auto is_bailout = [](Node* n) { return n->kind() == prim::BailOut; };
auto num_bailouts = std::count_if(nodes.begin(), nodes.end(), is_bailout);
ASSERT_EQ(num_guards, num_bailouts);
std::vector<Node*> bailouts(num_bailouts);
std::copy_if(nodes.begin(), nodes.end(), bailouts.begin(), is_bailout);
for (auto blo : bailouts) {
ASSERT_EQ(blo->inputs().at(0)->node()->kind(), prim::BailoutTemplate);
}
}
void testProfiler() {
constexpr int batch_size = 4;
constexpr int input_size = 256;
int hidden_size = 2 * input_size;
auto input = at::randn({batch_size, input_size}, at::kCPU);
auto hx = at::randn({batch_size, hidden_size}, at::kCPU);
auto cx = at::randn({batch_size, hidden_size}, at::kCPU);
auto w_ih = t_def(at::randn({4 * hidden_size, input_size}, at::kCPU));
auto w_hh = t_def(at::randn({4 * hidden_size, hidden_size}, at::kCPU));
auto g = build_lstm();
auto stack = createStack({input, hx, cx, w_ih, w_hh});
auto& opt_graph = *g.get();
ArgumentSpecCreator arg_spec_creator(opt_graph);
ArgumentSpec spec =
arg_spec_creator.create(autograd::GradMode::is_enabled(), stack);
arg_spec_creator.specializeTypes(opt_graph, spec);
auto pr = ProfilingRecord::instrumentGraph(g);
Code cd(pr->profiled_graph_);
InterpreterState is{cd};
is.run(stack);
auto begin = pr->profiled_graph_->block()->nodes().begin();
auto end = pr->profiled_graph_->block()->nodes().end();
auto mm =
std::find_if(begin, end, [](Node* n) { return n->kind() == aten::mm; });
ASSERT_NE(mm, end);
std::vector<int64_t> mm_expected{4, 256};
std::vector<int64_t> eltwise{4, 512};
checkShape(*mm, mm_expected);
auto sigmoid_n = std::find_if(
begin, end, [](Node* n) { return n->kind() == aten::sigmoid; });
ASSERT_NE(sigmoid_n, end);
checkShape(*sigmoid_n, eltwise);
auto tanh_n =
std::find_if(begin, end, [](Node* n) { return n->kind() == aten::tanh; });
checkShape(*tanh_n, eltwise);
}
void testCallStack() {
const auto text = R"(
def ham(x):
return x/7
def bar(x):
return x*3
def baz(x):
return ham(x)*x
def foo(x):
return bar(x)*baz(x)*11
)";
auto cu = compile(text);
const Function& foo = cu->get_function("foo");
for (Node* n : foo.optimized_graph()->nodes()) {
if (n->kind() == prim::Constant) {
if (!n->hasAttribute(attr::value) ||
n->kindOf(attr::value) != AttributeKind::i) {
continue;
}
int v = n->i(attr::value);
switch (v) {
case 3: {
// Const 3 comes from function 'bar', which gets inlined to 'foo'.
// The callstack for the corresponding node should contain only the
// function 'bar'.
ASSERT_TRUE(n->callstack());
auto callstack_vector = (*n->callstack())->vec();
ASSERT_EQ(callstack_vector.size(), 1);
ASSERT_EQ(callstack_vector[0].first, &cu->get_function("bar"));
break;
}
case 7: {
// Const 7 comes from function 'ham', which gets inlined to 'baz',
// which is then inlined to 'foo'. The callstack for the corresponding
// node should contain these two functions.
ASSERT_TRUE(n->callstack());
auto callstack_vector = (*n->callstack())->vec();
ASSERT_EQ(callstack_vector.size(), 2);
ASSERT_EQ(callstack_vector[0].first, &cu->get_function("baz"));
ASSERT_EQ(callstack_vector[1].first, &cu->get_function("ham"));
break;
}
case 11: {
// Const 11 comes from function 'foo', which is not inlined anywhere
// and thus it should not have a callstack.
ASSERT_FALSE(n->callstack());
break;
}
}
}
}
// Check that inlining doesn't corrupt callstack of the callee's nodes.
const Function& baz = cu->get_function("baz");
for (Node* n : baz.optimized_graph()->nodes()) {
if (n->kind() == prim::Constant) {
if (!n->hasAttribute(attr::value) ||
n->kindOf(attr::value) != AttributeKind::i) {
continue;
}
int v = n->i(attr::value);
ASSERT_TRUE(v == 7);
// Const 7 comes from function 'ham', which gets inlined to 'baz'. 'baz'
// was also inlined into 'foo', but when looking at the graph of 'baz' we
// should only see a callstack of depth 1 (containing only 'ham').
ASSERT_TRUE(n->callstack());
auto callstack_vector = (*n->callstack())->vec();
ASSERT_EQ(callstack_vector.size(), 1);
ASSERT_EQ(callstack_vector[0].first, &cu->get_function("ham"));
}
}
}
void testCallStackCaching() {
const auto text = R"(
def a(x):
print("a1")
print("a2")
return x
def b(x):
print("b1")
print("b2")
a(x)
return x
def c(x):
print("c1")
print("c2")
b(x)
return x
)";
auto cu = compile(text);
const Function& baz = cu->get_function("c");
std::unordered_map<std::string, InlinedCallStack*> callstack_objects;
for (Node* n : baz.optimized_graph()->nodes()) {
if (n->kind() == prim::Constant) {
if (!n->hasAttribute(attr::value) ||
n->kindOf(attr::value) != AttributeKind::s) {
continue;
}
std::string v = n->s(attr::value);
if (n->callstack()) {
callstack_objects[v] = n->callstack()->get();
}
}
}
// We expect to see nodes prim::Constant[value="a1"] and
// prim::Constant[value="a2"] inlined to function 'c'. Their callstacks are
// the same (a->b->c), so we want to make sure we're not creating different
// callstack entries for them.
ASSERT_TRUE(callstack_objects.count("a1") && callstack_objects.count("a2"));
ASSERT_TRUE(callstack_objects.at("a1") == callstack_objects.at("a2"));
}
void testAutogradSymbols() {
Symbol sym = Symbol::fromQualString("aten::test_symbol");
Graph graph;
auto node = graph.create(sym);
TORCH_CHECK(canRunWithAutograd(node));
sym = Symbol::fromQualString("prim::test_symbol");
node = graph.create(sym);
TORCH_CHECK(canRunWithAutograd(node));
sym = Symbol::fromQualString("prim::FusionGroup");
node = graph.create(sym);
TORCH_CHECK(!canRunWithAutograd(node));
sym = Symbol::fromQualString("custom::test_symbol");
node = graph.create(sym);
TORCH_CHECK(!canRunWithAutograd(node));
}
} // namespace jit
} // namespace torch