Commit Graph

18 Commits

Author SHA1 Message Date
Wanchao Liang
c21fde6421 [jit] make jit/rpc share the same PythonFutureWrapper (#35039)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35039

This is the initial step towards merging ivalue future and rpc future

Test Plan: Imported from OSS

Differential Revision: D20537164

Pulled By: wanchaol

fbshipit-source-id: d4f148c88e49ed6b0881ca4b4dd945ea24166183
2020-03-20 22:35:34 -07:00
Mikhail Zolotukhin
12f0052eee Add TensorExpr Fuser tests (resubmit). (#35085)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/35085

Test Plan: Imported from OSS

Differential Revision: D20552334

Pulled By: ZolotukhinM

fbshipit-source-id: 628fcf4719a879f18978ff8a0a64afbb045df645
2020-03-20 13:19:31 -07:00
Natalia Gimelshein
3c90a90730 Revert D20540599: Add TensorExpr Fuser tests.
Test Plan: revert-hammer

Differential Revision:
D20540599

Original commit changeset: ced9b6657fe7

fbshipit-source-id: e8fa11f20207c35f39b3fbe6f45fc627715377c1
2020-03-19 18:37:32 -07:00
Mikhail Zolotukhin
7b59f41009 Add TensorExpr Fuser tests. (#35052)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/35052

Differential Revision: D20540599

Test Plan: Imported from OSS

Pulled By: ZolotukhinM

fbshipit-source-id: ced9b6657fe72bca61833ab5d59bdaddcacd114b
2020-03-19 14:31:54 -07:00
Mikhail Zolotukhin
95833a49e6 [TensorExpr] Pull changes from bertmaher/pytorch_fusion. (#34842)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34842

This PR (hopefully the last one of such kind) is merging changes from a
side branch where tensor expessions based fuser work has been done so
far. This PR is is a squashed version of changes in the side branch,
which is available here: https://github.com/bertmaher/pytorch

Differential Revision: D20478208

Test Plan: Imported from OSS

Pulled By: ZolotukhinM

fbshipit-source-id: 21556e009f1fd88099944732edba72ac40e9b9c0
2020-03-17 11:02:48 -07:00
Mikhail Zolotukhin
35e7efeb9a [TensorExpr] Add CUDA codegen. (#34227)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34227

This PR adds a CUDA support to tensor expressions.

Differential Revision: D20251836

Test Plan: Imported from OSS

Pulled By: ZolotukhinM

fbshipit-source-id: ab36a55834cceff30c8371fef6cca1054a32f017
2020-03-16 11:49:29 -07:00
Mikhail Zolotukhin
42b2c8c65d [TensorExpr] Add a fuser pass based on tensor expressions. (#34226)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34226

LLVM and Cuda backends are added in subsequent PRs, so at this point the fuser is pretty useless, but it still can be tested and its logic is not going to change with addition of the codegens.

Differential Revision: D20251838

Test Plan: Imported from OSS

Pulled By: ZolotukhinM

fbshipit-source-id: 82b0d221fa89904ed526689d02a6c7676a8ce8de
2020-03-16 11:49:24 -07:00
peter
24c9e61e79 Enable JIT tests on Windows (#27029)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/27029

Reviewed By: eellison

Differential Revision: D20458664

Pulled By: jamesr66a

fbshipit-source-id: 22be918543703869f471e89b3478423198351bf3
2020-03-16 11:26:21 -07:00
Kimish Patel
4da5569300 Pass to remove prepacking ops. (#34319)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34319

Removes prepacking ops and install them as attributes of the top level
module. Needs to run freezing as the first pass.

Test Plan:
python test/test_xnnpack_integration.py

Imported from OSS

Differential Revision: D20290726

fbshipit-source-id: 633ceaa867ff7d5c8e69bd814c0362018394cb3a
2020-03-14 12:53:31 -07:00
Kimish Patel
7dd5da2026 JIT pass to insert XNNPACK ops (#34048)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34048

Rewrites the graph to insert xnnpack prepack and packed run ops for
conv2d and linear.

Test Plan:
python test/test_xnnpack_integration.py

Imported from OSS

Differential Revision: D20185658

fbshipit-source-id: c4c073c912ad33e822e7beb4ed86c9f895129d55
2020-03-14 12:53:27 -07:00
Zachary DeVito
52005b551c invokeOperatorFromPython: support overloaded operator calling (#34671)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34671

Like the python arg parser, this tries to convert to the schema in order.
It introduces schema_match_exception which gets thrown when the schema doesn't match,
allowing the overload handler to try the next option.

Behavior will not 100% match the schema argument parser but should work for
simple cases using custom binding.

Test Plan: Imported from OSS

Differential Revision: D20432206

Pulled By: zdevito

fbshipit-source-id: 280839a2205ea3497db3a9b5741fccc1e2bff9a8
2020-03-13 18:46:03 -07:00
Michael Suo
af3a7e2b50 [jit] small cleanups after script:: removal (#34677)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34677

1. Remove remaining uses of `script::` namespace from the codebase,
2. Add one more typedef for `script::ExtraFilesMap` which is part of the
public interface.

Pull Request resolved: #34580

Test Plan: Imported from OSS

Reviewed By: zdevito

Differential Revision: D20431739

Pulled By: suo

fbshipit-source-id: a29d369c755b6506c53447ca1f286b6339222c9a
2020-03-13 17:56:16 -07:00
Jerry Zhang
90ca7a1feb [quant][graphmode] Add Finalize function that inlines graph and produce quantized ops (#33927)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33927

Test Plan:
test will be added in later PRs

Imported from OSS

Differential Revision: D20354879

fbshipit-source-id: 03976f4b86c46dbdc4e45764a1e72f1a3855a404
2020-03-12 14:52:58 -07:00
Michael Suo
c235be42dd [jit] kill script namespace (#34515)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34515

Once upon a time we thought this was necessary. In reality it is not, so
removing it.

For backcompat, our public interface (defined in `api/`) still has
typedefs to the old `script::` names.

There was only one collision: `Pass` as a `Stmt` and `Pass` as a graph
transform. I renamed one of them.

Test Plan: Imported from OSS

Differential Revision: D20353503

Pulled By: suo

fbshipit-source-id: 48bb911ce75120a8c9e0c6fb65262ef775dfba93
2020-03-11 23:32:48 -07:00
Jerry Zhang
2e7eef41ac [quant][graphmode] Swap quantized functional linear with aten::linear (#33853)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33853

Quant fusion relies on inline, but inline will break the CallFunction("linaer", ...) into a if block
it will be hard to recognize this block and swap it with quantized::linear, in order to
preserve the op, we will swap all quantized functional linear into aten::linear.
They might produce different backward graph, but this is called in the step before we get quantized
model, so it shouldn't affect anything.
We'll integrate this with convert_script later in the new "finalize_quant" API

Test Plan:
python test/test_jit.py

Imported from OSS

Differential Revision: D20343873

fbshipit-source-id: 423e03bf893b79267d2dc97bc997ee1bfe54ec0f
2020-03-09 15:45:20 -07:00
Jie
2b79bab029 [CUDA_FUSER] Fork CUDA fuser (#33527)
Summary:
Separating CUDA fuser from CPU fuser.

1. New node in IR - prim::CudaFusionGroup:
   This enables the cuda fuser to co-exist along side the old fuser. Allows us
   to incrementally build and expand cuda fuser.

2. copied FuseGraph optimization passes to CudaFuserGraph:
   We will re-factor & reuse Chunk/Concat in the old fuser logic, which is
   handled in the optimization pass at this moment. Unfortunately many code in
   the pass is tightly binded with the legacy fuser, which makes code sharing
   difficult.
   The CudaFusionGraph will support only a subset of operations comparing to
   legacy fuser (CUDA only). It is registered as a custom pass post fusion via
     ```torch._C._jit_register_cuda_fuser()```
   To have it in effect, you should also turn off fusion on GPU via
     ```torch._C._jit_override_can_fuse_on_gpu(False)```

3. We don't have codegen in this PR yet (WIP). Currently we just fall back to
   the old fuser.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33527

Differential Revision: D20171598

Pulled By: ZolotukhinM

fbshipit-source-id: 9a3c0f06f46da7eaa80ae7551c04869f5b03ef71
2020-03-04 20:25:08 -08:00
Zino Benaissa
cab8772c6c Freezing Torchscript modules (#32178)
Summary:
This patch enables folding GetAttr nodes with their corresponding
values. _jit_pass_freeze_module API returns a new TorchScipt module
where all function calls and get attributes are inlined.
Usage:

frozen_model = torch._C._freeze_module(scrited_model._c)
frozen_model.forward(...)

This API currently optimizes the forward method. We will follow up to
to preserve and optimize methods and attributes that are annotated as
 torch.jit.interface.

Several future improvements to JIT optimizations are required to maximize
clean up/de-sugar the graph and eliminate redundancies.
Ideally, we want to produce a graph that can easily be lowered to
GLOW and other low-level backends.
__
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32178

Differential Revision: D19419640

Pulled By: bzinodev

fbshipit-source-id: 52baffaba9bca2cd60a8e747baa68d57711ad42b
2020-03-02 11:38:36 -08:00
Michael Suo
dbe850af5b [jit] do the code reorg (#33851)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33851

Rationale and context described in #33828.

Script to reproduce the move:
https://gist.github.com/suo/16cbefaaeb67ca5a7c6caffd49b7f6e9
ghstack-source-id: 99079645

Test Plan: Make sure CI passes

Reviewed By: jamesr66a

Differential Revision: D20133869

fbshipit-source-id: 390e9241a9c85366d9005c492ac31f10aa96488e
2020-02-27 13:02:51 -08:00