pytorch/torch/csrc/jit/python/init.cpp
Jie 2b79bab029 [CUDA_FUSER] Fork CUDA fuser (#33527)
Summary:
Separating CUDA fuser from CPU fuser.

1. New node in IR - prim::CudaFusionGroup:
   This enables the cuda fuser to co-exist along side the old fuser. Allows us
   to incrementally build and expand cuda fuser.

2. copied FuseGraph optimization passes to CudaFuserGraph:
   We will re-factor & reuse Chunk/Concat in the old fuser logic, which is
   handled in the optimization pass at this moment. Unfortunately many code in
   the pass is tightly binded with the legacy fuser, which makes code sharing
   difficult.
   The CudaFusionGraph will support only a subset of operations comparing to
   legacy fuser (CUDA only). It is registered as a custom pass post fusion via
     ```torch._C._jit_register_cuda_fuser()```
   To have it in effect, you should also turn off fusion on GPU via
     ```torch._C._jit_override_can_fuse_on_gpu(False)```

3. We don't have codegen in this PR yet (WIP). Currently we just fall back to
   the old fuser.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33527

Differential Revision: D20171598

Pulled By: ZolotukhinM

fbshipit-source-id: 9a3c0f06f46da7eaa80ae7551c04869f5b03ef71
2020-03-04 20:25:08 -08:00

766 lines
29 KiB
C++

#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/jit/runtime/argument_spec.h>
#include <torch/csrc/jit/runtime/autodiff.h>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/codegen/fuser/interface.h>
#include <torch/csrc/jit/codegen/fuser/kernel_cache.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/passes/canonicalize_ops.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/create_autodiff_subgraphs.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/decompose_ops.h>
#include <torch/csrc/jit/passes/erase_number_types.h>
#include <torch/csrc/jit/passes/fuse_linear.h>
#include <torch/csrc/jit/passes/graph_fuser.h>
#include <torch/csrc/jit/passes/cuda_graph_fuser.h>
#include <torch/csrc/jit/passes/inline_fork_wait.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/loop_unrolling.h>
#include <torch/csrc/jit/passes/lower_graph.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/onnx.h>
#include <torch/csrc/jit/passes/onnx/cast_all_constant_to_floating.h>
#include <torch/csrc/jit/passes/onnx/constant_fold.h>
#include <torch/csrc/jit/passes/onnx/fixup_onnx_conditionals.h>
#include <torch/csrc/jit/passes/onnx/fixup_onnx_loop.h>
#include <torch/csrc/jit/passes/onnx/peephole.h>
#include <torch/csrc/jit/passes/onnx/prepare_division_for_onnx.h>
#include <torch/csrc/jit/passes/onnx/prepare_inplace_ops_for_onnx.h>
#include <torch/csrc/jit/passes/onnx/scalar_type_analysis.h>
#include <torch/csrc/jit/passes/onnx/unpack_quantized_weights.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/quantization.h>
#include <torch/csrc/jit/passes/remove_expands.h>
#include <torch/csrc/jit/passes/remove_inplace_ops.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/specialize_autogradzero.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/passes/utils/check_alias_annotation.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/runtime/print_handler.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/jit/python/python_arg_flatten.h>
#include <torch/csrc/jit/python/python_custom_class.h>
#include <torch/csrc/jit/python/python_ir.h>
#include <torch/csrc/jit/python/python_tracer.h>
#include <torch/csrc/jit/python/script_init.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/runtime/jit_exception.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/python/python_tree_views.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <c10/macros/Export.h>
#include <caffe2/serialize/inline_container.h>
#include <ATen/core/function_schema.h>
#include <pybind11/functional.h>
#include <pybind11/iostream.h>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <utility>
namespace torch {
namespace jit {
using ::c10::Argument;
using ::c10::FunctionSchema;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::PyTorchStreamWriter;
namespace {
using autograd::variable_list;
bool loadPythonClasses() {
// Leaving this code here, because it will likely be useful at some point
// PyObject *jit_module = PyImport_ImportModule("torch.jit");
// THPUtils_assert(jit_module, "class loader couldn't access "
//"torch.jit module");
// PyObject *jit_dict = PyModule_GetDict(jit_module);
return true;
}
} // anonymous namespace
#if !defined(_WIN32) && !defined(__HIP_PLATFORM_HCC__)
TORCH_API void runJITCPPTests(bool runCuda);
#endif
void initJITBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
py::register_exception<JITException>(m, "JITException");
py::class_<python::IODescriptor> iodescriptor(
m, "IODescriptor"); // NOLINT(bugprone-unused-raii)
m.def("_jit_init", loadPythonClasses)
.def(
"_jit_debug_fuser_num_cached_kernel_specs",
torch::jit::fuser::debugNumCachedKernelSpecs)
.def("_jit_pass_onnx_remove_print", RemovePrintOps)
.def("_jit_pass_onnx_preprocess_caffe2", PreprocessCaffe2Ops)
.def("_jit_pass_onnx", ToONNX)
.def("_jit_pass_lower_all_tuples", LowerAllTuples)
.def(
"_jit_pass_onnx_peephole",
[](std::shared_ptr<Graph>& graph,
int opset_version,
bool fixed_batch_size) {
return PeepholeOptimizeONNX(graph, opset_version, fixed_batch_size);
})
.def(
"_jit_pass_onnx_cast_all_constant_to_floating",
CastAllConstantToFloating)
.def(
"_jit_pass_onnx_constant_fold",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, at::Tensor>& paramsDict,
int opset_version) {
ConstantFoldONNX(
graph->block(),
paramsDict,
opset_version); // overload resolution
return paramsDict;
},
pybind11::return_value_policy::move)
.def("_jit_pass_onnx_scalar_type_analysis", ScalarTypeAnalysisForONNX)
.def(
"_jit_pass_onnx_prepare_inplace_ops_for_onnx",
PrepareInplaceOpsForONNX)
.def("_jit_pass_fuse", FuseGraph)
.def(
"_jit_pass_dce",
[](std::shared_ptr<Graph>& g) {
return EliminateDeadCode(g->block()); // overload resolution
})
.def(
"_jit_pass_dce_allow_deleting_nodes_with_side_effects",
[](std::shared_ptr<Graph>& g) {
return EliminateDeadCode(
g->block(),
true,
DCESideEffectPolicy::
ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS); // overload
// resolution
})
.def(
"_jit_pass_cse",
[](std::shared_ptr<Graph>& g) {
return EliminateCommonSubexpression(g); // overload resolution
})
.def(
"_jit_pass_insert_observers",
[](script::Module& module,
const std::string& method_name,
const py::dict& qconfig_dict,
bool inplace) {
auto dict = py::cast<std::unordered_map<
std::string,
std::tuple<script::Module, script::Module>>>(qconfig_dict);
return InsertObservers(module, method_name, dict, inplace);
},
py::arg("module"),
py::arg("method_name"),
py::arg("qconfig_dict"),
py::arg("inplace") = false)
.def(
"_jit_pass_insert_quant_dequant",
[](script::Module& module,
const std::string& method_name,
bool inplace) {
return InsertQuantDeQuant(module, method_name, inplace);
},
py::arg("module"),
py::arg("method_name"),
py::arg("inplace") = false)
.def(
"_jit_pass_insert_prepack_unpack",
[](std::shared_ptr<Graph>& g) { return InsertPrepackUnpack(g); })
.def(
"_jit_pass_insert_prepack_unpack",
[](script::Module& module) { return InsertPrepackUnpack(module); })
.def(
"_jit_pass_quant_fusion",
[](std::shared_ptr<Graph>& g) { return QuantFusion(g); })
.def("_jit_pass_fold_convbn", &FoldConvBatchNorm2d)
.def("_freeze_module",
[](script::Module& module) {
return freeze_module(module);
},
py::arg("module"))
.def("_jit_pass_fuse_linear", &FuseLinear)
.def(
"_jit_pass_fold_quantize",
[](script::Module& module, const std::string& method_name) {
FoldQuantizeCallIntoBuffer(module, method_name);
})
.def("_jit_pass_fold_prepack", &FoldPrepackedWeightIntoModule)
.def("_jit_pass_dedup_module_uses", &DedupModuleUses)
.def("_jit_pass_replicate_dequantize", &ReplicateDeQuant)
.def("_jit_pass_swap_dequantize", &SwapDeQuant)
.def(
"_jit_pass_pattern_based_rewrite",
[](const script::Module& m) { return PatternBasedRewrite(m); })
.def(
"_jit_pass_custom_pattern_based_rewrite",
[](const std::string& pattern,
const std::string& fused_node_name,
const script::Module& m) {
SubgraphRewriter subgraph_rewriter;
subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name);
subgraph_rewriter.runOnModule(m);
})
.def(
"_jit_pass_custom_pattern_based_rewrite_graph",
[](const std::string& pattern,
const std::string& fused_node_name,
std::shared_ptr<Graph> g) {
SubgraphRewriter subgraph_rewriter;
subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name);
subgraph_rewriter.runOnGraph(g);
})
.def(
"_jit_pass_fold_quant_inputs",
[](std::shared_ptr<Graph>& g) {
return FoldQuantNodesIntoInputsOutputs(g);
})
.def(
"_jit_pass_remove_inplace_ops",
[](std::shared_ptr<Graph> g) { return RemoveInplaceOps(g); })
.def("_jit_pass_constant_pooling", ConstantPooling)
.def(
"_jit_pass_peephole",
[](const std::shared_ptr<Graph>& g, bool addmm_fusion_enabled) {
return PeepholeOptimize(g, addmm_fusion_enabled);
},
py::arg("graph"),
py::arg("addmm_fusion_enabled") = false)
.def(
"_jit_pass_canonicalize",
[](const std::shared_ptr<Graph>& g) { return Canonicalize(g); })
.def("_jit_pass_lint", LintGraph)
.def(
"_jit_pass_complete_shape_analysis",
[](std::shared_ptr<Graph> graph, py::tuple inputs, bool with_grad) {
ArgumentSpecCreator arg_spec_creator(*graph);
Stack stack;
stack.reserve(inputs.size()); // captures?
for (auto& obj : inputs) {
stack.push_back(toTypeInferredIValue(obj));
}
ArgumentSpec spec = arg_spec_creator.create(with_grad, stack);
arg_spec_creator.specializeTypes(*graph, spec);
// We only get partial specialization from the arg_spec_creator, but
// we want full shape specialization. The alternative would be to
// have a "complete type inference" function in ArguemntSpecCreator.
auto g_inputs = graph->inputs();
for (size_t i = 0; i < inputs.size(); ++i) {
if (stack[i].isTensor()) {
g_inputs[i]->setType(stack[i].type());
}
}
PropagateInputShapes(graph);
})
.def("_jit_pass_remove_expands", RemoveExpands)
.def("_jit_pass_erase_number_types", EraseNumberTypes)
.def("_jit_pass_inline_fork_wait", InlineForkWait)
.def("_jit_pass_inline", Inline)
.def("_jit_pass_prepare_division_for_onnx", PrepareDivisionForONNX)
.def(
"_jit_pass_lower_graph",
[](std::shared_ptr<Graph>& graph, const script::Module& self) {
return LowerGraph(*graph, self._ivalue());
})
.def("_jit_pass_loop_unrolling", UnrollLoops)
.def(
"_jit_pass_constant_propagation",
[](std::shared_ptr<Graph>& g) { return ConstantPropagation(g); })
.def("_jit_pass_erase_shape_information", EraseShapeInformation)
.def(
"_jit_pass_create_autodiff_subgraphs",
[](std::shared_ptr<Graph> graph) { CreateAutodiffSubgraphs(graph); })
#if defined(BUILDING_TESTS) && !defined(_WIN32) && !defined(__HIP_PLATFORM_HCC__)
.def(
"_jit_run_cpp_tests",
[](bool runCuda) {
// We have to release the GIL inside this method, because if we
// happen to initialize the autograd engine in these tests, the
// newly spawned worker threads will try to initialize their
// PyThreadState*, and they need the GIL for this.
pybind11::gil_scoped_release _no_gil;
return runJITCPPTests(runCuda);
},
py::arg("run_cuda"))
.def("_jit_has_cpp_tests", []() { return true; })
#else
.def("_jit_run_cpp_tests", []() { throw std::exception(); })
.def("_jit_has_cpp_tests", []() { return false; })
#endif
.def(
"_jit_flatten",
[](py::handle& obj) {
auto res = python::flatten(obj);
return std::make_pair(res.vars, res.desc);
})
.def(
"_jit_unflatten",
[](autograd::variable_list vars, python::IODescriptor& desc) {
return py::reinterpret_steal<py::object>(
python::unflatten(vars, desc));
})
.def("_jit_pass_onnx_block", BlockToONNX)
.def("_jit_pass_fixup_onnx_loops", FixupONNXLoops)
.def("_jit_pass_fixup_onnx_conditionals", FixupONNXConditionals)
.def("_jit_pass_canonicalize_ops", CanonicalizeOps)
.def("_jit_pass_decompose_ops", DecomposeOps)
.def("_jit_pass_specialize_autogradzero", specializeAutogradZero)
.def("_jit_override_can_fuse_on_cpu", &overrideCanFuseOnCPU)
.def("_jit_override_can_fuse_on_gpu", &overrideCanFuseOnGPU)
.def("_jit_register_tensorexpr_fuser", &registerTensorExprFuser)
.def(
"_jit_differentiate",
[](Graph& g) {
// the python binding slightly differs in semantics
// it makes a copy of the input Graph, and works on that
// jit::differentiate mutates the input Graph
auto g_clone = g.copy();
return differentiate(g_clone);
})
.def(
"_jit_check_alias_annotation",
[](std::shared_ptr<Graph> g,
py::tuple args,
const std::string& unqualified_op_name) {
auto stack = toTraceableStack(args);
checkAliasAnnotation(g, std::move(stack), unqualified_op_name);
})
.def(
"_jit_register_cuda_fuser", &registerCudaFuseGraph)
.def(
"_jit_set_profiling_mode",
[](bool profiling_flag) {
bool oldState = getProfilingMode();
getProfilingMode() = profiling_flag;
return oldState;
})
.def(
"_jit_set_profiling_executor",
[](bool profiling_flag) {
bool oldState = getExecutorMode();
getExecutorMode() = profiling_flag;
return oldState;
})
.def(
"_jit_set_num_profiled_runs",
[](size_t num) {
size_t old_num = getNumProfiledRuns();
getNumProfiledRuns() = num;
return old_num;
})
.def(
"_jit_set_bailout_depth",
[](size_t depth) {
size_t old_depth = getBailoutDepth();
getBailoutDepth() = depth;
return old_depth;
})
.def(
"_jit_set_inline_everything_mode",
[](bool enabled) { script::getInlineEverythingMode() = enabled; })
.def(
"_jit_get_inline_everything_mode",
[]() { return script::getInlineEverythingMode(); })
.def(
"_jit_try_infer_type",
[](py::object obj) -> TypePtr {
auto match = tryToInferType(obj);
if (match.success()) {
return match.type();
}
return nullptr;
})
.def(
"_jit_fuser_get_fused_kernel_code",
[](Graph& g, std::vector<at::Tensor> inps) {
return debugGetFusedKernelCode(g, inps);
})
.def(
"_jit_pass_onnx_unpack_quantized_weights",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, at::Tensor>& paramsDict) {
UnpackQuantizedWeights(graph, paramsDict);
return paramsDict;
},
pybind11::return_value_policy::move)
.def(
"_jit_pass_onnx_quantization_insert_permutes",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, at::Tensor>& paramsDict) {
insertPermutes(graph, paramsDict);
return paramsDict;
},
pybind11::return_value_policy::move);
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<CompleteArgumentSpec>(m, "CompleteArgumentSpec")
.def("__repr__", [](CompleteArgumentSpec& self) {
std::ostringstream s;
s << self;
return s.str();
});
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<ArgumentSpec>(m, "ArgumentSpec");
py::class_<Code>(m, "Code")
.def(
"grad_executor_states",
[](Code& c) {
std::vector<GraphExecutorState> states;
for (auto& e : c.grad_executors()) {
states.emplace_back(e->getDebugState());
}
return states;
})
.def("num_bailouts", [](Code& c) { return c.num_bailouts(); })
.def("request_bailout", [](Code& c, size_t index) {
c.request_bailout(index);
});
py::class_<ExecutionPlan>(m, "ExecutionPlan")
.def_property_readonly("graph", [](ExecutionPlan& s) { return s.graph; })
.def_property_readonly("code", [](ExecutionPlan& s) { return s.code; });
py::class_<Gradient>(m, "Gradient")
.def_property_readonly("f", [](Gradient& m) { return m.f; })
.def_property_readonly("df", [](Gradient& m) { return m.df; })
.def_property_readonly(
"f_real_outputs", [](Gradient& m) { return m.f_real_outputs; })
.def_property_readonly(
"df_input_vjps", [](Gradient& m) { return m.df_input_vjps; })
.def_property_readonly(
"df_input_captured_inputs",
[](Gradient& m) { return m.df_input_captured_inputs; })
.def_property_readonly(
"df_input_captured_outputs",
[](Gradient& m) { return m.df_input_captured_outputs; })
.def_property_readonly(
"df_output_vjps", [](Gradient& m) { return m.df_output_vjps; });
py::class_<GraphExecutorState>(m, "GraphExecutorState")
.def_property_readonly(
"graph", [](GraphExecutorState& s) { return s.graph; })
.def_property_readonly(
"execution_plans",
[](GraphExecutorState& s) { return s.execution_plans; })
.def_property_readonly(
"fallback", [](GraphExecutorState& s) { return s.fallback; });
py::class_<PyTorchStreamWriter>(m, "PyTorchFileWriter")
.def(py::init<std::string>())
.def(py::init([](const py::object &buffer) {
auto writer_func = [=](const void *data, size_t size) {
auto bytes = py::bytes(reinterpret_cast<const char *>(data), size);
buffer.attr("write")(std::move(bytes));
return size;
};
return std::make_unique<PyTorchStreamWriter>(std::move(writer_func));
}))
.def(py::init<const std::function<size_t(const void *, size_t)> &>())
.def("write_record",
[](PyTorchStreamWriter &self, const std::string &name,
const char *data,
size_t size) { return self.writeRecord(name, data, size); })
.def("write_end_of_file", &PyTorchStreamWriter::writeEndOfFile)
.def("write_record",
[](PyTorchStreamWriter &self, const std::string &name,
uintptr_t data, size_t size) {
return self.writeRecord(name, reinterpret_cast<const char *>(data),
size);
});
// This allows PyTorchStreamReader to read from a Python buffer. It requires
// that the buffer implement `seek()`, `tell()`, and `read()`.
class BufferAdapter : public caffe2::serialize::ReadAdapterInterface {
public:
BufferAdapter(const py::object& buffer) : buffer_(buffer) {
// Jump to the end of the buffer to get its size
auto current = buffer.attr("tell")();
start_offset_ = py::cast<size_t>(current);
buffer.attr("seek")(current, py::module::import("os").attr("SEEK_END"));
size_ = py::cast<size_t>(buffer.attr("tell")()) - start_offset_;
buffer.attr("seek")(current);
// If we can read directly into a buffer, do that instead of an extra copy
use_readinto_ = py::hasattr(buffer, "readinto");
}
size_t size() const override {
return size_;
}
THPObjectPtr getMemview(void* buf, size_t n) const {
#if PY_MAJOR_VERSION >= 3
THPObjectPtr memview(PyMemoryView_FromMemory(
reinterpret_cast<char*>(buf), n, PyBUF_WRITE));
#else
THPObjectPtr memview(PyBuffer_FromReadWriteMemory(buf, n));
#endif
if (!memview) {
throw python_error();
}
return memview;
}
size_t read(uint64_t pos, void* buf, size_t n, const char* what)
const override {
// Seek to desired position (NB: this has to be a Py_ssize_t or Python
// throws a weird error)
Py_ssize_t absolute_pos = start_offset_ + pos;
buffer_.attr("seek")(absolute_pos);
if (use_readinto_) {
auto memview = getMemview(buf, n);
auto res =
PyObject_CallMethod(buffer_.ptr(), "readinto", "O", memview.get());
if (res) {
int i = PyInt_AsLong(res);
if (i > 0) {
return i;
}
}
}
// Read bytes into `buf` from the buffer
std::string bytes = py::cast<std::string>(buffer_.attr("read")(n));
std::copy(
bytes.data(),
bytes.data() + bytes.size(),
reinterpret_cast<char*>(buf));
return bytes.size();
}
py::object buffer_;
size_t size_;
size_t start_offset_;
bool use_readinto_;
};
py::class_<PyTorchStreamReader>(m, "PyTorchFileReader")
.def(py::init<std::string>())
.def(py::init([](const py::object& buffer) {
auto adapter = std::make_unique<BufferAdapter>(std::move(buffer));
return std::make_unique<PyTorchStreamReader>(std::move(adapter));
}))
.def("get_record", [](PyTorchStreamReader& self, const std::string& key) {
at::DataPtr data;
size_t size;
std::tie(data, size) = self.getRecord(key);
return py::bytes(reinterpret_cast<const char*>(data.get()), size);
})
.def("get_all_records", [](PyTorchStreamReader& self) {
return self.getAllRecords();
});
m.def(
"_jit_get_operation",
[](const std::string& op_name) {
try {
auto symbol = Symbol::fromQualString(op_name);
auto operations = getAllOperatorsFor(symbol);
TORCH_CHECK(!operations.empty(), "No such operator ", op_name);
TORCH_CHECK(
operations.size() == 1,
"Found ",
operations.size(),
" overloads for operator ",
op_name,
"! Overloads are not supported from Python.");
std::shared_ptr<Operator> op = operations[0];
AT_ASSERT(op != nullptr);
std::ostringstream docstring;
docstring << "Automatically bound operator '" << op_name
<< "' with schema: " << op->schema();
return py::cpp_function(
[op](py::args args, py::kwargs kwargs) {
return invokeOperatorFromPython(
*op, std::move(args), std::move(kwargs));
},
py::name(symbol.toUnqualString()),
py::doc(docstring.str().c_str()));
} catch (const c10::Error& error) {
throw std::runtime_error(error.what_without_backtrace());
}
},
py::arg("qualified_name"));
m.def("parse_ir", [](const std::string& input) {
auto graph = std::make_shared<Graph>();
script::parseIR(input, &*graph);
return graph;
});
m.def("parse_schema", parseSchema);
py::class_<FunctionSchema>(m, "FunctionSchema")
.def_property_readonly(
"name", [](FunctionSchema& self) { return self.name(); })
.def_property_readonly(
"overload_name",
[](FunctionSchema& self) { return self.overload_name(); })
.def_property_readonly(
"arguments", [](FunctionSchema& self) { return self.arguments(); })
.def_property_readonly(
"returns", [](FunctionSchema& self) { return self.returns(); })
.def("is_backward_compatible_with",
[](const FunctionSchema& self, const FunctionSchema& old_schema) {
return self.isBackwardCompatibleWith(old_schema);
})
.def("__eq__", [](const FunctionSchema& self,
const FunctionSchema& other) {
return self == other;
})
.def("__str__", [](FunctionSchema& self) {
std::stringstream ss;
ss << self;
return ss.str();
});
py::class_<Argument>(m, "Argument")
.def_property_readonly("name", [](Argument& self) { return self.name(); })
.def_property_readonly("type", [](Argument& self) { return self.type(); })
.def_property_readonly(
"N",
[](Argument& self) -> py::object {
return (self.N()) ? py::cast(*self.N()) : py::none();
})
.def_property_readonly("default_value", [](Argument& self) -> py::object {
if (!self.default_value())
return py::none();
IValue v = *self.default_value();
return toPyObject(std::move(v));
});
m.def(
"_jit_get_all_schemas", []() {
const std::vector<std::shared_ptr<Operator>>& operations = getAllOperators();
return fmap(operations, [](const std::shared_ptr<Operator>& op) {
return op->schema();
});
});
m.def("_jit_get_schemas_for_operator", [](const std::string& qualified_name) {
auto symbol = Symbol::fromQualString(qualified_name);
auto operations = getAllOperatorsFor(symbol);
return fmap(operations, [](const std::shared_ptr<Operator>& op) {
return op->schema();
});
});
struct PythonFutureWrapper {
explicit PythonFutureWrapper(c10::intrusive_ptr<c10::ivalue::Future> fut)
: fut(std::move(fut)) {}
c10::intrusive_ptr<c10::ivalue::Future> fut;
};
py::class_<PythonFutureWrapper>(m, "Future");
m.def("fork", [](py::args args) {
AT_ASSERT(args.size() >= 1);
py::function f = py::cast<py::function>(args[0]);
py::tuple args_tup(args.size() - 1);
for (size_t i = 1; i < args.size(); ++i) {
args_tup[i - 1] = args[i];
}
if (jit::tracer::isTracing()) {
auto graph = jit::tracer::getTracingState()->graph;
auto fork_node = graph->insertNode(graph->create(prim::TracedFork, 1));
auto body_block = fork_node->addBlock();
Value* node_output;
py::object py_func_output;
// Insert new trace ops into the fork op's sub-block
WithInsertPoint guard(body_block);
IValue output_ivalue;
{
tracer::WithNestedTracingFrame env_guard;
// Run the user-supplied function
py_func_output = f(*args_tup);
// Convert the output of the user-supplied function to IValue. The type
// information of this IValue is used both to record the correct type in
// the trace.
output_ivalue = toTypeInferredIValue(py_func_output);
Value* out_val = jit::tracer::getValueTrace(output_ivalue);
body_block->registerOutput(out_val);
node_output =
fork_node->output()->setType(FutureType::create(out_val->type()));
}
auto retval =
c10::make_intrusive<c10::ivalue::Future>(output_ivalue.type());
// Record the ivalue in the tracer
jit::tracer::setValueTrace(retval, node_output);
// stuff the ivalue output in the Future
retval->markCompleted(output_ivalue);
return PythonFutureWrapper(retval);
} else {
auto result = toTypeInferredIValue(f(*args_tup));
auto retval = c10::make_intrusive<c10::ivalue::Future>(result.type());
retval->markCompleted(std::move(result));
return PythonFutureWrapper(retval);
}
});
m.def("wait", [](PythonFutureWrapper& fut) {
if (jit::tracer::isTracing()) {
auto graph = jit::tracer::getTracingState()->graph;
Value* fut_val = jit::tracer::getValueTrace(fut.fut);
auto output = graph->insert(aten::wait, {fut_val});
jit::tracer::setValueTrace(fut.fut->value(), output);
}
return fut.fut->value();
});
m.def("_jit_assert_is_instance", [](py::object obj, TypePtr type) {
toIValue(obj, type);
});
initPythonCustomClassBindings(module);
initPythonIRBindings(module);
tracer::initPythonTracerBindings(module);
script::initTreeViewBindings(module);
script::initJitScriptBindings(module);
setPrintHandler([](const std::string& str) {
py::gil_scoped_acquire acquire;
try {
auto _stdout = py::module::import("sys").attr("stdout");
_stdout.attr("write")(str);
} catch (py::error_already_set& e) {
throw std::runtime_error(e.what());
}
});
}
} // namespace jit
} // namespace torch