The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
ghstack dependencies: #127122, #127123, #127124, #127125
Previously, if someone used `register_fake` to add a fake impl for an
operator defined in C++, we would require them to add a
`m.set_python_module(<module>)` call to C++. This was to avoid
situations where a user imported the C++ operator without importing the
fake impl.
This "breaks" open registration: there's no way to add a fake impl
outside of a repository that defines an operator, so we want to turn
this behavior off by default in open source.
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124064
Approved by: https://github.com/albanD
ghstack dependencies: #123937
Previously, if someone wrote a python abstract impl but didn't import
the module it is in, then we would raise an error message suggesting
that the user needs to add an abstract impl for the operator.
In addition to this, we suggest that the user try importing the module
associated with the operator in the pystub (it's not guaranteed that
an abstract impl does exist) to avoid confusion.
Test Plan:
- new test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117770
Approved by: https://github.com/ydwu4, https://github.com/williamwen42
Summary:
We've made the following changes:
- The new way to use the API is `m.impl_abstract_pystub(module, context)`.
Every subsequent m.def of an op inside the TORCH_LIBRARY block gives
the op the `impl_abstract_pystub`.
- Added a mechanism to determine if an operator was defined in Python or C++.
Library.define in Python appends the op to a global set, which is analogous
to what we do for tracking Library.impl.
- If someone does `torch.library.impl_abstract` in Python for an operator, then
we require that it has an `impl_abstract_pystub` specified and we also check
that the module in the `impl_abstract_pystub` is the same as the module where
the call to `torch.library.impl_abstract` exists.
- Unfortunately we can't check the "context" (which is the buck target on
buck-based systems) because buck sits above us.
bypass-github-export-checks
Test Plan: - existing tests
Differential Revision: D51080493
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113182
Approved by: https://github.com/ezyang
Summary:
We've made the following changes:
- The new way to use the API is `m.impl_abstract_pystub(module, context)`.
Every subsequent m.def of an op inside the TORCH_LIBRARY block gives
the op the `impl_abstract_pystub`.
- Added a mechanism to determine if an operator was defined in Python or C++.
Library.define in Python appends the op to a global set, which is analogous
to what we do for tracking Library.impl.
- If someone does `torch.library.impl_abstract` in Python for an operator, then
we require that it has an `impl_abstract_pystub` specified and we also check
that the module in the `impl_abstract_pystub` is the same as the module where
the call to `torch.library.impl_abstract` exists.
- Unfortunately we can't check the "context" (which is the buck target on
buck-based systems) because buck sits above us.
Test Plan: - existing tests
Differential Revision: D50972148
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112851
Approved by: https://github.com/ezyang
Generally, to extend PyTorch with custom operators, a user will
create a Python module whose import triggers registration of
the custom operators via a torch.ops.load_library call or a call
to one or more torch.library.* APIs.
It is unexpected for Python modules to have side effects, so some
linters and formatters will complain. Use torch.ops.import_module to
import the module without a linter or formatter complaining.
NB: A more robust API would actually check if a custom op was registered
or modified, but this is technically challenging to do. In the future we
can add a warning if a custom op wasn't registered or modified.
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110090
Approved by: https://github.com/ezyang
We want users to be able to define custom ops in C++ but put the
abstract impl in Python (since it is easier to write them in Python and
the abstract impl better models device semantics and data-dependent
operators).
`m.impl_abstract_pystub(opname, python_module, context)` declares the
abstract_impl of the operator to exist in the given python module.
When the abstract_impl needs to be accessed (either via FakeTensor or
Meta), and it does not exist, the PyTorch Dispatcher will yell
with a descriptive error message.
Some details:
- We construct a new global AbstractImplPyStub mapping in
Dispatcher.cpp. Read/write to this map is protected by the Dispatcher
lock.
- We add a new Meta Tensor fallback kernel. The fallback errors out if there is
no meta kernel, but also offers a nicer error message if we see that there is
a pystub.
- We create a `torch._utils_internal.throw_abstract_impl_not_imported_error`
helper function to throw errors. This way, we can throw different error
messages in OSS PyTorch vs internal PyTorch. To invoke this from C++, we
added a PyInterpreter::throw_abstract_impl_not_imported_error.
Differential Revision: [D49464753](https://our.internmc.facebook.com/intern/diff/D49464753/)
Differential Revision: [D49464753](https://our.internmc.facebook.com/intern/diff/D49464753)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109529
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
Summary:
Relate to https://github.com/pytorch/pytorch/issues/50483.
Everything except ONNX, detectron and release notes tests are moved to use common_utils.run_tests() to ensure CI reports XML correctly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50923
Reviewed By: samestep
Differential Revision: D26027621
Pulled By: walterddr
fbshipit-source-id: b04c03f10d1fe96181b720c4c3868e86e4c6281a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37700
Certain autograd functions can have optional Tensor arguments. For
this purpose it would be nice to support c10::optional<Tensor> as an argument
for C++ autograd functions.
I've added the appropriate overload to ExtractVariables to ensure this works.
For an example, you can look at D21272807 in terms of how this is used.
ghstack-source-id: 103541789
Test Plan: waitforbuildbot
Differential Revision: D21363491
fbshipit-source-id: 0c8665e9bfe279e6b9ab84a889524fea11fa971c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a
Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**
This was requested by someone at Facebook; this lint is turned
on for Facebook by default. "Sure, why not."
I had to noqa a number of imports in __init__. Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it. Left for future work.
Be careful! flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments. flake8-3 will
report an import unused; flake8-2 will not. For now, I just
noqa'd all these sites.
All the changes were done by hand.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: D14687478
fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
Summary:
Changes in this PR:
1. Intermediate Docker image is shared from build stage to test stage through ECR, in order to fix the Caffe2 flaky CUDA tests.
2. There are ~7 Caffe2 operator tests that are only flaky in `caffe2_py2_gcc4_8_ubuntu14_04_test` on CPU. Disabling those tests on that config only, which is okay to do because we are still running those tests in other test jobs.
After this PR is merged, CircleCI will be running on master automatically, and will be running on PRs if the author rebased their PR onto the newest master (which we will ask all the authors to do when we switch off Jenkins for Linux).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12389
Differential Revision: D10224267
Pulled By: yf225
fbshipit-source-id: dd1a90a425c3d13b870d3d328cb301eee2e6e2cd
Summary:
This PR is stacked on https://github.com/pytorch/pytorch/pull/10610, and only adds changes in one file `.jenkins/pytorch/test.sh`, where we now build the custom op tests and run them.
I'd also like to take this PR to discuss whether the [`TorchConfig.cmake`](https://github.com/pytorch/pytorch/blob/master/cmake/TorchConfig.cmake.in) I made is robust enough (we will also see in the CI) orionr Yangqing dzhulgakov what do you think?
Also ezyang for CI changes
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10611
Differential Revision: D9597627
Pulled By: goldsborough
fbshipit-source-id: f5af8164c076894f448cef7e5b356a6b3159f8b3
Summary:
This PR adds support for using custom ops in ScriptModules, the last step for our custom op strategy. You can now write
```
import torch
torch.ops.load_library('libcustom_ops.so')
class Model(torch.jit.ScriptModule):
def __init__(self):
super(Model, self).__init__()
torch.jit.script_method
def forward(self, input):
return torch.ops.custom.op(input) + 1
model = Model()
model.forward(torch.ones(5)) # Works
model.save("model.pt") # Works
model = torch.jit.load("model.pt") # Works
```
You can then load the `model.pt` in C++ and execute its `forward` method!
Missing for this was the fact that the script compiler didn't know to convert `ops.custom.op` into a `BuiltinFunction` which then emits a function call. For this I came up with the following strategy inside `torch/csrc/jit/scrip/init.cpp`:
1. When we access `torch.ops`, we return a `CustomOpValue` (subclass of `PythonValue`), whose purpose is only to return a `CustomOpNamespaceValue` (subclass of `PythonValue`) whenever something under it is accessed.
2. `CustomOpNamespaceValue` will then for each field accessed on it return a `BuiltinFunction`.
This doesn't reduce performance for any calls that are not to `torch.ops` (as opposed to inspecting every function call's name the call site, for example).
I also had to fix `BuiltinFunction` to not assume the namespace is always `aten::`.
A lot of other changes are just tidying up the Python and C++ test harness before I integrate it in CI.
zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10610
Differential Revision: D9387832
Pulled By: goldsborough
fbshipit-source-id: c00f431db56c7502a66fe1f813fe78067f428ecb