In this PR, I added support for packaging the AOTI generated files into a zipfile, and loading it in python.
`compile_so` takes the path to the package, a device, and a desired so_path location, and compiles package into a .so, and saves to the specified location.
`load_package` takes a path to the package and device, calls _extract_so, and then creates a callable to run the compiled model.
The zipfile generated looks like the following:
```
|- version
|- archive_format
|- data
|- aotinductor
|- cbtnafqaqrhvwztv7xudlal4xs6sofxa5oxccyuaqtrt6aozaklx.cubin # AOTI cuda generated cubin files
|- cskkqtna23bty2v3aq7g2q37cxrgufehlkuaaolhlgug5zg6fuwe.cpp # AOTI generated cpp file
|- cskkqtna23bty2v3aq7g2q37cxrgufehlkuaaolhlgug5zg6fuwe_compile_flags # Flags for compiling the .o
|- c6qqtnpgwfi3dv5nb76ai773kt45ezoxfwdmd7q37lvq6fs2tnoi.o # AOTI saved const.o
|- cskkqtna23bty2v3aq7g2q37cxrgufehlkuaaolhlgug5zg6fuwe_linker_flags # Flags for linking the files to form the .so
|- constants
|- constants.pt # Constants saved using torch.save, can be loaded using mmap
```
The workflow is something like:
```
with torch.no_grad():
ep = torch.export.export(
model,
example_inputs,
dynamic_shapes=dynamic_shapes,
strict=False,
)
gm = ep.module()
package_path = torch._inductor.aot_compile(
gm,
example_inputs,
options= {
"aot_inductor.output_path": "my_path.pt2", # or a directory
"aot_inductor.package": True,
}
)
compiled_model = torch._inductor.package.load_package(package_path, device)
return compiled_model
```
I tried turning on loading the weights using mmap by default, but had some trouble with it, so that is just left as a todo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129895
Approved by: https://github.com/malfet
Summary:
This diff does a minor cleanup of WaitCounters:
1. Fixes some singleton use to ensure one instance of WaitCounterImpl per counter per process
2. Updates API to enable measuring duration of individual wait operations
Test Plan: unit test
Differential Revision: D59709324
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130664
Approved by: https://github.com/c-p-i-o, https://github.com/asiab4
Enables a few extra ruff rules, most of which do not have any violations as I already cleaned them with earlier PRs, these just turns them on to enforce them. Adds 1 noqa as we want the suboptimal lambda generation + call kept as a test. Also enables the test in flake8
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130700
Approved by: https://github.com/justinchuby, https://github.com/ezyang
Adds better error messages when a socket fails to bind in libuv.
New format:
```
The server socket has failed to bind. port: 1, useIpv6: 0, code: -13, name: EACCES, message: permission denied
```
Old format:
```
The server socket has failed to listen on any local network address. useIpv6: 0, code: -98, name: EADDRINUSE, message: address already in use
```
Test plan:
Added test in `test_store.py`
```
python test/distributed/test_store.py
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130797
Approved by: https://github.com/kurman
This is useful for splitting grad to run in two parts while preserving intermediates:
<details>
<summary>
Click to see code
</summary>
```python
import collections
import weakref
from torch.autograd.graph import GradientEdge
def _get_grad_fn_or_grad_acc(t):
if t.requires_grad and t.grad_fn is None:
return t.view_as(t).grad_fn.next_functions[0][0]
else:
return t.grad_fn
def reverse_closure(roots, target_nodes):
# Recurse until we reach a target node
closure = set()
actual_target_nodes = set()
q: Deque = collections.deque()
for node in roots:
if node is not None and node not in closure:
closure.add(node)
q.append(node)
while q:
node = q.popleft()
reverse_edges = node.metadata.get("reverse_edges", [])
for holder_ref, idx in reverse_edges:
ref = holder_ref()
if ref is not None:
raise RuntimeError("Reverse graph is no longer alive")
fn = ref.node
if fn in closure or fn is None:
continue
if fn in target_nodes:
actual_target_nodes.add(fn)
continue
closure.add(fn)
q.append(fn)
return closure, actual_target_nodes
# Enable weak pointer
class Holder():
def __init__(self, node):
self.node = node
# TODO: use weak references to avoid reference cycle
def construct_reverse_graph(roots):
q: Deque = collections.deque()
root_seen = set()
reverse_graph_refs = []
for node in roots:
if node is not None and node not in root_seen:
q.append(node)
root_seen.add(node)
while q:
node = q.popleft()
for fn, idx in node.next_functions:
if fn is not None:
# Don't necessarily need to store on the graph
reverse_edges = fn.metadata.get("reverse_edges", [])
if len(reverse_edges) == 0:
q.append(fn)
holder = Holder(node)
holder_ref = weakref.ref(holder)
reverse_graph_refs.append(holder)
reverse_edges.append((holder_ref, idx))
fn.metadata["reverse_edges"] = reverse_edges
return reverse_graph_refs
def get_param_groups(inputs, params):
inputs_closure, _ = reverse_closure(inputs, set())
param_groups = dict() # keyed on intermediates
for i, param in enumerate(params):
closure, intersected = reverse_closure([param], inputs_closure)
param_group = {
"params": set([param]),
"intermediates": set(intersected),
}
for input_node in intersected:
existing = param_groups.get(input_node, None)
if existing is not None:
existing["params"] = existing["params"].union(param_group["params"])
existing["intermediates"] = existing["intermediates"].union(param_group["intermediates"])
param_group = existing
else:
param_groups[input_node] = param_group
# Sanity check: union of all param_groups params should be equal to all params
union_params = set()
seen_ids = set()
unique_param_groups = []
for param_group in param_groups.values():
if id(param_group) not in seen_ids:
seen_ids.add(id(param_group))
unique_param_groups.append(param_group)
union_params = union_params.union(param_group["params"])
assert union_params == set(params)
return unique_param_groups
def compute_grads_only_inputs2(roots, inps, weights):
root_grad_fns = list(map(_get_grad_fn_or_grad_acc, roots))
inp_grad_fns = list(map(_get_grad_fn_or_grad_acc, inps))
weight_grad_fns = list(map(_get_grad_fn_or_grad_acc, weights))
reverse_graph_refs = construct_reverse_graph(root_grad_fns)
param_groups = get_param_groups(inp_grad_fns, weight_grad_fns)
del reverse_graph_refs
for param_group in param_groups:
for i, intermediate in enumerate(param_group["intermediates"]):
def get_hook(param_group, i):
def hook(grad_inputs):
if param_group.get("grads", None) is None:
param_group["grads"] = [None] * len(param_group["intermediates"])
param_group["grads"][i] = grad_inputs
return hook
# These are always "split" nodes that we need to recompute, so
# save their inputs.
intermediate.register_prehook(get_hook(param_group, i))
dinputs = torch.autograd.grad((out,), inputs=tuple(inps), grad_outputs=(torch.ones_like(out),), retain_graph=True)
return dinputs, param_groups
def compute_grads_only_weights2(user_weights, param_groups):
all_dweights = dict()
for param_group in param_groups:
# TODO: Handle case where intermediate can have multiple outputs
intermediate_edges = tuple(GradientEdge(i, 0) for i in param_group["intermediates"])
weights_edges = tuple(GradientEdge(w, 0) for w in param_group["params"])
assert all(len(g) == 1 for g in param_group["grads"])
# [NEW!] Able to pass a GradientEdge to autograd.grad as output
# We do not need to retain_graph because... guarantee no overlap?
print("trying to execute: ", intermediate_edges, weights_edges)
dweights = torch.autograd.grad(intermediate_edges, weights_edges, grad_outputs=sum(param_group["grads"], tuple()))
for w, dw in zip(param_group["params"], dweights):
all_dweights[w] = dw
# return grads in the original order weights were provided in
out = []
for w in user_weights:
grad_acc = _get_grad_fn_or_grad_acc(w)
out.append(all_dweights[grad_acc])
return tuple(out)
```
</details>
```python
import torch.nn as nn
# Setup
mod1 = nn.Linear(10, 10)
mod2 = nn.Linear(10, 10)
a = torch.rand(10, requires_grad=True)
weights = tuple(mod1.parameters()) + tuple(mod2.parameters())
inps = (a,)
out = mod2(mod1(a))
class LoggingTensorMode(torch.utils._python_dispatch.TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
rs = func(*args, **kwargs)
print(f"{func.__module__}.{func.__name__}")
return rs
print(" -- SPLIT -- ")
# Compute gradients in two parts
with LoggingTensorMode():
print("PART 1")
dinputs, state = compute_grads_only_inputs2((out,), inps, weights)
print("PART 2")
dweights = compute_grads_only_weights2(weights, state)
out = mod2(mod1(a))
print(" -- REF -- ")
# Compare with reference
with LoggingTensorMode():
ref_all_gradients = torch.autograd.grad(out, inputs=tuple(inps) + weights, grad_outputs=(torch.ones_like(out),))
for actual, ref in zip(dinputs + dweights, ref_all_gradients):
print(torch.allclose(actual, ref))
```
<img width="598" alt="image" src="https://github.com/pytorch/pytorch/assets/13428986/3681b8a7-3ab4-4d1d-a836-abef6913e671">
```
PART 1
torch._ops.aten.view.default
torch._ops.aten.view.default
torch._ops.aten.view.default
torch._ops.aten.view.default
torch._ops.aten.view.default
torch._ops.aten.ones_like.default
V0603 10:17:21.590878 8300067520 torch/autograd/graph.py:751] Executing: <ViewBackward0 object at 0x12a1ee160> with grad_outputs: [f32[10]]
torch._ops.aten.view.default
V0603 10:17:21.591204 8300067520 torch/autograd/graph.py:751] Executing: <AddmmBackward0 object at 0x12a1ee0d0> with grad_outputs: [f32[1, 10]]
torch._ops.aten.t.default
torch._ops.aten.mm.default
V0603 10:17:21.591578 8300067520 torch/autograd/graph.py:751] Executing: <ViewBackward0 object at 0x100d7ae50> with grad_outputs: [f32[1, 10]]
torch._ops.aten.view.default
V0603 10:17:21.591747 8300067520 torch/autograd/graph.py:751] Executing: <ViewBackward0 object at 0x12a1e4a60> with grad_outputs: [f32[10]]
torch._ops.aten.view.default
V0603 10:17:21.591834 8300067520 torch/autograd/graph.py:751] Executing: <AddmmBackward0 object at 0x12a1e4bb0> with grad_outputs: [f32[1, 10]]
torch._ops.aten.t.default
torch._ops.aten.mm.default
V0603 10:17:21.591922 8300067520 torch/autograd/graph.py:751] Executing: <ViewBackward0 object at 0x12a1e4a90> with grad_outputs: [f32[1, 10]]
torch._ops.aten.view.default
PART 2
trying to execute: (GradientEdge(node=<AddmmBackward0 object at 0x12a1e4bb0>, output_nr=0),) (GradientEdge(node=<AccumulateGrad object at 0x12a21b130>, output_nr=0), GradientEdge(node=<AccumulateGrad object at 0x12a21b7c0>, output_nr=0))
V0603 10:17:21.592223 8300067520 torch/autograd/graph.py:751] Executing: <AddmmBackward0 object at 0x12a1e4bb0> with grad_outputs: [f32[1, 10]]
torch._ops.aten.t.default
torch._ops.aten.mm.default
torch._ops.aten.t.default
torch._ops.aten.sum.dim_IntList
torch._ops.aten.view.default
V0603 10:17:21.592421 8300067520 torch/autograd/graph.py:751] Executing: <TBackward0 object at 0x12a1cad60> with grad_outputs: [f32[10, 10]]
torch._ops.aten.t.default
trying to execute: (GradientEdge(node=<AddmmBackward0 object at 0x12a1ee0d0>, output_nr=0),) (GradientEdge(node=<AccumulateGrad object at 0x12a1e41c0>, output_nr=0), GradientEdge(node=<AccumulateGrad object at 0x12a21b670>, output_nr=0))
V0603 10:17:21.593481 8300067520 torch/autograd/graph.py:751] Executing: <AddmmBackward0 object at 0x12a1ee0d0> with grad_outputs: [f32[1, 10]]
torch._ops.aten.t.default
torch._ops.aten.mm.default
torch._ops.aten.t.default
torch._ops.aten.sum.dim_IntList
torch._ops.aten.view.default
V0603 10:17:21.593750 8300067520 torch/autograd/graph.py:751] Executing: <TBackward0 object at 0x12a21b2b0> with grad_outputs: [f32[10, 10]]
torch._ops.aten.t.default
torch._ops.aten.view.default
torch._ops.aten.view.default
torch._ops.aten.view.default
torch._ops.aten.view.default
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127766
Approved by: https://github.com/albanD
Summary:
We should log compile ID as well for easier comparison.
Currently going through some of this data, I think we should make few more changes as well.
Reland for D59725870
Test Plan: Sandcastle and Pytorch
Differential Revision: D59789110
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130801
Approved by: https://github.com/oulgen
FSDP2 eager pre-allocates the output buffer for AllGather and the AllGather just writes into that buffer. However, under compile, by default we use out-of-place AllGather, which means in Traceable FSDP2 case we will be unnecessarily using more memory than eager. We want to re-inplace that AllGather instead.
This PR adds a post_grad pass to re-inplace all_gather_into_tensor (i.e. changing it from `all_gather_into_tensor.default` out-of-place op to `all_gather_into_tensor_out.default` out-variant op).
One thing to note is that since with this pass we are introducing a mutable op into the post_grad FX graph, we must do this pass after `reinplace_inplaceable_ops` (at which point we are okay again with having mutable ops in the graph). To facilitate this, this PR adds a `post_grad_custom_post_reinplace_pass` extension point to allow user-defined post-reinplace FX passes.
---
Test commands:
- `pytest -rA test/distributed/_composable/fsdp/test_fully_shard_compile.py::TestFullyShardCompile::test_transformer_fullgraph_backend_inductor`
---
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129773
Approved by: https://github.com/eellison
Summary: Similar to the handling of metrics, save inductor counter deltas in the FX graph cache entry and increment the counters appropriately on a cache hit
Test Plan: new unit test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130635
Approved by: https://github.com/eellison