Commit Graph

14 Commits

Author SHA1 Message Date
Xuehai Pan
c0ed38e644 [BE][Easy][3/19] enforce style for empty lines in import segments in benchmarks/ (#129754)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754
Approved by: https://github.com/ezyang
2024-07-17 14:34:42 +00:00
Xuehai Pan
26f4f10ac8 [5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort torch (#127126)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
2024-05-27 14:49:57 +00:00
PyTorch MergeBot
55c0ab2887 Revert "[5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort torch (#127126)"
This reverts commit 7763c83af6.

Reverted https://github.com/pytorch/pytorch/pull/127126 on behalf of https://github.com/XuehaiPan due to Broken CI ([comment](https://github.com/pytorch/pytorch/pull/127126#issuecomment-2133044286))
2024-05-27 09:22:08 +00:00
Xuehai Pan
7763c83af6 [5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort torch (#127126)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
ghstack dependencies: #127122, #127123, #127124, #127125
2024-05-27 04:22:18 +00:00
Edward Z. Yang
dd3a77bc96 Apply UFMT to all files in benchmarks/ (#105928)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105928
Approved by: https://github.com/albanD
2023-07-26 01:18:48 +00:00
Nicolas Hug
97de281176 Improve interpolate() speed for channels_last CPU images and masks (#86361)
This PR improves the speed of `interpolate()`:
- on CPU
-  on images and masks (`num_channels < 4`, `channels_last=True`)
- for the following modes: linear (antialias=False), nearest (int and float), and nearest-exact (int and float)
- for both upsampling and downsampling

The actual speed-up ranges from 1.1X to 110X, but this depends on various factors like number of threads and of course input_size/output_size.  In a typical torchvision ImageNet training job (where num_threads=1 because of DataLoader multi-processing), the following speed-ups should be expected (I ran much more benchmarks than this one, see below for more details):

```
(1, 3, 600, 400) -> (224, 224)  linear          float32    num_threads=1   1.0X  1.0ms vs 1.0ms
(1, 3, 600, 400) -> (224, 224)  nearest         float32    num_threads=1   1.9X  0.9ms vs 0.5ms
(1, 3, 600, 400) -> (224, 224)  nearest         uint8      num_threads=1   1.7X  0.9ms vs 0.5ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=1   2.1X  1.0ms vs 0.5ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=1   1.8X  0.9ms vs 0.5ms
(1, 1, 600, 400) -> (224, 224)  linear          float32    num_threads=1   7X    0.8ms vs 0.1ms
(1, 1, 600, 400) -> (224, 224)  nearest         float32    num_threads=1   14X   0.852ms vs 0.061ms
(1, 1, 600, 400) -> (224, 224)  nearest         uint8      num_threads=1   9X    0.828ms vs 0.087ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=1   15X   0.922ms vs 0.061ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=1   10X   0.897ms vs 0.087ms
```

An immediate follow-up to this PR would be to do the same changes for the 3D kernels.
Thanks a ton @fmassa for the help!

### Speedup benchmarks:

Results:

<details>

```
----------------------------------------------------------------------------------------------------
(1, 3, 64, 64) -> (224, 224)    linear          float32    num_threads=1   0.9X  0.9ms vs 1.1ms
(1, 3, 64, 64) -> (224, 224)    nearest         float32    num_threads=1   1.6X  0.9ms vs 0.5ms
(1, 3, 64, 64) -> (224, 224)    nearest         uint8      num_threads=1   1.7X  0.9ms vs 0.5ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=1   1.7X  1.0ms vs 0.5ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=1   1.9X  0.9ms vs 0.5ms
(1, 1, 64, 64) -> (224, 224)    linear          float32    num_threads=1   8X    0.806ms vs 0.097ms
(1, 1, 64, 64) -> (224, 224)    nearest         float32    num_threads=1   15X   0.848ms vs 0.056ms
(1, 1, 64, 64) -> (224, 224)    nearest         uint8      num_threads=1   10X   0.828ms vs 0.084ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=1   16X   0.914ms vs 0.057ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=1   10X   0.900ms vs 0.086ms

(1, 3, 64, 64) -> (224, 224)    linear          float32    num_threads=2   1.6X  1.1ms vs 0.7ms
(1, 3, 64, 64) -> (224, 224)    nearest         float32    num_threads=2   1.6X  0.6ms vs 0.4ms
(1, 3, 64, 64) -> (224, 224)    nearest         uint8      num_threads=2   1.7X  0.4ms vs 0.3ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=2   1.7X  0.6ms vs 0.4ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=2   1.7X  0.5ms vs 0.3ms
(1, 1, 64, 64) -> (224, 224)    linear          float32    num_threads=2   9X    0.800ms vs 0.088ms
(1, 1, 64, 64) -> (224, 224)    nearest         float32    num_threads=2   11X   0.459ms vs 0.043ms
(1, 1, 64, 64) -> (224, 224)    nearest         uint8      num_threads=2   7X    0.424ms vs 0.064ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=2   12X   0.503ms vs 0.043ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=2   8X    0.461ms vs 0.059ms

(1, 3, 64, 64) -> (224, 224)    linear          float32    num_threads=12  3X    1.1ms vs 0.3ms
(1, 3, 64, 64) -> (224, 224)    nearest         float32    num_threads=12  1.6X  0.3ms vs 0.2ms
(1, 3, 64, 64) -> (224, 224)    nearest         uint8      num_threads=12  1.5X  0.2ms vs 0.1ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=12  1.5X  0.3ms vs 0.2ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=12  1.5X  0.2ms vs 0.1ms
(1, 1, 64, 64) -> (224, 224)    linear          float32    num_threads=12  5X    0.8ms vs 0.2ms
(1, 1, 64, 64) -> (224, 224)    nearest         float32    num_threads=12  10X   0.445ms vs 0.047ms
(1, 1, 64, 64) -> (224, 224)    nearest         uint8      num_threads=12  7X    0.432ms vs 0.062ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=12  10X   0.478ms vs 0.046ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=12  7X    0.470ms vs 0.063ms

(1, 3, 64, 64) -> (224, 224)    linear          float32    num_threads=32  3X    1.1ms vs 0.4ms
(1, 3, 64, 64) -> (224, 224)    nearest         float32    num_threads=32  1.8X  0.3ms vs 0.2ms
(1, 3, 64, 64) -> (224, 224)    nearest         uint8      num_threads=32  1.5X  0.2ms vs 0.1ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=32  1.4X  0.3ms vs 0.2ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=32  1.5X  0.2ms vs 0.1ms
(1, 1, 64, 64) -> (224, 224)    linear          float32    num_threads=32  11X   0.815ms vs 0.074ms
(1, 1, 64, 64) -> (224, 224)    nearest         float32    num_threads=32  10X   0.443ms vs 0.045ms
(1, 1, 64, 64) -> (224, 224)    nearest         uint8      num_threads=32  7X    0.436ms vs 0.061ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=32  10X   0.478ms vs 0.046ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=32  8X    0.470ms vs 0.061ms
----------------------------------------------------------------------------------------------------
(1, 3, 128, 128) -> (224, 224)  linear          float32    num_threads=1   0.9X  0.9ms vs 1.1ms
(1, 3, 128, 128) -> (224, 224)  nearest         float32    num_threads=1   1.5X  0.9ms vs 0.6ms
(1, 3, 128, 128) -> (224, 224)  nearest         uint8      num_threads=1   1.7X  0.9ms vs 0.5ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=1   1.6X  1.0ms vs 0.6ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=1   1.8X  0.9ms vs 0.5ms
(1, 1, 128, 128) -> (224, 224)  linear          float32    num_threads=1   8X    0.808ms vs 0.099ms
(1, 1, 128, 128) -> (224, 224)  nearest         float32    num_threads=1   15X   0.848ms vs 0.058ms
(1, 1, 128, 128) -> (224, 224)  nearest         uint8      num_threads=1   9X    0.820ms vs 0.087ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=1   16X   0.909ms vs 0.059ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=1   10X   0.898ms vs 0.088ms

(1, 3, 128, 128) -> (224, 224)  linear          float32    num_threads=2   1.4X  0.9ms vs 0.7ms
(1, 3, 128, 128) -> (224, 224)  nearest         float32    num_threads=2   1.5X  0.5ms vs 0.3ms
(1, 3, 128, 128) -> (224, 224)  nearest         uint8      num_threads=2   1.7X  0.4ms vs 0.3ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=2   1.5X  0.5ms vs 0.4ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=2   1.8X  0.5ms vs 0.3ms
(1, 1, 128, 128) -> (224, 224)  linear          float32    num_threads=2   9X    0.799ms vs 0.090ms
(1, 1, 128, 128) -> (224, 224)  nearest         float32    num_threads=2   10X   0.459ms vs 0.045ms
(1, 1, 128, 128) -> (224, 224)  nearest         uint8      num_threads=2   7X    0.427ms vs 0.059ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=2   11X   0.501ms vs 0.044ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=2   8X    0.460ms vs 0.060ms

(1, 3, 128, 128) -> (224, 224)  linear          float32    num_threads=12  2.9X  1.0ms vs 0.3ms
(1, 3, 128, 128) -> (224, 224)  nearest         float32    num_threads=12  1.2X  0.2ms vs 0.2ms
(1, 3, 128, 128) -> (224, 224)  nearest         uint8      num_threads=12  1.5X  0.2ms vs 0.1ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=12  1.1X  0.2ms vs 0.2ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=12  1.6X  0.2ms vs 0.1ms
(1, 1, 128, 128) -> (224, 224)  linear          float32    num_threads=12  12X   0.809ms vs 0.068ms
(1, 1, 128, 128) -> (224, 224)  nearest         float32    num_threads=12  11X   0.438ms vs 0.041ms
(1, 1, 128, 128) -> (224, 224)  nearest         uint8      num_threads=12  8X    0.432ms vs 0.055ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=12  12X   0.480ms vs 0.041ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=12  8X    0.464ms vs 0.056ms

(1, 3, 128, 128) -> (224, 224)  linear          float32    num_threads=32  3X    1.1ms vs 0.3ms
(1, 3, 128, 128) -> (224, 224)  nearest         float32    num_threads=32  1.3X  0.3ms vs 0.2ms
(1, 3, 128, 128) -> (224, 224)  nearest         uint8      num_threads=32  1.5X  0.2ms vs 0.1ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=32  1.4X  0.3ms vs 0.2ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=32  1.6X  0.2ms vs 0.1ms
(1, 1, 128, 128) -> (224, 224)  linear          float32    num_threads=32  11X   0.813ms vs 0.075ms
(1, 1, 128, 128) -> (224, 224)  nearest         float32    num_threads=32  10X   0.443ms vs 0.046ms
(1, 1, 128, 128) -> (224, 224)  nearest         uint8      num_threads=32  7X    0.433ms vs 0.061ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=32  10X   0.478ms vs 0.046ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=32  8X    0.470ms vs 0.062ms
----------------------------------------------------------------------------------------------------
(1, 3, 224, 224) -> (600, 400)  linear          float32    num_threads=1   0.9X  4.5ms vs 5.2ms
(1, 3, 224, 224) -> (600, 400)  nearest         float32    num_threads=1   1.5X  4.2ms vs 2.8ms
(1, 3, 224, 224) -> (600, 400)  nearest         uint8      num_threads=1   1.8X  4.1ms vs 2.3ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=1   1.6X  4.5ms vs 2.8ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=1   1.9X  4.4ms vs 2.3ms
(1, 1, 224, 224) -> (600, 400)  linear          float32    num_threads=1   9X    3.8ms vs 0.4ms
(1, 1, 224, 224) -> (600, 400)  nearest         float32    num_threads=1   17X   4.0ms vs 0.2ms
(1, 1, 224, 224) -> (600, 400)  nearest         uint8      num_threads=1   11X   3.9ms vs 0.4ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=1   19X   4.4ms vs 0.2ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=1   12X   4.3ms vs 0.4ms

(1, 3, 224, 224) -> (600, 400)  linear          float32    num_threads=2   1.5X  4.5ms vs 3.1ms
(1, 3, 224, 224) -> (600, 400)  nearest         float32    num_threads=2   1.4X  2.3ms vs 1.6ms
(1, 3, 224, 224) -> (600, 400)  nearest         uint8      num_threads=2   1.7X  2.1ms vs 1.2ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=2   1.6X  2.5ms vs 1.6ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=2   1.8X  2.2ms vs 1.2ms
(1, 1, 224, 224) -> (600, 400)  linear          float32    num_threads=2   15X   3.8ms vs 0.3ms
(1, 1, 224, 224) -> (600, 400)  nearest         float32    num_threads=2   15X   2.2ms vs 0.1ms
(1, 1, 224, 224) -> (600, 400)  nearest         uint8      num_threads=2   7X    2.0ms vs 0.3ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=2   16X   2.4ms vs 0.1ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=2   8X    2.2ms vs 0.3ms

(1, 3, 224, 224) -> (600, 400)  linear          float32    num_threads=12  8X    5.2ms vs 0.7ms
(1, 3, 224, 224) -> (600, 400)  nearest         float32    num_threads=12  1.3X  0.6ms vs 0.4ms
(1, 3, 224, 224) -> (600, 400)  nearest         uint8      num_threads=12  1.7X  0.4ms vs 0.2ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=12  1.4X  0.6ms vs 0.4ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=12  1.8X  0.4ms vs 0.2ms
(1, 1, 224, 224) -> (600, 400)  linear          float32    num_threads=12  36X   3.9ms vs 0.1ms
(1, 1, 224, 224) -> (600, 400)  nearest         float32    num_threads=12  10X   0.526ms vs 0.051ms
(1, 1, 224, 224) -> (600, 400)  nearest         uint8      num_threads=12  7X    0.514ms vs 0.069ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=12  11X   0.569ms vs 0.052ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=12  8X    0.557ms vs 0.070ms

(1, 3, 224, 224) -> (600, 400)  linear          float32    num_threads=32  9X    4.5ms vs 0.5ms
(1, 3, 224, 224) -> (600, 400)  nearest         float32    num_threads=32  0.5X  0.2ms vs 0.5ms
(1, 3, 224, 224) -> (600, 400)  nearest         uint8      num_threads=32  1.5X  0.2ms vs 0.1ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=32  1.0X  0.5ms vs 0.5ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=32  1.6X  0.2ms vs 0.1ms
(1, 1, 224, 224) -> (600, 400)  linear          float32    num_threads=32  44X   3.864ms vs 0.087ms
(1, 1, 224, 224) -> (600, 400)  nearest         float32    num_threads=32  10X   0.527ms vs 0.053ms
(1, 1, 224, 224) -> (600, 400)  nearest         uint8      num_threads=32  7X    0.516ms vs 0.070ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=32  10X   0.567ms vs 0.055ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=32  8X    0.558ms vs 0.072ms
----------------------------------------------------------------------------------------------------
(1, 3, 256, 256) -> (320, 320)  linear          float32    num_threads=1   1.0X  1.9ms vs 1.9ms
(1, 3, 256, 256) -> (320, 320)  nearest         float32    num_threads=1   2.0X  1.8ms vs 0.9ms
(1, 3, 256, 256) -> (320, 320)  nearest         uint8      num_threads=1   1.7X  1.8ms vs 1.0ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=1   2.1X  1.9ms vs 0.9ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=1   1.9X  1.9ms vs 1.0ms
(1, 1, 256, 256) -> (320, 320)  linear          float32    num_threads=1   9X    1.6ms vs 0.2ms
(1, 1, 256, 256) -> (320, 320)  nearest         float32    num_threads=1   16X   1.7ms vs 0.1ms
(1, 1, 256, 256) -> (320, 320)  nearest         uint8      num_threads=1   10X   1.7ms vs 0.2ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=1   17X   1.9ms vs 0.1ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=1   11X   1.8ms vs 0.2ms

(1, 3, 256, 256) -> (320, 320)  linear          float32    num_threads=2   1.7X  1.9ms vs 1.1ms
(1, 3, 256, 256) -> (320, 320)  nearest         float32    num_threads=2   2.0X  1.0ms vs 0.5ms
(1, 3, 256, 256) -> (320, 320)  nearest         uint8      num_threads=2   1.7X  0.9ms vs 0.5ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=2   2.3X  1.1ms vs 0.5ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=2   1.8X  1.0ms vs 0.5ms
(1, 1, 256, 256) -> (320, 320)  linear          float32    num_threads=2   8X    1.6ms vs 0.2ms
(1, 1, 256, 256) -> (320, 320)  nearest         float32    num_threads=2   14X   0.931ms vs 0.067ms
(1, 1, 256, 256) -> (320, 320)  nearest         uint8      num_threads=2   7X    0.9ms vs 0.1ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=2   15X   1.016ms vs 0.069ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=2   9X    0.9ms vs 0.1ms

(1, 3, 256, 256) -> (320, 320)  linear          float32    num_threads=12  8X    1.9ms vs 0.3ms
(1, 3, 256, 256) -> (320, 320)  nearest         float32    num_threads=12  1.7X  0.2ms vs 0.1ms
(1, 3, 256, 256) -> (320, 320)  nearest         uint8      num_threads=12  1.5X  0.2ms vs 0.1ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=12  1.9X  0.2ms vs 0.1ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=12  1.6X  0.2ms vs 0.1ms
(1, 1, 256, 256) -> (320, 320)  linear          float32    num_threads=12  20X   1.630ms vs 0.081ms
(1, 1, 256, 256) -> (320, 320)  nearest         float32    num_threads=12  10X   0.457ms vs 0.044ms
(1, 1, 256, 256) -> (320, 320)  nearest         uint8      num_threads=12  7X    0.439ms vs 0.060ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=12  11X   0.485ms vs 0.045ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=12  8X    0.474ms vs 0.061ms

(1, 3, 256, 256) -> (320, 320)  linear          float32    num_threads=32  8X    1.9ms vs 0.3ms
(1, 3, 256, 256) -> (320, 320)  nearest         float32    num_threads=32  2.0X  0.2ms vs 0.1ms
(1, 3, 256, 256) -> (320, 320)  nearest         uint8      num_threads=32  1.6X  0.2ms vs 0.1ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=32  1.4X  0.2ms vs 0.2ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=32  1.4X  0.2ms vs 0.1ms
(1, 1, 256, 256) -> (320, 320)  linear          float32    num_threads=32  21X   1.628ms vs 0.078ms
(1, 1, 256, 256) -> (320, 320)  nearest         float32    num_threads=32  9X    0.453ms vs 0.048ms
(1, 1, 256, 256) -> (320, 320)  nearest         uint8      num_threads=32  7X    0.445ms vs 0.063ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=32  11X   0.535ms vs 0.048ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=32  8X    0.502ms vs 0.063ms
----------------------------------------------------------------------------------------------------
(1, 3, 500, 500) -> (800, 800)  linear          float32    num_threads=1   1.0X  13.8ms vs 14.0ms
(1, 3, 500, 500) -> (800, 800)  nearest         float32    num_threads=1   1.8X  13.1ms vs 7.4ms
(1, 3, 500, 500) -> (800, 800)  nearest         uint8      num_threads=1   1.8X  11.1ms vs 6.1ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=1   1.9X  13.9ms vs 7.4ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=1   1.9X  11.8ms vs 6.1ms
(1, 1, 500, 500) -> (800, 800)  linear          float32    num_threads=1   10X   10.2ms vs 1.1ms
(1, 1, 500, 500) -> (800, 800)  nearest         float32    num_threads=1   19X   10.8ms vs 0.6ms
(1, 1, 500, 500) -> (800, 800)  nearest         uint8      num_threads=1   11X   10.4ms vs 0.9ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=1   20X   11.6ms vs 0.6ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=1   12X   11.4ms vs 0.9ms

(1, 3, 500, 500) -> (800, 800)  linear          float32    num_threads=2   1.8X  13.7ms vs 7.7ms
(1, 3, 500, 500) -> (800, 800)  nearest         float32    num_threads=2   2.6X  7.3ms vs 2.8ms
(1, 3, 500, 500) -> (800, 800)  nearest         uint8      num_threads=2   1.8X  5.6ms vs 3.1ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=2   1.9X  7.9ms vs 4.1ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=2   1.9X  6.0ms vs 3.1ms
(1, 1, 500, 500) -> (800, 800)  linear          float32    num_threads=2   18X   10.1ms vs 0.6ms
(1, 1, 500, 500) -> (800, 800)  nearest         float32    num_threads=2   19X   5.8ms vs 0.3ms
(1, 1, 500, 500) -> (800, 800)  nearest         uint8      num_threads=2   10X   5.3ms vs 0.5ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=2   20X   6.3ms vs 0.3ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=2   11X   5.7ms vs 0.5ms

(1, 3, 500, 500) -> (800, 800)  linear          float32    num_threads=12  8X    13.8ms vs 1.6ms
(1, 3, 500, 500) -> (800, 800)  nearest         float32    num_threads=12  2.9X  1.5ms vs 0.5ms
(1, 3, 500, 500) -> (800, 800)  nearest         uint8      num_threads=12  1.7X  1.0ms vs 0.5ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=12  1.5X  1.5ms vs 1.0ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=12  1.8X  1.0ms vs 0.6ms
(1, 1, 500, 500) -> (800, 800)  linear          float32    num_threads=12  80X   10.1ms vs 0.1ms
(1, 1, 500, 500) -> (800, 800)  nearest         float32    num_threads=12  13X   0.928ms vs 0.072ms
(1, 1, 500, 500) -> (800, 800)  nearest         uint8      num_threads=12  8X    0.9ms vs 0.1ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=12  13X   1.001ms vs 0.074ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=12  9X    1.0ms vs 0.1ms

(1, 3, 500, 500) -> (800, 800)  linear          float32    num_threads=32  18X   14.0ms vs 0.8ms
(1, 3, 500, 500) -> (800, 800)  nearest         float32    num_threads=32  1.9X  1.0ms vs 0.6ms
(1, 3, 500, 500) -> (800, 800)  nearest         uint8      num_threads=32  2.9X  0.7ms vs 0.2ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=32  1.7X  0.9ms vs 0.6ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=32  1.8X  0.4ms vs 0.2ms
(1, 1, 500, 500) -> (800, 800)  linear          float32    num_threads=32  111X  10.254ms vs 0.092ms
(1, 1, 500, 500) -> (800, 800)  nearest         float32    num_threads=32  14X   0.784ms vs 0.056ms
(1, 1, 500, 500) -> (800, 800)  nearest         uint8      num_threads=32  7X    0.551ms vs 0.075ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=32  11X   0.607ms vs 0.057ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=32  8X    0.596ms vs 0.076ms
----------------------------------------------------------------------------------------------------
(1, 3, 224, 224) -> (64, 64)    linear          float32    num_threads=1   1.0X  0.084ms vs 0.084ms
(1, 3, 224, 224) -> (64, 64)    nearest         float32    num_threads=1   1.0X  0.077ms vs 0.078ms
(1, 3, 224, 224) -> (64, 64)    nearest         uint8      num_threads=1   1.0X  0.076ms vs 0.076ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=1   1.0X  0.083ms vs 0.083ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=1   1.0X  0.081ms vs 0.082ms
(1, 1, 224, 224) -> (64, 64)    linear          float32    num_threads=1   1.0X  0.071ms vs 0.071ms
(1, 1, 224, 224) -> (64, 64)    nearest         float32    num_threads=1   1.0X  0.074ms vs 0.074ms
(1, 1, 224, 224) -> (64, 64)    nearest         uint8      num_threads=1   1.0X  0.072ms vs 0.072ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=1   1.0X  0.080ms vs 0.080ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=1   0.9X  0.078ms vs 0.084ms

(1, 3, 224, 224) -> (64, 64)    linear          float32    num_threads=2   1.0X  0.083ms vs 0.084ms
(1, 3, 224, 224) -> (64, 64)    nearest         float32    num_threads=2   1.0X  0.076ms vs 0.077ms
(1, 3, 224, 224) -> (64, 64)    nearest         uint8      num_threads=2   1.0X  0.075ms vs 0.074ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=2   1.0X  0.082ms vs 0.083ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=2   1.0X  0.080ms vs 0.083ms
(1, 1, 224, 224) -> (64, 64)    linear          float32    num_threads=2   1.0X  0.070ms vs 0.071ms
(1, 1, 224, 224) -> (64, 64)    nearest         float32    num_threads=2   1.0X  0.073ms vs 0.075ms
(1, 1, 224, 224) -> (64, 64)    nearest         uint8      num_threads=2   1.0X  0.071ms vs 0.072ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=2   1.0X  0.079ms vs 0.080ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=2   1.0X  0.077ms vs 0.079ms

(1, 3, 224, 224) -> (64, 64)    linear          float32    num_threads=12  1.0X  0.083ms vs 0.084ms
(1, 3, 224, 224) -> (64, 64)    nearest         float32    num_threads=12  1.0X  0.080ms vs 0.078ms
(1, 3, 224, 224) -> (64, 64)    nearest         uint8      num_threads=12  1.0X  0.077ms vs 0.075ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=12  1.0X  0.083ms vs 0.083ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=12  1.0X  0.083ms vs 0.082ms
(1, 1, 224, 224) -> (64, 64)    linear          float32    num_threads=12  1.0X  0.071ms vs 0.071ms
(1, 1, 224, 224) -> (64, 64)    nearest         float32    num_threads=12  1.0X  0.076ms vs 0.074ms
(1, 1, 224, 224) -> (64, 64)    nearest         uint8      num_threads=12  1.0X  0.073ms vs 0.071ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=12  1.0X  0.080ms vs 0.080ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=12  1.0X  0.080ms vs 0.078ms

(1, 3, 224, 224) -> (64, 64)    linear          float32    num_threads=32  1.0X  0.084ms vs 0.084ms
(1, 3, 224, 224) -> (64, 64)    nearest         float32    num_threads=32  1.0X  0.078ms vs 0.077ms
(1, 3, 224, 224) -> (64, 64)    nearest         uint8      num_threads=32  1.0X  0.076ms vs 0.076ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=32  1.0X  0.083ms vs 0.083ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=32  1.0X  0.081ms vs 0.082ms
(1, 1, 224, 224) -> (64, 64)    linear          float32    num_threads=32  1.0X  0.072ms vs 0.072ms
(1, 1, 224, 224) -> (64, 64)    nearest         float32    num_threads=32  1.0X  0.074ms vs 0.075ms
(1, 1, 224, 224) -> (64, 64)    nearest         uint8      num_threads=32  1.0X  0.072ms vs 0.072ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=32  1.0X  0.077ms vs 0.080ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=32  1.0X  0.076ms vs 0.079ms
----------------------------------------------------------------------------------------------------
(1, 3, 224, 224) -> (128, 128)  linear          float32    num_threads=1   1.0X  0.3ms vs 0.3ms
(1, 3, 224, 224) -> (128, 128)  nearest         float32    num_threads=1   1.8X  0.3ms vs 0.2ms
(1, 3, 224, 224) -> (128, 128)  nearest         uint8      num_threads=1   1.6X  0.3ms vs 0.2ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=1   2.0X  0.3ms vs 0.2ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=1   1.7X  0.3ms vs 0.2ms
(1, 1, 224, 224) -> (128, 128)  linear          float32    num_threads=1   6X    0.265ms vs 0.044ms
(1, 1, 224, 224) -> (128, 128)  nearest         float32    num_threads=1   10X   0.280ms vs 0.028ms
(1, 1, 224, 224) -> (128, 128)  nearest         uint8      num_threads=1   7X    0.273ms vs 0.037ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=1   11X   0.303ms vs 0.028ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=1   8X    0.297ms vs 0.038ms

(1, 3, 224, 224) -> (128, 128)  linear          float32    num_threads=2   1.5X  0.3ms vs 0.2ms
(1, 3, 224, 224) -> (128, 128)  nearest         float32    num_threads=2   1.8X  0.163ms vs 0.093ms
(1, 3, 224, 224) -> (128, 128)  nearest         uint8      num_threads=2   1.5X  0.2ms vs 0.1ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=2   1.9X  0.180ms vs 0.096ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=2   1.6X  0.2ms vs 0.1ms
(1, 1, 224, 224) -> (128, 128)  linear          float32    num_threads=2   6X    0.264ms vs 0.044ms
(1, 1, 224, 224) -> (128, 128)  nearest         float32    num_threads=2   10X   0.278ms vs 0.028ms
(1, 1, 224, 224) -> (128, 128)  nearest         uint8      num_threads=2   7X    0.270ms vs 0.037ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=2   11X   0.298ms vs 0.028ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=2   8X    0.293ms vs 0.037ms

(1, 3, 224, 224) -> (128, 128)  linear          float32    num_threads=12  1.5X  0.3ms vs 0.2ms
(1, 3, 224, 224) -> (128, 128)  nearest         float32    num_threads=12  1.7X  0.158ms vs 0.095ms
(1, 3, 224, 224) -> (128, 128)  nearest         uint8      num_threads=12  1.5X  0.2ms vs 0.1ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=12  1.7X  0.170ms vs 0.100ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=12  1.6X  0.2ms vs 0.1ms
(1, 1, 224, 224) -> (128, 128)  linear          float32    num_threads=12  6X    0.269ms vs 0.043ms
(1, 1, 224, 224) -> (128, 128)  nearest         float32    num_threads=12  11X   0.291ms vs 0.027ms
(1, 1, 224, 224) -> (128, 128)  nearest         uint8      num_threads=12  8X    0.281ms vs 0.037ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=12  11X   0.305ms vs 0.028ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=12  8X    0.306ms vs 0.038ms

(1, 3, 224, 224) -> (128, 128)  linear          float32    num_threads=32  1.5X  0.3ms vs 0.2ms
(1, 3, 224, 224) -> (128, 128)  nearest         float32    num_threads=32  1.6X  0.160ms vs 0.098ms
(1, 3, 224, 224) -> (128, 128)  nearest         uint8      num_threads=32  1.5X  0.2ms vs 0.1ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=32  1.7X  0.171ms vs 0.099ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=32  1.6X  0.2ms vs 0.1ms
(1, 1, 224, 224) -> (128, 128)  linear          float32    num_threads=32  6X    0.269ms vs 0.044ms
(1, 1, 224, 224) -> (128, 128)  nearest         float32    num_threads=32  10X   0.282ms vs 0.028ms
(1, 1, 224, 224) -> (128, 128)  nearest         uint8      num_threads=32  7X    0.276ms vs 0.037ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=32  11X   0.305ms vs 0.028ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=32  8X    0.299ms vs 0.038ms
----------------------------------------------------------------------------------------------------
(1, 3, 320, 320) -> (256, 256)  linear          float32    num_threads=1   1.0X  1.2ms vs 1.3ms
(1, 3, 320, 320) -> (256, 256)  nearest         float32    num_threads=1   2.0X  1.2ms vs 0.6ms
(1, 3, 320, 320) -> (256, 256)  nearest         uint8      num_threads=1   1.7X  1.1ms vs 0.7ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=1   2.1X  1.2ms vs 0.6ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=1   1.9X  1.2ms vs 0.7ms
(1, 1, 320, 320) -> (256, 256)  linear          float32    num_threads=1   8X    1.1ms vs 0.1ms
(1, 1, 320, 320) -> (256, 256)  nearest         float32    num_threads=1   15X   1.109ms vs 0.073ms
(1, 1, 320, 320) -> (256, 256)  nearest         uint8      num_threads=1   10X   1.1ms vs 0.1ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=1   16X   1.192ms vs 0.074ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=1   11X   1.2ms vs 0.1ms

(1, 3, 320, 320) -> (256, 256)  linear          float32    num_threads=2   1.7X  1.2ms vs 0.7ms
(1, 3, 320, 320) -> (256, 256)  nearest         float32    num_threads=2   2.0X  0.6ms vs 0.3ms
(1, 3, 320, 320) -> (256, 256)  nearest         uint8      num_threads=2   1.7X  0.6ms vs 0.3ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=2   2.2X  0.7ms vs 0.3ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=2   1.8X  0.6ms vs 0.3ms
(1, 1, 320, 320) -> (256, 256)  linear          float32    num_threads=2   9X    1.0ms vs 0.1ms
(1, 1, 320, 320) -> (256, 256)  nearest         float32    num_threads=2   11X   0.598ms vs 0.052ms
(1, 1, 320, 320) -> (256, 256)  nearest         uint8      num_threads=2   8X    0.556ms vs 0.072ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=2   12X   0.649ms vs 0.053ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=2   8X    0.598ms vs 0.073ms

(1, 3, 320, 320) -> (256, 256)  linear          float32    num_threads=12  5X    1.2ms vs 0.3ms
(1, 3, 320, 320) -> (256, 256)  nearest         float32    num_threads=12  1.5X  0.2ms vs 0.1ms
(1, 3, 320, 320) -> (256, 256)  nearest         uint8      num_threads=12  1.3X  0.2ms vs 0.1ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=12  1.6X  0.2ms vs 0.1ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=12  1.4X  0.2ms vs 0.1ms
(1, 1, 320, 320) -> (256, 256)  linear          float32    num_threads=12  9X    1.0ms vs 0.1ms
(1, 1, 320, 320) -> (256, 256)  nearest         float32    num_threads=12  12X   0.572ms vs 0.048ms
(1, 1, 320, 320) -> (256, 256)  nearest         uint8      num_threads=12  8X    0.560ms vs 0.068ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=12  13X   0.617ms vs 0.049ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=12  9X    0.604ms vs 0.068ms

(1, 3, 320, 320) -> (256, 256)  linear          float32    num_threads=32  5X    1.2ms vs 0.3ms
(1, 3, 320, 320) -> (256, 256)  nearest         float32    num_threads=32  1.5X  0.2ms vs 0.1ms
(1, 3, 320, 320) -> (256, 256)  nearest         uint8      num_threads=32  1.4X  0.2ms vs 0.1ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=32  1.6X  0.2ms vs 0.1ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=32  1.4X  0.2ms vs 0.1ms
(1, 1, 320, 320) -> (256, 256)  linear          float32    num_threads=32  13X   1.042ms vs 0.081ms
(1, 1, 320, 320) -> (256, 256)  nearest         float32    num_threads=32  12X   0.586ms vs 0.050ms
(1, 1, 320, 320) -> (256, 256)  nearest         uint8      num_threads=32  8X    0.562ms vs 0.069ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=32  12X   0.621ms vs 0.051ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=32  9X    0.609ms vs 0.070ms
----------------------------------------------------------------------------------------------------
(1, 3, 600, 400) -> (224, 224)  linear          float32    num_threads=1   1.0X  1.0ms vs 1.0ms
(1, 3, 600, 400) -> (224, 224)  nearest         float32    num_threads=1   1.9X  0.9ms vs 0.5ms
(1, 3, 600, 400) -> (224, 224)  nearest         uint8      num_threads=1   1.7X  0.9ms vs 0.5ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=1   2.1X  1.0ms vs 0.5ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=1   1.8X  0.9ms vs 0.5ms
(1, 1, 600, 400) -> (224, 224)  linear          float32    num_threads=1   7X    0.8ms vs 0.1ms
(1, 1, 600, 400) -> (224, 224)  nearest         float32    num_threads=1   14X   0.852ms vs 0.061ms
(1, 1, 600, 400) -> (224, 224)  nearest         uint8      num_threads=1   9X    0.828ms vs 0.087ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=1   15X   0.922ms vs 0.061ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=1   10X   0.897ms vs 0.087ms

(1, 3, 600, 400) -> (224, 224)  linear          float32    num_threads=2   1.6X  0.9ms vs 0.6ms
(1, 3, 600, 400) -> (224, 224)  nearest         float32    num_threads=2   1.9X  0.5ms vs 0.2ms
(1, 3, 600, 400) -> (224, 224)  nearest         uint8      num_threads=2   1.7X  0.4ms vs 0.3ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=2   2.1X  0.5ms vs 0.3ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=2   1.8X  0.5ms vs 0.3ms
(1, 1, 600, 400) -> (224, 224)  linear          float32    num_threads=2   10X   0.808ms vs 0.084ms
(1, 1, 600, 400) -> (224, 224)  nearest         float32    num_threads=2   10X   0.462ms vs 0.046ms
(1, 1, 600, 400) -> (224, 224)  nearest         uint8      num_threads=2   7X    0.429ms vs 0.062ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=2   12X   0.504ms vs 0.044ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=2   7X    0.461ms vs 0.063ms

(1, 3, 600, 400) -> (224, 224)  linear          float32    num_threads=12  4X    1.0ms vs 0.2ms
(1, 3, 600, 400) -> (224, 224)  nearest         float32    num_threads=12  1.7X  0.2ms vs 0.1ms
(1, 3, 600, 400) -> (224, 224)  nearest         uint8      num_threads=12  1.5X  0.2ms vs 0.1ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=12  1.9X  0.2ms vs 0.1ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=12  1.6X  0.2ms vs 0.1ms
(1, 1, 600, 400) -> (224, 224)  linear          float32    num_threads=12  12X   0.820ms vs 0.067ms
(1, 1, 600, 400) -> (224, 224)  nearest         float32    num_threads=12  11X   0.438ms vs 0.041ms
(1, 1, 600, 400) -> (224, 224)  nearest         uint8      num_threads=12  8X    0.431ms vs 0.056ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=12  12X   0.482ms vs 0.041ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=12  8X    0.467ms vs 0.056ms

(1, 3, 600, 400) -> (224, 224)  linear          float32    num_threads=32  4X    1.0ms vs 0.3ms
(1, 3, 600, 400) -> (224, 224)  nearest         float32    num_threads=32  1.7X  0.2ms vs 0.1ms
(1, 3, 600, 400) -> (224, 224)  nearest         uint8      num_threads=32  1.5X  0.2ms vs 0.1ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=32  1.8X  0.2ms vs 0.1ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=32  1.6X  0.2ms vs 0.1ms
(1, 1, 600, 400) -> (224, 224)  linear          float32    num_threads=32  12X   0.824ms vs 0.070ms
(1, 1, 600, 400) -> (224, 224)  nearest         float32    num_threads=32  10X   0.443ms vs 0.044ms
(1, 1, 600, 400) -> (224, 224)  nearest         uint8      num_threads=32  7X    0.438ms vs 0.059ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=32  11X   0.479ms vs 0.045ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=32  8X    0.470ms vs 0.059ms
----------------------------------------------------------------------------------------------------
(1, 3, 800, 800) -> (500, 500)  linear          float32    num_threads=1   1.0X  4.7ms vs 4.7ms
(1, 3, 800, 800) -> (500, 500)  nearest         float32    num_threads=1   2.0X  4.4ms vs 2.2ms
(1, 3, 800, 800) -> (500, 500)  nearest         uint8      num_threads=1   1.8X  4.3ms vs 2.5ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=1   2.1X  4.7ms vs 2.2ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=1   1.9X  4.6ms vs 2.5ms
(1, 1, 800, 800) -> (500, 500)  linear          float32    num_threads=1   9X    4.0ms vs 0.4ms
(1, 1, 800, 800) -> (500, 500)  nearest         float32    num_threads=1   17X   4.2ms vs 0.2ms
(1, 1, 800, 800) -> (500, 500)  nearest         uint8      num_threads=1   11X   4.1ms vs 0.4ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=1   19X   4.6ms vs 0.2ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=1   12X   4.5ms vs 0.4ms

(1, 3, 800, 800) -> (500, 500)  linear          float32    num_threads=2   1.7X  4.7ms vs 2.7ms
(1, 3, 800, 800) -> (500, 500)  nearest         float32    num_threads=2   2.1X  2.4ms vs 1.1ms
(1, 3, 800, 800) -> (500, 500)  nearest         uint8      num_threads=2   1.8X  2.2ms vs 1.3ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=2   2.3X  2.6ms vs 1.1ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=2   1.9X  2.3ms vs 1.3ms
(1, 1, 800, 800) -> (500, 500)  linear          float32    num_threads=2   15X   4.0ms vs 0.3ms
(1, 1, 800, 800) -> (500, 500)  nearest         float32    num_threads=2   16X   2.3ms vs 0.1ms
(1, 1, 800, 800) -> (500, 500)  nearest         uint8      num_threads=2   9X    2.1ms vs 0.2ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=2   17X   2.5ms vs 0.1ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=2   10X   2.3ms vs 0.2ms

(1, 3, 800, 800) -> (500, 500)  linear          float32    num_threads=12  10X   4.7ms vs 0.5ms
(1, 3, 800, 800) -> (500, 500)  nearest         float32    num_threads=12  1.9X  0.4ms vs 0.2ms
(1, 3, 800, 800) -> (500, 500)  nearest         uint8      num_threads=12  1.7X  0.4ms vs 0.2ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=12  1.9X  0.4ms vs 0.2ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=12  1.8X  0.4ms vs 0.2ms
(1, 1, 800, 800) -> (500, 500)  linear          float32    num_threads=12  41X   3.969ms vs 0.096ms
(1, 1, 800, 800) -> (500, 500)  nearest         float32    num_threads=12  11X   0.545ms vs 0.051ms
(1, 1, 800, 800) -> (500, 500)  nearest         uint8      num_threads=12  8X    0.532ms vs 0.070ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=12  11X   0.590ms vs 0.052ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=12  8X    0.578ms vs 0.071ms

(1, 3, 800, 800) -> (500, 500)  linear          float32    num_threads=32  17X   4.7ms vs 0.3ms
(1, 3, 800, 800) -> (500, 500)  nearest         float32    num_threads=32  1.8X  0.2ms vs 0.1ms
(1, 3, 800, 800) -> (500, 500)  nearest         uint8      num_threads=32  2.0X  0.3ms vs 0.1ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=32  1.9X  0.2ms vs 0.1ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=32  1.6X  0.2ms vs 0.1ms
(1, 1, 800, 800) -> (500, 500)  linear          float32    num_threads=32  45X   4.028ms vs 0.090ms
(1, 1, 800, 800) -> (500, 500)  nearest         float32    num_threads=32  10X   0.549ms vs 0.053ms
(1, 1, 800, 800) -> (500, 500)  nearest         uint8      num_threads=32  7X    0.536ms vs 0.072ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=32  11X   0.592ms vs 0.055ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=32  8X    0.581ms vs 0.074ms

```
</details>

Code:

<details>

I used this file which is adapted from https://github.com/pytorch/pytorch/blob/master/benchmarks/operator_benchmark/pt/interpolate_test.py

```py
import operator_benchmark as op_bench
import torch

"""Microbenchmarks for interpolate operator."""

class InterpolateBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, input_size, output_size, channels_last=False, mode='linear', dtype=torch.float):

        input_image = torch.randint(0, 256, size=input_size, dtype=dtype, device='cpu',
                                    requires_grad=self.auto_set())
        if channels_last:
            if input_image.ndim == 4:
                input_image = input_image.contiguous(memory_format=torch.channels_last)
            elif input_image.ndim == 5:
                input_image = input_image.contiguous(memory_format=torch.channels_last_3d)
            else:
                raise ValueError(
                    f"Can not set channels_last to the input of {input_image.ndim} dims"
                )

        align_corners = None if "nearest" in mode else False

        if mode == "linear":
            mode = {
                3: 'linear',
                4: 'bilinear',
                5: 'trilinear',
            }[input_image.ndim]

        self.inputs = {
            "input_image": input_image,
            "output_size": output_size,
            "mode": mode,
            "align_corners": align_corners,
        }

        self.set_module_name("interpolate")

    def forward(self, input_image, output_size, mode, align_corners):
        return torch.nn.functional.interpolate(input_image, size=output_size, mode=mode,
                                               align_corners=align_corners)

def make_config():
    sizes = (
        ((224, 224), (64, 64)),
        ((224, 224), (128, 128)),
        ((600, 400), (224, 224)),
        ((320, 320), (256, 256)),
        ((800, 800), (500, 500)),
    )

    attrs = []
    for (HW1, HW2) in sizes:
        attrs.append([(1, 3, *HW1), HW2])  # 3 channels
        attrs.append([(1, 1, *HW1), HW2])  # 1 channel

        attrs.append([(1, 3, *HW2), HW1])  # 3 channels
        attrs.append([(1, 1, *HW2), HW1])  # 1 channel

    config = op_bench.config_list(
        attr_names=["input_size", "output_size"],
        attrs=attrs,
        cross_product_configs={
            'channels_last': [True],
            'mode': ["linear", "nearest", "nearest-exact"],
            'dtype': [torch.float, torch.uint8]
        },
        tags=["short"],
    )

    # Need to remove instances with both torch.int and linear
    # Note: this is naaaasty
    def get_mode(l):
        for d in l:
            if "mode" in d:
                return d["mode"]
    def get_dtype(l):
        for d in l:
            if "dtype" in d:
                return d["dtype"]
    config = [l for l in config if not(get_mode(l) == "linear" and get_dtype(l) == torch.uint8)]
    return config

config = make_config()
op_bench.generate_pt_test(config, InterpolateBenchmark)

if __name__ == "__main__":
    op_bench.benchmark_runner.main()
```

with

```
for num_threads in 1 2 12 32; do echo "num_threads=$num_threads" && python -m pt.my_interpolate_test --iterations 1000 --omp_num_threads $num_threads ; done > $out_file
```

and this very ugly helper

```py
import re
with open("main") as f:
    main = f.readlines()

with open("new") as f:
    new = f.readlines()

out = []

for main_line, new_line in zip(main, new):
    if main_line.startswith("num_threads="):
        num_threads = int(main_line.split("=")[-1])
    if main_line.startswith("# Input"):
        deets = f"{main_line.strip()}, {num_threads=}"
    if main_line.startswith("Forward"):
        main_time = float(main_line.split()[-1])
        new_time = float(new_line.split()[-1])
        ratio = main_time / new_time
        fmt = ".1f" if ratio < 3 else ".0f"
        improv = f"{ratio:{fmt}}X"
        time_fmt = ",.3f" if new_time < 100 else ",.1f"
        deets = deets.strip().replace("# Input: ", "")
        deets = deets.replace(": ", "=")
        deets = deets.replace("input_size=", "")
        deets = deets.replace(", output_size=", " -> ")
        deets = deets.replace("dtype=torch.", "")
        deets = deets.replace("mode=", "")
        deets = deets.replace("channels_last=True, ", "")
        split = deets.split(",")
        size = ','.join(split[:-3])
        mode, dtype, threads = split[-3:]
        deets = f"{size:<30} {mode:<15} {dtype:<10} {threads:<15}"

        l = f"{deets}  {improv:<5} {main_time / 1000:{time_fmt}}ms vs {new_time / 1000:{time_fmt}}ms"
        out.append(l)

def key(s):
    # s = ''.join(s.split()[1:]) # remove "N.nX" part
    num_threads = (int(re.findall(r"num_threads=(\d+)", s)[0]),)

    input_shape, output_shape = re.findall("\(.*?\)", s)
    input_shape = input_shape[1:-1]  # remove parenthesis
    input_HW = tuple(int(x) for x in input_shape.split(",")[-2:])
    input_C = (-int(input_shape.split(",")[1]),)

    output_HW = tuple(int(x) for x in output_shape[1:-1].split(","))
    is_downsample = (output_HW[0] < input_HW[0],)
    if "linear" in s:
        mode = "linear"
    elif "nearest-exact" in s:
        mode = "nearest-exact"
    else:
        assert "nearest" in s
        mode = "nearest"
    mode = (mode,)
    return is_downsample + input_HW + output_HW + num_threads + input_C + mode

for i, l in enumerate(sorted(out, key=key)):
    if i % 10 == 0 and i % 40 != 0:
        print()
    if i % 40 == 0:
        print("-" * 100)
    print(l)

```

</details>

Closes https://github.com/pytorch/pytorch/issues/83840

When this is merged we should be able to remove some hack in vision as well https://github.com/pytorch/vision/pull/6661 (CC @vfdev-5 @datumbox )
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86361
Approved by: https://github.com/vfdev-5, https://github.com/datumbox, https://github.com/fmassa
2022-10-11 16:17:36 +00:00
PyTorch MergeBot
3a2cfbb813 Revert "Improve interpolate() speed for channels_last images and masks (#86361)"
This reverts commit 93b2d99158.

Reverted https://github.com/pytorch/pytorch/pull/86361 on behalf of https://github.com/DanilBaibak due to Break the internal import process
2022-10-11 10:17:27 +00:00
Nicolas Hug
93b2d99158 Improve interpolate() speed for channels_last images and masks (#86361)
This PR improves the speed of `interpolate()`:
-  on images and masks (`num_channels < 4`, `channels_last=True`)
- for the following modes: linear (antialias=False), nearest (int and float), and nearest-exact (int and float)
- for both upsampling and downsampling

The actual speed-up ranges from 1.1X to 110X, but this depends on various factors like number of threads and of course input_size/output_size.  In a typical torchvision ImageNet training job (where num_threads=1 because of DataLoader multi-processing), the following speed-ups should be expected (I ran much more benchmarks than this one, see below for more details):

```
(1, 3, 600, 400) -> (224, 224)  linear          float32    num_threads=1   1.0X  1.0ms vs 1.0ms
(1, 3, 600, 400) -> (224, 224)  nearest         float32    num_threads=1   1.9X  0.9ms vs 0.5ms
(1, 3, 600, 400) -> (224, 224)  nearest         uint8      num_threads=1   1.7X  0.9ms vs 0.5ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=1   2.1X  1.0ms vs 0.5ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=1   1.8X  0.9ms vs 0.5ms
(1, 1, 600, 400) -> (224, 224)  linear          float32    num_threads=1   7X    0.8ms vs 0.1ms
(1, 1, 600, 400) -> (224, 224)  nearest         float32    num_threads=1   14X   0.852ms vs 0.061ms
(1, 1, 600, 400) -> (224, 224)  nearest         uint8      num_threads=1   9X    0.828ms vs 0.087ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=1   15X   0.922ms vs 0.061ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=1   10X   0.897ms vs 0.087ms
```

An immediate follow-up to this PR would be to do the same changes for the 3D kernels.
Thanks a ton @fmassa for the help!

### Speedup benchmarks:

Results:

<details>

```
----------------------------------------------------------------------------------------------------
(1, 3, 64, 64) -> (224, 224)    linear          float32    num_threads=1   0.9X  0.9ms vs 1.1ms
(1, 3, 64, 64) -> (224, 224)    nearest         float32    num_threads=1   1.6X  0.9ms vs 0.5ms
(1, 3, 64, 64) -> (224, 224)    nearest         uint8      num_threads=1   1.7X  0.9ms vs 0.5ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=1   1.7X  1.0ms vs 0.5ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=1   1.9X  0.9ms vs 0.5ms
(1, 1, 64, 64) -> (224, 224)    linear          float32    num_threads=1   8X    0.806ms vs 0.097ms
(1, 1, 64, 64) -> (224, 224)    nearest         float32    num_threads=1   15X   0.848ms vs 0.056ms
(1, 1, 64, 64) -> (224, 224)    nearest         uint8      num_threads=1   10X   0.828ms vs 0.084ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=1   16X   0.914ms vs 0.057ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=1   10X   0.900ms vs 0.086ms

(1, 3, 64, 64) -> (224, 224)    linear          float32    num_threads=2   1.6X  1.1ms vs 0.7ms
(1, 3, 64, 64) -> (224, 224)    nearest         float32    num_threads=2   1.6X  0.6ms vs 0.4ms
(1, 3, 64, 64) -> (224, 224)    nearest         uint8      num_threads=2   1.7X  0.4ms vs 0.3ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=2   1.7X  0.6ms vs 0.4ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=2   1.7X  0.5ms vs 0.3ms
(1, 1, 64, 64) -> (224, 224)    linear          float32    num_threads=2   9X    0.800ms vs 0.088ms
(1, 1, 64, 64) -> (224, 224)    nearest         float32    num_threads=2   11X   0.459ms vs 0.043ms
(1, 1, 64, 64) -> (224, 224)    nearest         uint8      num_threads=2   7X    0.424ms vs 0.064ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=2   12X   0.503ms vs 0.043ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=2   8X    0.461ms vs 0.059ms

(1, 3, 64, 64) -> (224, 224)    linear          float32    num_threads=12  3X    1.1ms vs 0.3ms
(1, 3, 64, 64) -> (224, 224)    nearest         float32    num_threads=12  1.6X  0.3ms vs 0.2ms
(1, 3, 64, 64) -> (224, 224)    nearest         uint8      num_threads=12  1.5X  0.2ms vs 0.1ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=12  1.5X  0.3ms vs 0.2ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=12  1.5X  0.2ms vs 0.1ms
(1, 1, 64, 64) -> (224, 224)    linear          float32    num_threads=12  5X    0.8ms vs 0.2ms
(1, 1, 64, 64) -> (224, 224)    nearest         float32    num_threads=12  10X   0.445ms vs 0.047ms
(1, 1, 64, 64) -> (224, 224)    nearest         uint8      num_threads=12  7X    0.432ms vs 0.062ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=12  10X   0.478ms vs 0.046ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=12  7X    0.470ms vs 0.063ms

(1, 3, 64, 64) -> (224, 224)    linear          float32    num_threads=32  3X    1.1ms vs 0.4ms
(1, 3, 64, 64) -> (224, 224)    nearest         float32    num_threads=32  1.8X  0.3ms vs 0.2ms
(1, 3, 64, 64) -> (224, 224)    nearest         uint8      num_threads=32  1.5X  0.2ms vs 0.1ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=32  1.4X  0.3ms vs 0.2ms
(1, 3, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=32  1.5X  0.2ms vs 0.1ms
(1, 1, 64, 64) -> (224, 224)    linear          float32    num_threads=32  11X   0.815ms vs 0.074ms
(1, 1, 64, 64) -> (224, 224)    nearest         float32    num_threads=32  10X   0.443ms vs 0.045ms
(1, 1, 64, 64) -> (224, 224)    nearest         uint8      num_threads=32  7X    0.436ms vs 0.061ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   float32    num_threads=32  10X   0.478ms vs 0.046ms
(1, 1, 64, 64) -> (224, 224)    nearest-exact   uint8      num_threads=32  8X    0.470ms vs 0.061ms
----------------------------------------------------------------------------------------------------
(1, 3, 128, 128) -> (224, 224)  linear          float32    num_threads=1   0.9X  0.9ms vs 1.1ms
(1, 3, 128, 128) -> (224, 224)  nearest         float32    num_threads=1   1.5X  0.9ms vs 0.6ms
(1, 3, 128, 128) -> (224, 224)  nearest         uint8      num_threads=1   1.7X  0.9ms vs 0.5ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=1   1.6X  1.0ms vs 0.6ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=1   1.8X  0.9ms vs 0.5ms
(1, 1, 128, 128) -> (224, 224)  linear          float32    num_threads=1   8X    0.808ms vs 0.099ms
(1, 1, 128, 128) -> (224, 224)  nearest         float32    num_threads=1   15X   0.848ms vs 0.058ms
(1, 1, 128, 128) -> (224, 224)  nearest         uint8      num_threads=1   9X    0.820ms vs 0.087ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=1   16X   0.909ms vs 0.059ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=1   10X   0.898ms vs 0.088ms

(1, 3, 128, 128) -> (224, 224)  linear          float32    num_threads=2   1.4X  0.9ms vs 0.7ms
(1, 3, 128, 128) -> (224, 224)  nearest         float32    num_threads=2   1.5X  0.5ms vs 0.3ms
(1, 3, 128, 128) -> (224, 224)  nearest         uint8      num_threads=2   1.7X  0.4ms vs 0.3ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=2   1.5X  0.5ms vs 0.4ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=2   1.8X  0.5ms vs 0.3ms
(1, 1, 128, 128) -> (224, 224)  linear          float32    num_threads=2   9X    0.799ms vs 0.090ms
(1, 1, 128, 128) -> (224, 224)  nearest         float32    num_threads=2   10X   0.459ms vs 0.045ms
(1, 1, 128, 128) -> (224, 224)  nearest         uint8      num_threads=2   7X    0.427ms vs 0.059ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=2   11X   0.501ms vs 0.044ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=2   8X    0.460ms vs 0.060ms

(1, 3, 128, 128) -> (224, 224)  linear          float32    num_threads=12  2.9X  1.0ms vs 0.3ms
(1, 3, 128, 128) -> (224, 224)  nearest         float32    num_threads=12  1.2X  0.2ms vs 0.2ms
(1, 3, 128, 128) -> (224, 224)  nearest         uint8      num_threads=12  1.5X  0.2ms vs 0.1ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=12  1.1X  0.2ms vs 0.2ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=12  1.6X  0.2ms vs 0.1ms
(1, 1, 128, 128) -> (224, 224)  linear          float32    num_threads=12  12X   0.809ms vs 0.068ms
(1, 1, 128, 128) -> (224, 224)  nearest         float32    num_threads=12  11X   0.438ms vs 0.041ms
(1, 1, 128, 128) -> (224, 224)  nearest         uint8      num_threads=12  8X    0.432ms vs 0.055ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=12  12X   0.480ms vs 0.041ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=12  8X    0.464ms vs 0.056ms

(1, 3, 128, 128) -> (224, 224)  linear          float32    num_threads=32  3X    1.1ms vs 0.3ms
(1, 3, 128, 128) -> (224, 224)  nearest         float32    num_threads=32  1.3X  0.3ms vs 0.2ms
(1, 3, 128, 128) -> (224, 224)  nearest         uint8      num_threads=32  1.5X  0.2ms vs 0.1ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=32  1.4X  0.3ms vs 0.2ms
(1, 3, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=32  1.6X  0.2ms vs 0.1ms
(1, 1, 128, 128) -> (224, 224)  linear          float32    num_threads=32  11X   0.813ms vs 0.075ms
(1, 1, 128, 128) -> (224, 224)  nearest         float32    num_threads=32  10X   0.443ms vs 0.046ms
(1, 1, 128, 128) -> (224, 224)  nearest         uint8      num_threads=32  7X    0.433ms vs 0.061ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   float32    num_threads=32  10X   0.478ms vs 0.046ms
(1, 1, 128, 128) -> (224, 224)  nearest-exact   uint8      num_threads=32  8X    0.470ms vs 0.062ms
----------------------------------------------------------------------------------------------------
(1, 3, 224, 224) -> (600, 400)  linear          float32    num_threads=1   0.9X  4.5ms vs 5.2ms
(1, 3, 224, 224) -> (600, 400)  nearest         float32    num_threads=1   1.5X  4.2ms vs 2.8ms
(1, 3, 224, 224) -> (600, 400)  nearest         uint8      num_threads=1   1.8X  4.1ms vs 2.3ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=1   1.6X  4.5ms vs 2.8ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=1   1.9X  4.4ms vs 2.3ms
(1, 1, 224, 224) -> (600, 400)  linear          float32    num_threads=1   9X    3.8ms vs 0.4ms
(1, 1, 224, 224) -> (600, 400)  nearest         float32    num_threads=1   17X   4.0ms vs 0.2ms
(1, 1, 224, 224) -> (600, 400)  nearest         uint8      num_threads=1   11X   3.9ms vs 0.4ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=1   19X   4.4ms vs 0.2ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=1   12X   4.3ms vs 0.4ms

(1, 3, 224, 224) -> (600, 400)  linear          float32    num_threads=2   1.5X  4.5ms vs 3.1ms
(1, 3, 224, 224) -> (600, 400)  nearest         float32    num_threads=2   1.4X  2.3ms vs 1.6ms
(1, 3, 224, 224) -> (600, 400)  nearest         uint8      num_threads=2   1.7X  2.1ms vs 1.2ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=2   1.6X  2.5ms vs 1.6ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=2   1.8X  2.2ms vs 1.2ms
(1, 1, 224, 224) -> (600, 400)  linear          float32    num_threads=2   15X   3.8ms vs 0.3ms
(1, 1, 224, 224) -> (600, 400)  nearest         float32    num_threads=2   15X   2.2ms vs 0.1ms
(1, 1, 224, 224) -> (600, 400)  nearest         uint8      num_threads=2   7X    2.0ms vs 0.3ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=2   16X   2.4ms vs 0.1ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=2   8X    2.2ms vs 0.3ms

(1, 3, 224, 224) -> (600, 400)  linear          float32    num_threads=12  8X    5.2ms vs 0.7ms
(1, 3, 224, 224) -> (600, 400)  nearest         float32    num_threads=12  1.3X  0.6ms vs 0.4ms
(1, 3, 224, 224) -> (600, 400)  nearest         uint8      num_threads=12  1.7X  0.4ms vs 0.2ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=12  1.4X  0.6ms vs 0.4ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=12  1.8X  0.4ms vs 0.2ms
(1, 1, 224, 224) -> (600, 400)  linear          float32    num_threads=12  36X   3.9ms vs 0.1ms
(1, 1, 224, 224) -> (600, 400)  nearest         float32    num_threads=12  10X   0.526ms vs 0.051ms
(1, 1, 224, 224) -> (600, 400)  nearest         uint8      num_threads=12  7X    0.514ms vs 0.069ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=12  11X   0.569ms vs 0.052ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=12  8X    0.557ms vs 0.070ms

(1, 3, 224, 224) -> (600, 400)  linear          float32    num_threads=32  9X    4.5ms vs 0.5ms
(1, 3, 224, 224) -> (600, 400)  nearest         float32    num_threads=32  0.5X  0.2ms vs 0.5ms
(1, 3, 224, 224) -> (600, 400)  nearest         uint8      num_threads=32  1.5X  0.2ms vs 0.1ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=32  1.0X  0.5ms vs 0.5ms
(1, 3, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=32  1.6X  0.2ms vs 0.1ms
(1, 1, 224, 224) -> (600, 400)  linear          float32    num_threads=32  44X   3.864ms vs 0.087ms
(1, 1, 224, 224) -> (600, 400)  nearest         float32    num_threads=32  10X   0.527ms vs 0.053ms
(1, 1, 224, 224) -> (600, 400)  nearest         uint8      num_threads=32  7X    0.516ms vs 0.070ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   float32    num_threads=32  10X   0.567ms vs 0.055ms
(1, 1, 224, 224) -> (600, 400)  nearest-exact   uint8      num_threads=32  8X    0.558ms vs 0.072ms
----------------------------------------------------------------------------------------------------
(1, 3, 256, 256) -> (320, 320)  linear          float32    num_threads=1   1.0X  1.9ms vs 1.9ms
(1, 3, 256, 256) -> (320, 320)  nearest         float32    num_threads=1   2.0X  1.8ms vs 0.9ms
(1, 3, 256, 256) -> (320, 320)  nearest         uint8      num_threads=1   1.7X  1.8ms vs 1.0ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=1   2.1X  1.9ms vs 0.9ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=1   1.9X  1.9ms vs 1.0ms
(1, 1, 256, 256) -> (320, 320)  linear          float32    num_threads=1   9X    1.6ms vs 0.2ms
(1, 1, 256, 256) -> (320, 320)  nearest         float32    num_threads=1   16X   1.7ms vs 0.1ms
(1, 1, 256, 256) -> (320, 320)  nearest         uint8      num_threads=1   10X   1.7ms vs 0.2ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=1   17X   1.9ms vs 0.1ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=1   11X   1.8ms vs 0.2ms

(1, 3, 256, 256) -> (320, 320)  linear          float32    num_threads=2   1.7X  1.9ms vs 1.1ms
(1, 3, 256, 256) -> (320, 320)  nearest         float32    num_threads=2   2.0X  1.0ms vs 0.5ms
(1, 3, 256, 256) -> (320, 320)  nearest         uint8      num_threads=2   1.7X  0.9ms vs 0.5ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=2   2.3X  1.1ms vs 0.5ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=2   1.8X  1.0ms vs 0.5ms
(1, 1, 256, 256) -> (320, 320)  linear          float32    num_threads=2   8X    1.6ms vs 0.2ms
(1, 1, 256, 256) -> (320, 320)  nearest         float32    num_threads=2   14X   0.931ms vs 0.067ms
(1, 1, 256, 256) -> (320, 320)  nearest         uint8      num_threads=2   7X    0.9ms vs 0.1ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=2   15X   1.016ms vs 0.069ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=2   9X    0.9ms vs 0.1ms

(1, 3, 256, 256) -> (320, 320)  linear          float32    num_threads=12  8X    1.9ms vs 0.3ms
(1, 3, 256, 256) -> (320, 320)  nearest         float32    num_threads=12  1.7X  0.2ms vs 0.1ms
(1, 3, 256, 256) -> (320, 320)  nearest         uint8      num_threads=12  1.5X  0.2ms vs 0.1ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=12  1.9X  0.2ms vs 0.1ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=12  1.6X  0.2ms vs 0.1ms
(1, 1, 256, 256) -> (320, 320)  linear          float32    num_threads=12  20X   1.630ms vs 0.081ms
(1, 1, 256, 256) -> (320, 320)  nearest         float32    num_threads=12  10X   0.457ms vs 0.044ms
(1, 1, 256, 256) -> (320, 320)  nearest         uint8      num_threads=12  7X    0.439ms vs 0.060ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=12  11X   0.485ms vs 0.045ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=12  8X    0.474ms vs 0.061ms

(1, 3, 256, 256) -> (320, 320)  linear          float32    num_threads=32  8X    1.9ms vs 0.3ms
(1, 3, 256, 256) -> (320, 320)  nearest         float32    num_threads=32  2.0X  0.2ms vs 0.1ms
(1, 3, 256, 256) -> (320, 320)  nearest         uint8      num_threads=32  1.6X  0.2ms vs 0.1ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=32  1.4X  0.2ms vs 0.2ms
(1, 3, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=32  1.4X  0.2ms vs 0.1ms
(1, 1, 256, 256) -> (320, 320)  linear          float32    num_threads=32  21X   1.628ms vs 0.078ms
(1, 1, 256, 256) -> (320, 320)  nearest         float32    num_threads=32  9X    0.453ms vs 0.048ms
(1, 1, 256, 256) -> (320, 320)  nearest         uint8      num_threads=32  7X    0.445ms vs 0.063ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   float32    num_threads=32  11X   0.535ms vs 0.048ms
(1, 1, 256, 256) -> (320, 320)  nearest-exact   uint8      num_threads=32  8X    0.502ms vs 0.063ms
----------------------------------------------------------------------------------------------------
(1, 3, 500, 500) -> (800, 800)  linear          float32    num_threads=1   1.0X  13.8ms vs 14.0ms
(1, 3, 500, 500) -> (800, 800)  nearest         float32    num_threads=1   1.8X  13.1ms vs 7.4ms
(1, 3, 500, 500) -> (800, 800)  nearest         uint8      num_threads=1   1.8X  11.1ms vs 6.1ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=1   1.9X  13.9ms vs 7.4ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=1   1.9X  11.8ms vs 6.1ms
(1, 1, 500, 500) -> (800, 800)  linear          float32    num_threads=1   10X   10.2ms vs 1.1ms
(1, 1, 500, 500) -> (800, 800)  nearest         float32    num_threads=1   19X   10.8ms vs 0.6ms
(1, 1, 500, 500) -> (800, 800)  nearest         uint8      num_threads=1   11X   10.4ms vs 0.9ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=1   20X   11.6ms vs 0.6ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=1   12X   11.4ms vs 0.9ms

(1, 3, 500, 500) -> (800, 800)  linear          float32    num_threads=2   1.8X  13.7ms vs 7.7ms
(1, 3, 500, 500) -> (800, 800)  nearest         float32    num_threads=2   2.6X  7.3ms vs 2.8ms
(1, 3, 500, 500) -> (800, 800)  nearest         uint8      num_threads=2   1.8X  5.6ms vs 3.1ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=2   1.9X  7.9ms vs 4.1ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=2   1.9X  6.0ms vs 3.1ms
(1, 1, 500, 500) -> (800, 800)  linear          float32    num_threads=2   18X   10.1ms vs 0.6ms
(1, 1, 500, 500) -> (800, 800)  nearest         float32    num_threads=2   19X   5.8ms vs 0.3ms
(1, 1, 500, 500) -> (800, 800)  nearest         uint8      num_threads=2   10X   5.3ms vs 0.5ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=2   20X   6.3ms vs 0.3ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=2   11X   5.7ms vs 0.5ms

(1, 3, 500, 500) -> (800, 800)  linear          float32    num_threads=12  8X    13.8ms vs 1.6ms
(1, 3, 500, 500) -> (800, 800)  nearest         float32    num_threads=12  2.9X  1.5ms vs 0.5ms
(1, 3, 500, 500) -> (800, 800)  nearest         uint8      num_threads=12  1.7X  1.0ms vs 0.5ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=12  1.5X  1.5ms vs 1.0ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=12  1.8X  1.0ms vs 0.6ms
(1, 1, 500, 500) -> (800, 800)  linear          float32    num_threads=12  80X   10.1ms vs 0.1ms
(1, 1, 500, 500) -> (800, 800)  nearest         float32    num_threads=12  13X   0.928ms vs 0.072ms
(1, 1, 500, 500) -> (800, 800)  nearest         uint8      num_threads=12  8X    0.9ms vs 0.1ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=12  13X   1.001ms vs 0.074ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=12  9X    1.0ms vs 0.1ms

(1, 3, 500, 500) -> (800, 800)  linear          float32    num_threads=32  18X   14.0ms vs 0.8ms
(1, 3, 500, 500) -> (800, 800)  nearest         float32    num_threads=32  1.9X  1.0ms vs 0.6ms
(1, 3, 500, 500) -> (800, 800)  nearest         uint8      num_threads=32  2.9X  0.7ms vs 0.2ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=32  1.7X  0.9ms vs 0.6ms
(1, 3, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=32  1.8X  0.4ms vs 0.2ms
(1, 1, 500, 500) -> (800, 800)  linear          float32    num_threads=32  111X  10.254ms vs 0.092ms
(1, 1, 500, 500) -> (800, 800)  nearest         float32    num_threads=32  14X   0.784ms vs 0.056ms
(1, 1, 500, 500) -> (800, 800)  nearest         uint8      num_threads=32  7X    0.551ms vs 0.075ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   float32    num_threads=32  11X   0.607ms vs 0.057ms
(1, 1, 500, 500) -> (800, 800)  nearest-exact   uint8      num_threads=32  8X    0.596ms vs 0.076ms
----------------------------------------------------------------------------------------------------
(1, 3, 224, 224) -> (64, 64)    linear          float32    num_threads=1   1.0X  0.084ms vs 0.084ms
(1, 3, 224, 224) -> (64, 64)    nearest         float32    num_threads=1   1.0X  0.077ms vs 0.078ms
(1, 3, 224, 224) -> (64, 64)    nearest         uint8      num_threads=1   1.0X  0.076ms vs 0.076ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=1   1.0X  0.083ms vs 0.083ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=1   1.0X  0.081ms vs 0.082ms
(1, 1, 224, 224) -> (64, 64)    linear          float32    num_threads=1   1.0X  0.071ms vs 0.071ms
(1, 1, 224, 224) -> (64, 64)    nearest         float32    num_threads=1   1.0X  0.074ms vs 0.074ms
(1, 1, 224, 224) -> (64, 64)    nearest         uint8      num_threads=1   1.0X  0.072ms vs 0.072ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=1   1.0X  0.080ms vs 0.080ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=1   0.9X  0.078ms vs 0.084ms

(1, 3, 224, 224) -> (64, 64)    linear          float32    num_threads=2   1.0X  0.083ms vs 0.084ms
(1, 3, 224, 224) -> (64, 64)    nearest         float32    num_threads=2   1.0X  0.076ms vs 0.077ms
(1, 3, 224, 224) -> (64, 64)    nearest         uint8      num_threads=2   1.0X  0.075ms vs 0.074ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=2   1.0X  0.082ms vs 0.083ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=2   1.0X  0.080ms vs 0.083ms
(1, 1, 224, 224) -> (64, 64)    linear          float32    num_threads=2   1.0X  0.070ms vs 0.071ms
(1, 1, 224, 224) -> (64, 64)    nearest         float32    num_threads=2   1.0X  0.073ms vs 0.075ms
(1, 1, 224, 224) -> (64, 64)    nearest         uint8      num_threads=2   1.0X  0.071ms vs 0.072ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=2   1.0X  0.079ms vs 0.080ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=2   1.0X  0.077ms vs 0.079ms

(1, 3, 224, 224) -> (64, 64)    linear          float32    num_threads=12  1.0X  0.083ms vs 0.084ms
(1, 3, 224, 224) -> (64, 64)    nearest         float32    num_threads=12  1.0X  0.080ms vs 0.078ms
(1, 3, 224, 224) -> (64, 64)    nearest         uint8      num_threads=12  1.0X  0.077ms vs 0.075ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=12  1.0X  0.083ms vs 0.083ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=12  1.0X  0.083ms vs 0.082ms
(1, 1, 224, 224) -> (64, 64)    linear          float32    num_threads=12  1.0X  0.071ms vs 0.071ms
(1, 1, 224, 224) -> (64, 64)    nearest         float32    num_threads=12  1.0X  0.076ms vs 0.074ms
(1, 1, 224, 224) -> (64, 64)    nearest         uint8      num_threads=12  1.0X  0.073ms vs 0.071ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=12  1.0X  0.080ms vs 0.080ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=12  1.0X  0.080ms vs 0.078ms

(1, 3, 224, 224) -> (64, 64)    linear          float32    num_threads=32  1.0X  0.084ms vs 0.084ms
(1, 3, 224, 224) -> (64, 64)    nearest         float32    num_threads=32  1.0X  0.078ms vs 0.077ms
(1, 3, 224, 224) -> (64, 64)    nearest         uint8      num_threads=32  1.0X  0.076ms vs 0.076ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=32  1.0X  0.083ms vs 0.083ms
(1, 3, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=32  1.0X  0.081ms vs 0.082ms
(1, 1, 224, 224) -> (64, 64)    linear          float32    num_threads=32  1.0X  0.072ms vs 0.072ms
(1, 1, 224, 224) -> (64, 64)    nearest         float32    num_threads=32  1.0X  0.074ms vs 0.075ms
(1, 1, 224, 224) -> (64, 64)    nearest         uint8      num_threads=32  1.0X  0.072ms vs 0.072ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   float32    num_threads=32  1.0X  0.077ms vs 0.080ms
(1, 1, 224, 224) -> (64, 64)    nearest-exact   uint8      num_threads=32  1.0X  0.076ms vs 0.079ms
----------------------------------------------------------------------------------------------------
(1, 3, 224, 224) -> (128, 128)  linear          float32    num_threads=1   1.0X  0.3ms vs 0.3ms
(1, 3, 224, 224) -> (128, 128)  nearest         float32    num_threads=1   1.8X  0.3ms vs 0.2ms
(1, 3, 224, 224) -> (128, 128)  nearest         uint8      num_threads=1   1.6X  0.3ms vs 0.2ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=1   2.0X  0.3ms vs 0.2ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=1   1.7X  0.3ms vs 0.2ms
(1, 1, 224, 224) -> (128, 128)  linear          float32    num_threads=1   6X    0.265ms vs 0.044ms
(1, 1, 224, 224) -> (128, 128)  nearest         float32    num_threads=1   10X   0.280ms vs 0.028ms
(1, 1, 224, 224) -> (128, 128)  nearest         uint8      num_threads=1   7X    0.273ms vs 0.037ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=1   11X   0.303ms vs 0.028ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=1   8X    0.297ms vs 0.038ms

(1, 3, 224, 224) -> (128, 128)  linear          float32    num_threads=2   1.5X  0.3ms vs 0.2ms
(1, 3, 224, 224) -> (128, 128)  nearest         float32    num_threads=2   1.8X  0.163ms vs 0.093ms
(1, 3, 224, 224) -> (128, 128)  nearest         uint8      num_threads=2   1.5X  0.2ms vs 0.1ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=2   1.9X  0.180ms vs 0.096ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=2   1.6X  0.2ms vs 0.1ms
(1, 1, 224, 224) -> (128, 128)  linear          float32    num_threads=2   6X    0.264ms vs 0.044ms
(1, 1, 224, 224) -> (128, 128)  nearest         float32    num_threads=2   10X   0.278ms vs 0.028ms
(1, 1, 224, 224) -> (128, 128)  nearest         uint8      num_threads=2   7X    0.270ms vs 0.037ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=2   11X   0.298ms vs 0.028ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=2   8X    0.293ms vs 0.037ms

(1, 3, 224, 224) -> (128, 128)  linear          float32    num_threads=12  1.5X  0.3ms vs 0.2ms
(1, 3, 224, 224) -> (128, 128)  nearest         float32    num_threads=12  1.7X  0.158ms vs 0.095ms
(1, 3, 224, 224) -> (128, 128)  nearest         uint8      num_threads=12  1.5X  0.2ms vs 0.1ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=12  1.7X  0.170ms vs 0.100ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=12  1.6X  0.2ms vs 0.1ms
(1, 1, 224, 224) -> (128, 128)  linear          float32    num_threads=12  6X    0.269ms vs 0.043ms
(1, 1, 224, 224) -> (128, 128)  nearest         float32    num_threads=12  11X   0.291ms vs 0.027ms
(1, 1, 224, 224) -> (128, 128)  nearest         uint8      num_threads=12  8X    0.281ms vs 0.037ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=12  11X   0.305ms vs 0.028ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=12  8X    0.306ms vs 0.038ms

(1, 3, 224, 224) -> (128, 128)  linear          float32    num_threads=32  1.5X  0.3ms vs 0.2ms
(1, 3, 224, 224) -> (128, 128)  nearest         float32    num_threads=32  1.6X  0.160ms vs 0.098ms
(1, 3, 224, 224) -> (128, 128)  nearest         uint8      num_threads=32  1.5X  0.2ms vs 0.1ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=32  1.7X  0.171ms vs 0.099ms
(1, 3, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=32  1.6X  0.2ms vs 0.1ms
(1, 1, 224, 224) -> (128, 128)  linear          float32    num_threads=32  6X    0.269ms vs 0.044ms
(1, 1, 224, 224) -> (128, 128)  nearest         float32    num_threads=32  10X   0.282ms vs 0.028ms
(1, 1, 224, 224) -> (128, 128)  nearest         uint8      num_threads=32  7X    0.276ms vs 0.037ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   float32    num_threads=32  11X   0.305ms vs 0.028ms
(1, 1, 224, 224) -> (128, 128)  nearest-exact   uint8      num_threads=32  8X    0.299ms vs 0.038ms
----------------------------------------------------------------------------------------------------
(1, 3, 320, 320) -> (256, 256)  linear          float32    num_threads=1   1.0X  1.2ms vs 1.3ms
(1, 3, 320, 320) -> (256, 256)  nearest         float32    num_threads=1   2.0X  1.2ms vs 0.6ms
(1, 3, 320, 320) -> (256, 256)  nearest         uint8      num_threads=1   1.7X  1.1ms vs 0.7ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=1   2.1X  1.2ms vs 0.6ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=1   1.9X  1.2ms vs 0.7ms
(1, 1, 320, 320) -> (256, 256)  linear          float32    num_threads=1   8X    1.1ms vs 0.1ms
(1, 1, 320, 320) -> (256, 256)  nearest         float32    num_threads=1   15X   1.109ms vs 0.073ms
(1, 1, 320, 320) -> (256, 256)  nearest         uint8      num_threads=1   10X   1.1ms vs 0.1ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=1   16X   1.192ms vs 0.074ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=1   11X   1.2ms vs 0.1ms

(1, 3, 320, 320) -> (256, 256)  linear          float32    num_threads=2   1.7X  1.2ms vs 0.7ms
(1, 3, 320, 320) -> (256, 256)  nearest         float32    num_threads=2   2.0X  0.6ms vs 0.3ms
(1, 3, 320, 320) -> (256, 256)  nearest         uint8      num_threads=2   1.7X  0.6ms vs 0.3ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=2   2.2X  0.7ms vs 0.3ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=2   1.8X  0.6ms vs 0.3ms
(1, 1, 320, 320) -> (256, 256)  linear          float32    num_threads=2   9X    1.0ms vs 0.1ms
(1, 1, 320, 320) -> (256, 256)  nearest         float32    num_threads=2   11X   0.598ms vs 0.052ms
(1, 1, 320, 320) -> (256, 256)  nearest         uint8      num_threads=2   8X    0.556ms vs 0.072ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=2   12X   0.649ms vs 0.053ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=2   8X    0.598ms vs 0.073ms

(1, 3, 320, 320) -> (256, 256)  linear          float32    num_threads=12  5X    1.2ms vs 0.3ms
(1, 3, 320, 320) -> (256, 256)  nearest         float32    num_threads=12  1.5X  0.2ms vs 0.1ms
(1, 3, 320, 320) -> (256, 256)  nearest         uint8      num_threads=12  1.3X  0.2ms vs 0.1ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=12  1.6X  0.2ms vs 0.1ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=12  1.4X  0.2ms vs 0.1ms
(1, 1, 320, 320) -> (256, 256)  linear          float32    num_threads=12  9X    1.0ms vs 0.1ms
(1, 1, 320, 320) -> (256, 256)  nearest         float32    num_threads=12  12X   0.572ms vs 0.048ms
(1, 1, 320, 320) -> (256, 256)  nearest         uint8      num_threads=12  8X    0.560ms vs 0.068ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=12  13X   0.617ms vs 0.049ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=12  9X    0.604ms vs 0.068ms

(1, 3, 320, 320) -> (256, 256)  linear          float32    num_threads=32  5X    1.2ms vs 0.3ms
(1, 3, 320, 320) -> (256, 256)  nearest         float32    num_threads=32  1.5X  0.2ms vs 0.1ms
(1, 3, 320, 320) -> (256, 256)  nearest         uint8      num_threads=32  1.4X  0.2ms vs 0.1ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=32  1.6X  0.2ms vs 0.1ms
(1, 3, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=32  1.4X  0.2ms vs 0.1ms
(1, 1, 320, 320) -> (256, 256)  linear          float32    num_threads=32  13X   1.042ms vs 0.081ms
(1, 1, 320, 320) -> (256, 256)  nearest         float32    num_threads=32  12X   0.586ms vs 0.050ms
(1, 1, 320, 320) -> (256, 256)  nearest         uint8      num_threads=32  8X    0.562ms vs 0.069ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   float32    num_threads=32  12X   0.621ms vs 0.051ms
(1, 1, 320, 320) -> (256, 256)  nearest-exact   uint8      num_threads=32  9X    0.609ms vs 0.070ms
----------------------------------------------------------------------------------------------------
(1, 3, 600, 400) -> (224, 224)  linear          float32    num_threads=1   1.0X  1.0ms vs 1.0ms
(1, 3, 600, 400) -> (224, 224)  nearest         float32    num_threads=1   1.9X  0.9ms vs 0.5ms
(1, 3, 600, 400) -> (224, 224)  nearest         uint8      num_threads=1   1.7X  0.9ms vs 0.5ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=1   2.1X  1.0ms vs 0.5ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=1   1.8X  0.9ms vs 0.5ms
(1, 1, 600, 400) -> (224, 224)  linear          float32    num_threads=1   7X    0.8ms vs 0.1ms
(1, 1, 600, 400) -> (224, 224)  nearest         float32    num_threads=1   14X   0.852ms vs 0.061ms
(1, 1, 600, 400) -> (224, 224)  nearest         uint8      num_threads=1   9X    0.828ms vs 0.087ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=1   15X   0.922ms vs 0.061ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=1   10X   0.897ms vs 0.087ms

(1, 3, 600, 400) -> (224, 224)  linear          float32    num_threads=2   1.6X  0.9ms vs 0.6ms
(1, 3, 600, 400) -> (224, 224)  nearest         float32    num_threads=2   1.9X  0.5ms vs 0.2ms
(1, 3, 600, 400) -> (224, 224)  nearest         uint8      num_threads=2   1.7X  0.4ms vs 0.3ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=2   2.1X  0.5ms vs 0.3ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=2   1.8X  0.5ms vs 0.3ms
(1, 1, 600, 400) -> (224, 224)  linear          float32    num_threads=2   10X   0.808ms vs 0.084ms
(1, 1, 600, 400) -> (224, 224)  nearest         float32    num_threads=2   10X   0.462ms vs 0.046ms
(1, 1, 600, 400) -> (224, 224)  nearest         uint8      num_threads=2   7X    0.429ms vs 0.062ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=2   12X   0.504ms vs 0.044ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=2   7X    0.461ms vs 0.063ms

(1, 3, 600, 400) -> (224, 224)  linear          float32    num_threads=12  4X    1.0ms vs 0.2ms
(1, 3, 600, 400) -> (224, 224)  nearest         float32    num_threads=12  1.7X  0.2ms vs 0.1ms
(1, 3, 600, 400) -> (224, 224)  nearest         uint8      num_threads=12  1.5X  0.2ms vs 0.1ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=12  1.9X  0.2ms vs 0.1ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=12  1.6X  0.2ms vs 0.1ms
(1, 1, 600, 400) -> (224, 224)  linear          float32    num_threads=12  12X   0.820ms vs 0.067ms
(1, 1, 600, 400) -> (224, 224)  nearest         float32    num_threads=12  11X   0.438ms vs 0.041ms
(1, 1, 600, 400) -> (224, 224)  nearest         uint8      num_threads=12  8X    0.431ms vs 0.056ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=12  12X   0.482ms vs 0.041ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=12  8X    0.467ms vs 0.056ms

(1, 3, 600, 400) -> (224, 224)  linear          float32    num_threads=32  4X    1.0ms vs 0.3ms
(1, 3, 600, 400) -> (224, 224)  nearest         float32    num_threads=32  1.7X  0.2ms vs 0.1ms
(1, 3, 600, 400) -> (224, 224)  nearest         uint8      num_threads=32  1.5X  0.2ms vs 0.1ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=32  1.8X  0.2ms vs 0.1ms
(1, 3, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=32  1.6X  0.2ms vs 0.1ms
(1, 1, 600, 400) -> (224, 224)  linear          float32    num_threads=32  12X   0.824ms vs 0.070ms
(1, 1, 600, 400) -> (224, 224)  nearest         float32    num_threads=32  10X   0.443ms vs 0.044ms
(1, 1, 600, 400) -> (224, 224)  nearest         uint8      num_threads=32  7X    0.438ms vs 0.059ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   float32    num_threads=32  11X   0.479ms vs 0.045ms
(1, 1, 600, 400) -> (224, 224)  nearest-exact   uint8      num_threads=32  8X    0.470ms vs 0.059ms
----------------------------------------------------------------------------------------------------
(1, 3, 800, 800) -> (500, 500)  linear          float32    num_threads=1   1.0X  4.7ms vs 4.7ms
(1, 3, 800, 800) -> (500, 500)  nearest         float32    num_threads=1   2.0X  4.4ms vs 2.2ms
(1, 3, 800, 800) -> (500, 500)  nearest         uint8      num_threads=1   1.8X  4.3ms vs 2.5ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=1   2.1X  4.7ms vs 2.2ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=1   1.9X  4.6ms vs 2.5ms
(1, 1, 800, 800) -> (500, 500)  linear          float32    num_threads=1   9X    4.0ms vs 0.4ms
(1, 1, 800, 800) -> (500, 500)  nearest         float32    num_threads=1   17X   4.2ms vs 0.2ms
(1, 1, 800, 800) -> (500, 500)  nearest         uint8      num_threads=1   11X   4.1ms vs 0.4ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=1   19X   4.6ms vs 0.2ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=1   12X   4.5ms vs 0.4ms

(1, 3, 800, 800) -> (500, 500)  linear          float32    num_threads=2   1.7X  4.7ms vs 2.7ms
(1, 3, 800, 800) -> (500, 500)  nearest         float32    num_threads=2   2.1X  2.4ms vs 1.1ms
(1, 3, 800, 800) -> (500, 500)  nearest         uint8      num_threads=2   1.8X  2.2ms vs 1.3ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=2   2.3X  2.6ms vs 1.1ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=2   1.9X  2.3ms vs 1.3ms
(1, 1, 800, 800) -> (500, 500)  linear          float32    num_threads=2   15X   4.0ms vs 0.3ms
(1, 1, 800, 800) -> (500, 500)  nearest         float32    num_threads=2   16X   2.3ms vs 0.1ms
(1, 1, 800, 800) -> (500, 500)  nearest         uint8      num_threads=2   9X    2.1ms vs 0.2ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=2   17X   2.5ms vs 0.1ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=2   10X   2.3ms vs 0.2ms

(1, 3, 800, 800) -> (500, 500)  linear          float32    num_threads=12  10X   4.7ms vs 0.5ms
(1, 3, 800, 800) -> (500, 500)  nearest         float32    num_threads=12  1.9X  0.4ms vs 0.2ms
(1, 3, 800, 800) -> (500, 500)  nearest         uint8      num_threads=12  1.7X  0.4ms vs 0.2ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=12  1.9X  0.4ms vs 0.2ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=12  1.8X  0.4ms vs 0.2ms
(1, 1, 800, 800) -> (500, 500)  linear          float32    num_threads=12  41X   3.969ms vs 0.096ms
(1, 1, 800, 800) -> (500, 500)  nearest         float32    num_threads=12  11X   0.545ms vs 0.051ms
(1, 1, 800, 800) -> (500, 500)  nearest         uint8      num_threads=12  8X    0.532ms vs 0.070ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=12  11X   0.590ms vs 0.052ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=12  8X    0.578ms vs 0.071ms

(1, 3, 800, 800) -> (500, 500)  linear          float32    num_threads=32  17X   4.7ms vs 0.3ms
(1, 3, 800, 800) -> (500, 500)  nearest         float32    num_threads=32  1.8X  0.2ms vs 0.1ms
(1, 3, 800, 800) -> (500, 500)  nearest         uint8      num_threads=32  2.0X  0.3ms vs 0.1ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=32  1.9X  0.2ms vs 0.1ms
(1, 3, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=32  1.6X  0.2ms vs 0.1ms
(1, 1, 800, 800) -> (500, 500)  linear          float32    num_threads=32  45X   4.028ms vs 0.090ms
(1, 1, 800, 800) -> (500, 500)  nearest         float32    num_threads=32  10X   0.549ms vs 0.053ms
(1, 1, 800, 800) -> (500, 500)  nearest         uint8      num_threads=32  7X    0.536ms vs 0.072ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   float32    num_threads=32  11X   0.592ms vs 0.055ms
(1, 1, 800, 800) -> (500, 500)  nearest-exact   uint8      num_threads=32  8X    0.581ms vs 0.074ms

```
</details>

Code:

<details>

I used this file which is adapted from https://github.com/pytorch/pytorch/blob/master/benchmarks/operator_benchmark/pt/interpolate_test.py

```py
import operator_benchmark as op_bench
import torch

"""Microbenchmarks for interpolate operator."""

class InterpolateBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, input_size, output_size, channels_last=False, mode='linear', dtype=torch.float):

        input_image = torch.randint(0, 256, size=input_size, dtype=dtype, device='cpu',
                                    requires_grad=self.auto_set())
        if channels_last:
            if input_image.ndim == 4:
                input_image = input_image.contiguous(memory_format=torch.channels_last)
            elif input_image.ndim == 5:
                input_image = input_image.contiguous(memory_format=torch.channels_last_3d)
            else:
                raise ValueError(
                    f"Can not set channels_last to the input of {input_image.ndim} dims"
                )

        align_corners = None if "nearest" in mode else False

        if mode == "linear":
            mode = {
                3: 'linear',
                4: 'bilinear',
                5: 'trilinear',
            }[input_image.ndim]

        self.inputs = {
            "input_image": input_image,
            "output_size": output_size,
            "mode": mode,
            "align_corners": align_corners,
        }

        self.set_module_name("interpolate")

    def forward(self, input_image, output_size, mode, align_corners):
        return torch.nn.functional.interpolate(input_image, size=output_size, mode=mode,
                                               align_corners=align_corners)

def make_config():
    sizes = (
        ((224, 224), (64, 64)),
        ((224, 224), (128, 128)),
        ((600, 400), (224, 224)),
        ((320, 320), (256, 256)),
        ((800, 800), (500, 500)),
    )

    attrs = []
    for (HW1, HW2) in sizes:
        attrs.append([(1, 3, *HW1), HW2])  # 3 channels
        attrs.append([(1, 1, *HW1), HW2])  # 1 channel

        attrs.append([(1, 3, *HW2), HW1])  # 3 channels
        attrs.append([(1, 1, *HW2), HW1])  # 1 channel

    config = op_bench.config_list(
        attr_names=["input_size", "output_size"],
        attrs=attrs,
        cross_product_configs={
            'channels_last': [True],
            'mode': ["linear", "nearest", "nearest-exact"],
            'dtype': [torch.float, torch.uint8]
        },
        tags=["short"],
    )

    # Need to remove instances with both torch.int and linear
    # Note: this is naaaasty
    def get_mode(l):
        for d in l:
            if "mode" in d:
                return d["mode"]
    def get_dtype(l):
        for d in l:
            if "dtype" in d:
                return d["dtype"]
    config = [l for l in config if not(get_mode(l) == "linear" and get_dtype(l) == torch.uint8)]
    return config

config = make_config()
op_bench.generate_pt_test(config, InterpolateBenchmark)

if __name__ == "__main__":
    op_bench.benchmark_runner.main()
```

with

```
for num_threads in 1 2 12 32; do echo "num_threads=$num_threads" && python -m pt.my_interpolate_test --iterations 1000 --omp_num_threads $num_threads ; done > $out_file
```

and this very ugly helper

```py
import re
with open("main") as f:
    main = f.readlines()

with open("new") as f:
    new = f.readlines()

out = []

for main_line, new_line in zip(main, new):
    if main_line.startswith("num_threads="):
        num_threads = int(main_line.split("=")[-1])
    if main_line.startswith("# Input"):
        deets = f"{main_line.strip()}, {num_threads=}"
    if main_line.startswith("Forward"):
        main_time = float(main_line.split()[-1])
        new_time = float(new_line.split()[-1])
        ratio = main_time / new_time
        fmt = ".1f" if ratio < 3 else ".0f"
        improv = f"{ratio:{fmt}}X"
        time_fmt = ",.3f" if new_time < 100 else ",.1f"
        deets = deets.strip().replace("# Input: ", "")
        deets = deets.replace(": ", "=")
        deets = deets.replace("input_size=", "")
        deets = deets.replace(", output_size=", " -> ")
        deets = deets.replace("dtype=torch.", "")
        deets = deets.replace("mode=", "")
        deets = deets.replace("channels_last=True, ", "")
        split = deets.split(",")
        size = ','.join(split[:-3])
        mode, dtype, threads = split[-3:]
        deets = f"{size:<30} {mode:<15} {dtype:<10} {threads:<15}"

        l = f"{deets}  {improv:<5} {main_time / 1000:{time_fmt}}ms vs {new_time / 1000:{time_fmt}}ms"
        out.append(l)

def key(s):
    # s = ''.join(s.split()[1:]) # remove "N.nX" part
    num_threads = (int(re.findall(r"num_threads=(\d+)", s)[0]),)

    input_shape, output_shape = re.findall("\(.*?\)", s)
    input_shape = input_shape[1:-1]  # remove parenthesis
    input_HW = tuple(int(x) for x in input_shape.split(",")[-2:])
    input_C = (-int(input_shape.split(",")[1]),)

    output_HW = tuple(int(x) for x in output_shape[1:-1].split(","))
    is_downsample = (output_HW[0] < input_HW[0],)
    if "linear" in s:
        mode = "linear"
    elif "nearest-exact" in s:
        mode = "nearest-exact"
    else:
        assert "nearest" in s
        mode = "nearest"
    mode = (mode,)
    return is_downsample + input_HW + output_HW + num_threads + input_C + mode

for i, l in enumerate(sorted(out, key=key)):
    if i % 10 == 0 and i % 40 != 0:
        print()
    if i % 40 == 0:
        print("-" * 100)
    print(l)

```

</details>

Closes https://github.com/pytorch/pytorch/issues/83840

When this is merged we should be able to remove some hack in vision as well https://github.com/pytorch/vision/pull/6661 (CC @vfdev-5 @datumbox )
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86361
Approved by: https://github.com/vfdev-5, https://github.com/datumbox, https://github.com/fmassa
2022-10-07 07:52:36 +00:00
vfdev-5
2b07bcf9eb [operator benchmarks] Added more interpolation test cases (#54584)
Summary:
Description:
- Added uint8 nearest test case
- Added 3d vectorization test case

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54584

Reviewed By: malfet

Differential Revision: D27291303

Pulled By: fmassa

fbshipit-source-id: 236ee5af351c8dc34ec3cdb7dda662c77feb8cf0
2021-03-24 11:46:27 -07:00
Nicolas Hug
5095332ab9 Minor cleanup of interpolate microbenchmark
Summary: Minor cleanup, addresses comments from https://www.internalfb.com/diff/D26780116 (1559fa6a5c)

Test Plan:
```
➜  vision buck run //caffe2/benchmarks/operator_benchmark/pt:interpolate_test -- --tag_filter short
Parsing buck files: finished in 0.6 sec
Building: finished in 6.2 sec (100%) 10951/10951 jobs, 0 updated
  Total time: 6.9 sec
/data/users/nicolashug/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/pt/interpolate_test#link-tree/torch/utils/cpp_extension.py:3: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
  import imp
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,60,40)_output_size(24,24)_channels_lastTrue_modenearest
# Input: input_size: (1, 3, 60, 40), output_size: (24, 24), channels_last: True, mode: nearest
Forward Execution Time (us) : 1346.156

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,60,40)_output_size(24,24)_channels_lastTrue_modelinear
# Input: input_size: (1, 3, 60, 40), output_size: (24, 24), channels_last: True, mode: linear
Forward Execution Time (us) : 1283.784

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,60,40)_output_size(24,24)_channels_lastTrue_modebicubic
# Input: input_size: (1, 3, 60, 40), output_size: (24, 24), channels_last: True, mode: bicubic
Forward Execution Time (us) : 4769.578

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,60,40)_output_size(24,24)_channels_lastFalse_modenearest
# Input: input_size: (1, 3, 60, 40), output_size: (24, 24), channels_last: False, mode: nearest
Forward Execution Time (us) : 982.910

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,60,40)_output_size(24,24)_channels_lastFalse_modelinear
# Input: input_size: (1, 3, 60, 40), output_size: (24, 24), channels_last: False, mode: linear
Forward Execution Time (us) : 1182.191

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,60,40)_output_size(24,24)_channels_lastFalse_modebicubic
# Input: input_size: (1, 3, 60, 40), output_size: (24, 24), channels_last: False, mode: bicubic
Forward Execution Time (us) : 3545.873

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,600,400)_output_size(240,240)_channels_lastTrue_modenearest
# Input: input_size: (1, 3, 600, 400), output_size: (240, 240), channels_last: True, mode: nearest
Forward Execution Time (us) : 34373.955

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,600,400)_output_size(240,240)_channels_lastTrue_modelinear
# Input: input_size: (1, 3, 600, 400), output_size: (240, 240), channels_last: True, mode: linear
Forward Execution Time (us) : 42248.109

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,600,400)_output_size(240,240)_channels_lastTrue_modebicubic
# Input: input_size: (1, 3, 600, 400), output_size: (240, 240), channels_last: True, mode: bicubic
Forward Execution Time (us) : 405944.286
...
```

Reviewed By: fmassa

Differential Revision: D26782757

fbshipit-source-id: 2039e1e6b4fea2b56bb4bcf2a017476f928e4928
2021-03-04 05:36:28 -08:00
vfdev-5
1559fa6a5c [operator benchmarks] Added more modes to interpolation tests (#53186)
Summary:
Description:
- Added more modes: bicubic and nearest to interpolation tests
- Added a test case for downsampling a small image

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53186

Reviewed By: albanD

Differential Revision: D26780116

Pulled By: fmassa

fbshipit-source-id: f4f498e6e1da1ec131e6d9d9f42dc482135ae9e2
2021-03-03 09:18:38 -08:00
vfdev-5
cb1596a193 [operator_benchmark] Added channels last 3d option to interpolate test (#53117)
Summary:
Description:

- Added channels last 3d option to interpolate test
  - split config non-4d into two : 3d and 5d

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53117

Reviewed By: NicolasHug

Differential Revision: D26754243

Pulled By: fmassa

fbshipit-source-id: 49bbab3bb47de27790e39537d0fbeca0f01782c4
2021-03-02 11:54:45 -08:00
Nicolas Hug
9cf6be6b3e Fix torch.nn.functional.interpolate microbenchmark for non-4D inputs
Summary: This diff fixes the `interpolate` microbenchmark for non-4D inputs, which are not supported by the `bilinear` mode

Test Plan:
5D and 3D:

```
# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,16,320,320)_output_size(8,256,256)
# Input: input_size: (1, 3, 16, 320, 320), output_size: (8, 256, 256)
Forward Execution Time (us) : 221008.660

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(4,512,320)_output_size(256,)
# Input: input_size: (4, 512, 320), output_size: (256,)
Forward Execution Time (us) : 9727.900

```

4D
```
# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,60,40)_output_size(24,24)_channels_lastTrue
# Input: input_size: (1, 3, 60, 40), output_size: (24, 24), channels_last: True
Forward Execution Time (us) : 375.181

```

Reviewed By: fmassa

Differential Revision: D26486678

fbshipit-source-id: 5d476afba3f35da9f8b86db16e21505bdb00888b
2021-02-18 02:07:54 -08:00
Nicolas Hug
50e6f0fdb6 Add benchmark for torch.nn.functional.interpolate
Summary:
This diff adds a new microbencharmk for the
 `torch.nn.functional.interpolate` operator, using OpBench

Test Plan:
```
[nicolashug@59262.od ~/fbsource/fbcode/caffe2/benchmarks/operator_benchmark/pt (39207820)]$ buck run //caffe2/benchmarks/operator_benchmark/pt:interpolate_test -- --tag_filter short
Starting new Buck daemon...
Buck daemon started.
Parsing buck files: finished in 06:30.7 min
Creating action graph: finished in 33.9 sec
Building: finished in 02:53.4 min (100%) 24224/24224 jobs, 24224 updated
  Total time: 09:58.2 min
/data/sandcastle/boxes/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/pt/interpolate_test#link-tree/torch/utils/cpp_extension.py:3: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
  import imp
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,60,40)_output_size(24,24)_channels_lastTrue
# Input: input_size: (1, 3, 60, 40), output_size: (24, 24), channels_last: True
Forward Execution Time (us) : 510.818

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,60,40)_output_size(24,24)_channels_lastFalse
# Input: input_size: (1, 3, 60, 40), output_size: (24, 24), channels_last: False
Forward Execution Time (us) : 684.324

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,600,400)_output_size(240,240)_channels_lastTrue
# Input: input_size: (1, 3, 600, 400), output_size: (240, 240), channels_last: True
Forward Execution Time (us) : 33791.970

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,600,400)_output_size(240,240)_channels_lastFalse
# Input: input_size: (1, 3, 600, 400), output_size: (240, 240), channels_last: False
Forward Execution Time (us) : 50120.585

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,320,320)_output_size(256,256)_channels_lastTrue
# Input: input_size: (1, 3, 320, 320), output_size: (256, 256), channels_last: True
Forward Execution Time (us) : 37668.089

# Benchmarking PyTorch: interpolate
# Mode: Eager
# Name: interpolate_input_size(1,3,320,320)_output_size(256,256)_channels_lastFalse
# Input: input_size: (1, 3, 320, 320), output_size: (256, 256), channels_last: False
Forward Execution Time (us) : 56869.472
```

Reviewed By: fmassa

Differential Revision: D26225318

fbshipit-source-id: 7757296192e630c42a6e4913c5c1d93af11d286d
2021-02-10 08:28:16 -08:00