Commit Graph

192 Commits

Author SHA1 Message Date
Animesh Jain
c0ec2e0a0d [dynamo][functions] Improve getattr on functions (#146075)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146075
Approved by: https://github.com/jansel
2025-02-03 02:01:57 +00:00
Animesh Jain
f25f1163dc [dynamo] Support frozenset({..}).__contains__ (#146062)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146062
Approved by: https://github.com/Skylion007, https://github.com/jansel
2025-01-31 23:22:58 +00:00
Aaron Orenstein
f3120f6d26 Remove incorrect BuiltinVariable.call_hasattr() (#145551)
BuiltinVariable.call_hasattr() overrides the base class - but actually behaves differently. The base is `obj.call_hasattr(tx, attr)` but BuiltinVariable's version is `<unused>.call_hasattr(tx, obj, attr)`.

The BuiltinVariable version is used as a pattern from `call_self_handler()` for `BuiltinVariable(hasattr)`. I think the other version is just used for internal `hasattr(obj, name)` so I renamed that one to `call_obj_hasattr`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145551
Approved by: https://github.com/anijain2305
2025-01-30 22:21:19 +00:00
PyTorch MergeBot
1185b81c51 Revert "[dynamo] Use polyfill to implement comparison operators (#144485)"
This reverts commit d1f82de2bf.

Reverted https://github.com/pytorch/pytorch/pull/144485 on behalf of https://github.com/huydhn due to This seems to break dynamo tests in trunk after landing ([comment](https://github.com/pytorch/pytorch/pull/144485#issuecomment-2622893294))
2025-01-29 21:30:42 +00:00
Animesh Jain
d1f82de2bf [dynamo] Use polyfill to implement comparison operators (#144485)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144485
Approved by: https://github.com/jansel
2025-01-29 17:37:40 +00:00
Animesh Jain
7e1c7253e9 [dynamo][builtin-skipfile-cleanup] Support tuple.__new__ (#145558)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145558
Approved by: https://github.com/jansel, https://github.com/StrongerXi
ghstack dependencies: #145519, #145547
2025-01-27 21:42:43 +00:00
Animesh Jain
74cfb4f364 [dynamo][refactor] Move collections.namedtuple out of SkipFunctionVariable (#145547)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145547
Approved by: https://github.com/zou3519
ghstack dependencies: #145519
2025-01-24 17:39:33 +00:00
Animesh Jain
53fc921ce2 [dynamo][trace-rules-cleanup] Remove functools from the Builtins skiplist (#145519)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145519
Approved by: https://github.com/yanboliang, https://github.com/zou3519
2025-01-24 06:02:03 +00:00
Aaron Orenstein
a79100ab11 PEP585 update - torch/_dynamo (#145105)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145105
Approved by: https://github.com/bobrenjc93
2025-01-18 20:47:11 +00:00
Sam Ginzburg
074aca3ed2 [user triton] add support for @triton.heuristics after @triton.autotune (#142208)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142208
Approved by: https://github.com/zou3519
2025-01-11 02:18:26 +00:00
bobrenjc93
1fe3af2c68 Migrate from Tuple -> tuple in torch/_dynamo (#144261)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144261
Approved by: https://github.com/aorenste, https://github.com/zou3519
2025-01-10 07:45:57 +00:00
Sam Ginzburg
ec1f56fdcf [user triton] add support for prune_configs_by in @triton.autotune (#142207)
This PR adds support for prune_configs_by in the @triton.autotune decorator [docs](https://triton-lang.org/main/python-api/generated/triton.autotune.html#triton.autotune). Supporting this lets users reduce autotuning time by running user-supplied code (early_config_prune, perf_model) to prune the provided list of configs.

We implement this by realizing args/kwargs in call_triton_kernel(...), and then calling kernel.prune_configs(...).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142207
Approved by: https://github.com/zou3519, https://github.com/aakhundov
2025-01-04 03:50:28 +00:00
Guilherme Leobas
673cc88fd6 Add support for contextmanager in Dynamo (#136033)
Fixes #130559

* Intro

This PR adds support for `@contextmanager` in Dynamo. We chose to limit the
scope of this work to only `@contextmanager` and plan to handle generators fully
in #141055 (still in draft).

* Motivation

Dynamo lacks support for generator functions. When it encounters one, it traces
it as if it were a regular function. This is problematic because it can lead to
incorrect behavior. To illustrate, consider the test case below:

```python
import torch
import contextlib

@contextlib.contextmanager
def set_default_dtype(dtype):
    old_dtype = torch.get_default_dtype()
    try:
        torch.set_default_dtype(dtype)
        yield
    finally:
        torch.set_default_dtype(old_dtype)

@torch.compile(backend="eager", fullgraph=True)
def fn():
    with set_default_dtype(torch.float64):
        x = torch.tensor([3.0, 3.0 + 5.0j])
    return x
```

Before this work, Dynamo would not stop at the `yield`, and the graph produced
would contain both calls to `set_default_dtype` executed one after the other.
This is incorrect because the context manager should execute code before and
after the `yield`.

* List of changes

`YIELD_VALUE` now raises an exception (`YieldValueOp`) to signal that control
flow must be suspended and returned to the caller. Additionally, `RETURN_VALUE`
behaves differently in a generator function. Unlike regular functions, where
`RETURN_VALUE` indicates the final result, in generators it signifies that the
generator is exhausted and implicitly raises `StopIteration`.

A new `VariableTracker` named `FunctionDecoratedByContextlibContextManagerVariable`
was introduced to handle `@contextmanager`. This variable tracker acts not just
as a wrapper for the original function but also maintains an internal `tx`
(InstructionTranslator) object to suspend and return control flow to the parent
tracer when a `yield` is encountered.

* Corner cases

Returning a context manager from a compiled function is not supported. This
would require PyTorch to synchronize the generator state between Dynamo and the
interpreter. Any attempt to return it will result in an `IncorrectUsage`
exception.

Graph breaks require special handling as well. In the event of a graph break,
the frame associated with the context manager is skipped, and the context
manager runs in eager mode.

* This PR is breaking my code

There is a configuration flag (`enable_trace_contextlib`) that can be set to
`False` to disable tracing context managers. If this still causes crashes,
please revert this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136033
Approved by: https://github.com/zou3519
2024-12-20 12:02:20 +00:00
Andrew Gu
78425bff30 [FSDP2] Move to public torch.distributed.fsdp (#141868)
**Overview**
This PR moves `torch/distributed/_composable/fsdp` to `torch/distributed/fsdp/_fully_shard` and makes public APIs available from `torch.distributed.fsdp`, e.g.:
```
from torch.distributed.fsdp import fully_shard
```
This is targeting 2.6 release. I rewrote some of the documentation with (hopefully) improved phrasing.

**Changes for Reland**
- Preserved the public objects from `torch/distributed/_composable/fsdp/fully_shard.py` so that the import path still works internally
- Added a unit test that we can do `from torch.distributed._composable.fsdp.fully_shard import FSDPModule`

Differential Revision: [D66890387](https://our.internmc.facebook.com/intern/diff/D66890387)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141868
Approved by: https://github.com/kwen2501, https://github.com/wconstab, https://github.com/weifengpy, https://github.com/fegin, https://github.com/XilunWu

Co-authored-by: Svetlana Karslioglu <svekars@meta.com>
2024-12-07 01:24:28 +00:00
PyTorch MergeBot
bab15df40a Revert "[FSDP2] Move to public torch.distributed.fsdp (#141868)"
This reverts commit 45583a5df9.

Reverted https://github.com/pytorch/pytorch/pull/141868 on behalf of https://github.com/atalman due to failing internally ([comment](https://github.com/pytorch/pytorch/pull/141868#issuecomment-2523925180))
2024-12-06 18:38:12 +00:00
Ryan Guo
c0ffeab02f [dynamo] Simplify handling of functools.wraps (#142000)
Previously when Dynamo encounters a `functools.wrap(...)` call, it would
check `VariableTracker.can_reconstruct` and graph break if failed.

That has 2 issues:
1. Implementation of `can_reconstruct` is incorrect, since logic of
   reconstructability isn't necessarily encapsulated in
   `VariableTracker.reconstruct` -- for some VTs like `CellVariable`,
   it's also in `SideEffects.codegen_save_tempvars`. This is exposed by
   #134731.
2. We don't always need to reconstruct the result of
   `functools.wrap(...)`, for those cases we don't want to give up
   tracing by an early `con_reconstruct` check. Instead we could just
   let it fall through, and graph break in the actual `reconstruct` call
   later, if needed.

This patch removes the `can_reconstruct` check altogether. It was
introduced in #114279, but the added tests pass even without the check
now; this might be because of some recent bug fixing on cells and side
effects.

Fixes #134731, #141514.

D66838708
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142000
Approved by: https://github.com/zou3519
2024-12-06 17:34:59 +00:00
PyTorch MergeBot
ca9aeedf40 Revert "[dynamo] Simplify handling of functools.wraps (#142000)"
This reverts commit f8cb692d77.

Reverted https://github.com/pytorch/pytorch/pull/142000 on behalf of https://github.com/atalman due to Newly added test test_functions.py::DefaultsTests::test_tree_map is failing internally ([comment](https://github.com/pytorch/pytorch/pull/142000#issuecomment-2520611808))
2024-12-05 15:23:53 +00:00
Andrew Gu
45583a5df9 [FSDP2] Move to public torch.distributed.fsdp (#141868)
**Overview**
This PR moves `torch/distributed/_composable/fsdp` to `torch/distributed/fsdp/_fully_shard` and makes public APIs available from `torch.distributed.fsdp`, e.g.:
```
from torch.distributed.fsdp import fully_shard
```
This is targeting 2.6 release. I rewrote some of the documentation with (hopefully) improved phrasing.

**Follow-Ups**
- [x] Add some explanation in the docs about FSDP1 vs. FSDP2
- [ ] Move unit tests from `test/distributed/_composable/fsdp` to `test/distributed/fsdp/fully_shard/`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141868
Approved by: https://github.com/kwen2501, https://github.com/wconstab, https://github.com/weifengpy

Co-authored-by: Svetlana Karslioglu <svekars@meta.com>
2024-12-05 03:04:01 +00:00
Ryan Guo
f8cb692d77 [dynamo] Simplify handling of functools.wraps (#142000)
Previously when Dynamo encounters a `functools.wrap(...)` call, it would
check `VariableTracker.can_reconstruct` and graph break if failed.

That has 2 issues:
1. Implementation of `can_reconstruct` is incorrect, since logic of
   reconstructability isn't necessarily encapsulated in
   `VariableTracker.reconstruct` -- for some VTs like `CellVariable`,
   it's also in `SideEffects.codegen_save_tempvars`. This is exposed by
   #134731.
2. We don't always need to reconstruct the result of
   `functools.wrap(...)`, for those cases we don't want to give up
   tracing by an early `con_reconstruct` check. Instead we could just
   let it fall through, and graph break in the actual `reconstruct` call
   later, if needed.

This patch removes the `can_reconstruct` check altogether. It was
introduced in #114279, but the added tests pass even without the check
now; this might be because of some recent bug fixing on cells and side
effects.

Fixes #134731, #141514.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142000
Approved by: https://github.com/zou3519
2024-12-04 19:10:45 +00:00
Ryan Guo
3141e038f0 [dynamo] Fix VariableBuilder._wrap on frozenset and enforce invariants on ConstantVariable (#141504)
Prior to this patch, we are using `ConstantVariable.create` to create VT
for frozenset objects, and intended yet failed to predicate that on all
itmes being literals (see https://github.com/pytorch/pytorch/pull/140984#discussion_r1847393736).

The code was from https://github.com/pytorch/torchdynamo/commit/7c03434 and
the original goal was to help DBR quantization, but as the new test in
this patch shows, it could lead to silent incorrectness.

Upon a closer look, this exposes some subtleties in how Dynamo handles
`ConstantVariable` and `LOAD_CONST`, so this patch both fixes the
aforementioned issue and documents, enforces, and makes explicit the
invariants around `ConstantVariable` and `LOAD_CONST` -- only immutable
objects are supported.

Specifically, this patch:
1. refine the checks for wrapping a `frozenset` object, document why we
   can't just wrap its items directly due to lack of `Sourcec` for set
   items, and use a safe workaround (`SourcelessBuilder`) to ensure
   soundness while keeping the DBR quantization support.
2. Adds more types to `common_constant_types`, thereby making
   `ConstantVariable.is_base_literal` more lenient, and strictly checks
   this property in the constructor of `ConstantVariable`.
3. Change relevant uses of `create_instruction("LOAD_CONST", ...)` to
   `create_load_const` which checks `is_safe_constant`, and makes
   developer overrides explicit by using `create_load_const_unchecked`
   when needed.
4. In a few places, use more specific `VariableTracker`, e.g.,
   `TypingVariable` rather than `ConstantVariable`, and
   `FrozensetVariable` rather than `SetVariable`.

(2) and (3) are mainly to future-proof Dynamo against bugs like (1).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141504
Approved by: https://github.com/jansel
2024-11-27 21:58:35 +00:00
Ryan Guo
54dde12c37 [dynamo] Remove closure_cells and merge/remove code paths (#140154)
Now that all cells are modeled as `NewCellVariable` in Dynamo, we no
longer need to put cell variables into this special `closure_cells`,
rather we just merge `closure_cells` with `symbolic_locals`.

This allows us to merge and remove some code paths, notably make
`LOAD_CLOSURE` the same as `LOAD_FAST`, and `LOAD_DEREF` & `STORE_DEREF`
the same for inlining or regular `InstructionTranslator`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140154
Approved by: https://github.com/jansel
ghstack dependencies: #140330, #140152, #140436, #140435, #140153
2024-11-15 17:17:30 +00:00
Ryan Guo
ea1d11cf74 [dynamo] Represent all cells as NewCellVariable (#140153)
In addition to `NewCellVariable`, Dynamo has 3 ways of modeling cell objects:
1. For cells captured and created by the root frame, represent them as
   their contents in `root_tx.symbolic_locals`, which `LOAD_DEREF` and
   `STORE_DEREF` update directly, without going through `SideEffects`.
2. `ClosureVariable`: this is created when cells from (1) are captured
   by a newly created function Dynamo is about to inline. It's a handle
   with a name that redirects `LOAD_DEREF` and `STORE_DEREF` back (1),
   to make `root_tx.symbolic_locals` up-to-date.
3. For cells that are captured by both the root frame and some
   pre-existing function Dynamo is about to inline, represent those
   cells as contents, and do not allow writes to them.

Note that (2) and (3) are mainly to conform with (1) -- to make sure
Dynamo has a consistent modeling of cells for the same cell objects.

In this patch, we represent all of these cells as `NewCellVariable`. The
main new code paths introduced are:
- using `NewCellVariable` to model cell objects created by the root
  frame (the cells are passed in as input to `InstructionTranslator`),
  this is what allows us to get rid of all 3 legacy paths above.
- adding a new `AutoDerefLocalSource` to deal with the python-code
  level (guards) and bytecode level (codegen) auto-dereferencing
  behavior, when accessing pre-existing python cells. This also
  involves a tiny update to guard manager generation.
- plumbing some extra info into `LocalSource` and `CellVariable` so that
  we can still emit `LOAD_DEREF`, `STORE_DEREF`, `LOAD_CLOSURE` (instead
  of `make_cell`, `cell_contents` attribute access, and `LOAD_FAST`),
  which is important for readability, performance, and some
  assumptions `bytecode_transformation.py` makes.

As a result, this patch removes a lot of the now-dead code paths and
TODOs. Notably, it significantly simplified the `prune_dead_locals`
function, which was duplicating a lot of the logic from
`prune_dead_object_new`; this conveniently closes #137123.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140153
Approved by: https://github.com/jansel
ghstack dependencies: #140330, #140152, #140436, #140435
2024-11-15 17:17:30 +00:00
Ryan Guo
ac6684ebbc [dynamo] Identify pre-existing captured cells by cell id rather than content id (#140436)
In `match_nested_cell`, Dynamo tried to identify pre-existing captured
cells by `(cell_name, id(cell_contents))`. This works in most cases, but
as the test added in this patch shows, it's not a complete solution.

This patch
1. changes `match_nested_cell` to `lookup_variable_for_captured_cell`,
   and does the lookup based on id of cell objects, not their contents.
   This requires plumbing a tuple of captured cell objects from
   different CPython versions all the way to
   `InstructionTranslator.__init__`, where we store a mapping from the
   ids of these cell objects, and use it later in
   `UserFunctionVariable.bind_args` to look for these unboxed cells.
2. builds off (1) -- rather than using a `VariableTracker` that
   represents the content of the unboxed cells, use `ClosureVariable`,
   which enables codegen in case these cells escape as closure of a
   `NestedUserFunctionVariable`.

The patch adds a regression test for each of the scenarios above:
1. `test_write_to_cells_with_name_shadowing` where Dynamo mistakenly
   thought the program is writing to a cell captured by root frame (which
   it doesn't support atm), which resulted in
```
  File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/symbolic_convert.py", line 3340, in STORE_DEREF
    unimplemented("write to __closure__ while inlining")
  File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/exc.py", line 313, in unimplemented
    raise Unsupported(msg, case_name=case_name)
torch._dynamo.exc.Unsupported: write to __closure__ while inlining
```
2. `test_existing_func_that_creates_capturing_nested_func` where Dynamo
   ended up trying to codegen a `NestedUserFunctionVariable` that
   captures a cell which was also captured by the root frame, so it was
   unboxed and ends up emitting `LOAD_DEREF` rather than
   `LOAD_FAST/LOAD_CLOSURE` during codegen, resulting in
```
  File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/variables/functions.py", line 105, in _create_nested_fn
    func = FunctionType(code, f_globals, name, defaults, closure)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: arg 5 (closure) expected cell, found int
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140436
Approved by: https://github.com/jansel, https://github.com/williamwen42
ghstack dependencies: #140330, #140152
2024-11-15 17:17:30 +00:00
Ryan Guo
d34d5ccec5 [dynamo] Fix some corner cases for modeling pre-existing cells (#140150)
In `UserFunctionVariable.bind_args`, there's a rare case when the
underlying function satisfies all conditions below
1. The function captures a pre-existing cell
2. The cell isn't captured by root frame
3. `UserFunctionVariable.source` is `None`

In such cases, Dynamo would model the cell as its content (just like
what we do for cells in the root frame). However, this could break in
two cases:
- We could have multiple instances of `UserFunctionVariable`, where some
  have source and others don't. This means sometimes we'll model the
  cell as a `NewCellVariable`, and sometimes as its content. This
  causes issues because writes to the `NewCellVariable` would be
  buffered in `SideEffects` and never get picked up by the other
  modeling.
- Only when `UserFunctionVariable` has a source, do we check whether we
  already had a `NewCellVariable` for the captured cell. This again causes
  Dynamo to potentially have multiple representations for the same cell
  object, resulting in a similar "buffered writes not reflected" issue
  as above.

This patch fixes the above 2 issues by
1. modeling captured cells of sourceless `UserFunctionVariable` as
   immutable `NewCellVariable`, and adds a few lines in `SideEffects` to
   account for its immutability.
2. always checking whether we already had a `NewCellVariable` for the
   captured cell, before constructing a new one.

Tests are added for each aforementioned case.

I also left a TODO to investigate why exactly we would lose source
information for `UserFunctionVariable`. Some cases are easily fixable,
but others not so much.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140150
Approved by: https://github.com/jansel
ghstack dependencies: #140035, #140036, #140149
2024-11-13 03:14:23 +00:00
Ryan Guo
6a821c9e6a [dynamo] Remove cell unboxing/restart optimization (#140149)
We added an unboxing optimization to avoid writes to cells that existed
before Dynamo tracing (such writes interfere with HOPs). However, the
avoided write shouldn't be there in the first place, since we were
basically creating an empty `NewCellVariable`, and then write the
pre-existing content into the variable.

This patch
1. adds logic to bypass the initial write for pre-existing cells
   without undermining correctness.
2. removes the unboxing optimization and the restart code path.

Fixes #137456, #138491; also see those issues for more historical
context.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140149
Approved by: https://github.com/ezyang, https://github.com/jansel
ghstack dependencies: #140035, #140036
2024-11-13 03:14:23 +00:00
Ryan Guo
698ff07323 [dynamo] Fix name collision bug for captured cells and locals (#140036)
The `export_freevars` method was introduced very early on, for
propagating writes to unboxed cells from child to parent frame, see
https://github.com/pytorch/torchdynamo/commit/d0c10341.

However, it's no longer needed after we started to modify root tracer's
`symbolic_locals` directly for the unboxed cells, see
https://github.com/pytorch/torchdynamo/commit/663e4d92.

As a result, we no longer need `export_freevars`. In fact, it can cause
a very subtle bug when name collision happens across the parent and
child frames during inlining, because the parent frame isn't necessarily
the frame that defined the cell captured by child frame.

In summary, this patch removes the `export_freevars` bits, and adds a
regression test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140036
Approved by: https://github.com/williamwen42, https://github.com/jansel
ghstack dependencies: #140035
2024-11-13 03:14:23 +00:00
Ryan Guo
8dc3cb043c [dynamo] Put cells into closure_cells and document relevant parts (#140035)
This patch establishes the invariant that `ClosureVariable` and
`NewCellVariable` are always in `closure_cells`, never in
`symbolic_locals`, and therefore removes some duplicated code paths.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140035
Approved by: https://github.com/jansel
2024-11-13 03:14:23 +00:00
Ryan Guo
965555d1fd [dynamo] Remove dead code path for capturing __class__ in UserFunctionVariable (#140034)
This was introduced in https://github.com/pytorch/torchdynamo/commit/d0c10341
as limited support for pre-existing cells, since we know `__class__` wouldn't be modified
in most cases. It's no longer needed now that we have much more support for these cells.

Example:
```python
class Foo():
    def __init__(self):
        super().__init__()

print(Foo.__init__.__code__.co_freevars) # ('__class__',)
print(Foo.__init__.__closure__)          # (<cell at 0x1011fb310: type object at 0x10fe185b0>,)
```

This patch also exposed and fixes a bug in
`NNModuleVariable.var_getattr`, where Dynamo wasn't propagating source
correctly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140034
Approved by: https://github.com/williamwen42, https://github.com/anijain2305, https://github.com/jansel
2024-11-12 05:54:35 +00:00
PyTorch MergeBot
412df50454 Revert "[dynamo] Remove dead code path for capturing __class__ in UserFunctionVariable (#140034)"
This reverts commit de40a23f6c.

Reverted https://github.com/pytorch/pytorch/pull/140034 on behalf of https://github.com/kit1980 due to breaking internal tests, see D65755044 ([comment](https://github.com/pytorch/pytorch/pull/140034#issuecomment-2469290205))
2024-11-11 23:38:00 +00:00
Ryan Guo
de40a23f6c [dynamo] Remove dead code path for capturing __class__ in UserFunctionVariable (#140034)
This was introduced in https://github.com/pytorch/torchdynamo/commit/d0c10341
as limited support for pre-existing cells, since we know `__class__` wouldn't be modified
in most cases. It's no longer needed now that we have much more support for these cells.

Example:
```python
class Foo():
    def __init__(self):
        super().__init__()

print(Foo.__init__.__code__.co_freevars) # ('__class__',)
print(Foo.__init__.__closure__)          # (<cell at 0x1011fb310: type object at 0x10fe185b0>,)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140034
Approved by: https://github.com/williamwen42, https://github.com/anijain2305, https://github.com/jansel
ghstack dependencies: #140033
2024-11-09 01:03:24 +00:00
Ryan Guo
0b8652a999 [dynamo] Remove NestedUserFunctionVariable.closure_scope (#140033)
This was no longer needed after https://github.com/pytorch/torchdynamo/commit/663e4d92,
which removed the uses of `closure_scope` but not the field itself.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140033
Approved by: https://github.com/williamwen42, https://github.com/anijain2305, https://github.com/jansel
2024-11-09 01:03:24 +00:00
Ryan Guo
693a0a1bd4 [dynamo][NFC] Rename mutable_local and add documentation (#139339)
This patch addresses the renaming part of #133027, specifically, it
renames the following and adds documentation for relevant classes.
1. `VariableTracker.mutable_local` to `mutation_type`
2. `MatableLocal `to `ValueMutationNew`
3. `MutableSideEffects `to `ValueMutationExisting`
4. `MutableLocalSource` to `SourceType`
5. `MutableLocalSource.Local` to `New`

Note that (2), (3) and (5) are mainly to bring consistency between them
and `AttributeMutationNew`, `AttributeMutationExisting`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139339
Approved by: https://github.com/jansel, https://github.com/mlazos, https://github.com/anijain2305
2024-11-05 19:11:41 +00:00
PyTorch MergeBot
b6b9596607 Revert "[dynamo] Fix constant propagation in builtins and UserClasses (#131354)"
This reverts commit 44257c063e.

Reverted https://github.com/pytorch/pytorch/pull/131354 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but it seems to break some internal tests ([comment](https://github.com/pytorch/pytorch/pull/131354#issuecomment-2451050605))
2024-11-01 00:13:20 +00:00
Tom Ritchford
44257c063e [dynamo] Fix constant propagation in builtins and UserClasses (#131354)
* Fixes https://github.com/pytorch/pytorch/issues/118675
* Replaces https://github.com/pytorch/pytorch/pull/118994

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131354
Approved by: https://github.com/jansel, https://github.com/anijain2305
2024-10-30 12:47:20 +00:00
Adnan Akhundov
3234b251b3 Fix typos in CreateTMADescriptorVariable (#138877)
This fixes some leftover typos in
CreateTMADescriptorVariable.call_function (and close).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138877
Approved by: https://github.com/davidberard98, https://github.com/zou3519, https://github.com/Skylion007
ghstack dependencies: #138759
2024-10-26 15:03:07 +00:00
Ryan Guo
f14247d5aa [dynamo] Accurately identify mutated cells captured by multiple functions (#138632)
This patch changes `mutated_closure_cell_contents: Set[str]` to
`mutated_closure_cell_ids: Set[int]` so that Dynamo can more accurately
identify closure cells across different instances of
`UserFunctionVariable`. This prevents Dynamo from mistakenly treat a
cell as immutable, despite it'll be mutated when referenced as closure
cell from another function.

More context in
https://github.com/pytorch/pytorch/issues/138112#issuecomment-2420580779.

Fixes #138112.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138632
Approved by: https://github.com/jansel
ghstack dependencies: #138639
2024-10-26 02:17:07 +00:00
Laith Sakka
ed313a5ca2 Introduce torch.sym_add, variadic add (#138660)
Tested internally here: https://www.internalfb.com/diff/D64057744
This is a reland after previous internal failures.
main change is
```
 if min is None and max is None:
        torch._check_is_size(size)
        return
```

Partially addresses https://github.com/pytorch/pytorch/issues/128150

When you have big sums of values, we end up computing long chains of
binary addition in our FX graph representation.  Not only is this ugly,
it also is quadratic, as the sympy.Add constructor is O(N) in number
of arguments.  Instead, ensure that we maintain the summation as a
single FX node so we can do the entire addition all in one go.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138660
Approved by: https://github.com/ezyang, https://github.com/bobrenjc93
2024-10-23 17:42:41 +00:00
David Berard
bb2e090b7d [user triton] typing triton_kernel_wrap.py (#138230)
Remove `# mypy: allow-untyped-defs` from triton_kernel_wrap.py, and fixed all the mypy errors.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138230
Approved by: https://github.com/oulgen, https://github.com/Skylion007
2024-10-21 20:34:49 +00:00
Tom Ritchford
8ad191ae21 [dynamo] Replace __str__ with __repr__ in some places (#136316)
## The problem

In a typical debugger, `repr()` is used to display variables and not `str()`.

Several classes in Dynamo have a `__str__()` method that returns useful information and a  `__repr__()` that does not. Having to call `str(x)` or `[str(i) for i in x]` in the debugger all the time is a chore.

`str()` should be ["informal, nicely printable"](https://docs.python.org/3/library/stdtypes.html#str) and `repr()` should ["attempt to return a string that would yield an object with the same value when passed to eval()](https://docs.python.org/3/library/functions.html#repr)".

## The solution

In the Python object model, if there is no `__str__` method, `__repr__`  is used instead (but not the other way around).

So renaming `__str__` to `__repr__` in a few cases where no `__repr__` method exists now should not change observable behavior, and should make debugging easier.

The specific classes changed were all in `torch._dynamo.variables`:

* `builtin.BuiltinVariable`
* `constant.ConstantVariable`
* `constant.EnumVariable`
* `functions.UserMethodVariable`
* `lazy.LazyVariableTracker`
* `lazy.LazySymNodeFormatString`
* `misc.GetAttrVariable`
* `misc.NullVariable`
* `user_defined.UserDefinedObjectVariable`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136316
Approved by: https://github.com/XuehaiPan, https://github.com/jansel
2024-10-21 19:50:38 +00:00
PyTorch MergeBot
e8b1409dcf Revert "[user triton] typing triton_kernel_wrap.py (#138230)"
This reverts commit 2f61b69603.

Reverted https://github.com/pytorch/pytorch/pull/138230 on behalf of https://github.com/wdvr due to Reverting this, as it started failing tests on main ([comment](https://github.com/pytorch/pytorch/pull/138230#issuecomment-2423354596))
2024-10-18 23:12:29 +00:00
David Berard
2f61b69603 [user triton] typing triton_kernel_wrap.py (#138230)
Remove `# mypy: allow-untyped-defs` from triton_kernel_wrap.py, and fixed all the mypy errors.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138230
Approved by: https://github.com/oulgen, https://github.com/Skylion007
2024-10-18 19:29:31 +00:00
Tom Ritchford
e1c4548441 [dynamo] Simplify creation of VariableTrackers (#135714)
## `VariableTracker::build()` hides the Builders

### The problem

In the current code, creating a `VariableTracker` involves choosing one of two `Builder` classes and either calling a method, or calling a constructor that creates an object that you immediately call, [like this](083c9149b7/torch/_dynamo/variables/functions.py (L761-L768)).

Variations on this code are repeated in many places.

More, the `Builder` classes have a lot of dependencies, so they have to be loaded late in the whole import process to avoid circular imports, so they end up being repeatedly imported at local scope.

### The solution

In this commit, the import from `builder` and the logic of choosing and calling the Builder class are hidden in a single static factory method, `VariableTracker.build()`, easier to reason about and to import.

This commit net lowers the total lines of code by over 150 lines by removing repetitive logic and unnecessary local imports.

**CHANGES:** Originally the name of the static method was `VariableTracker.create()` but a static method on a derived class, `LazyVariableTracker.create()` now exists with a different signature that's irreconcilable, so the new static method was renamed to `VariableTracker.build()`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135714
Approved by: https://github.com/jansel
2024-10-18 09:36:46 +00:00
Adnan Akhundov
809ff3b274 Add host-side Triton TMA support to Dynamo (#137677)
This adds Dynamo tracing support for the host-side Triton TMA API (see `create_2d_tma_descriptor` calls on the host in the [Triton tutorial](https://triton-lang.org/main/getting-started/tutorials/09-persistent-matmul.html#sphx-glr-getting-started-tutorials-09-persistent-matmul-py)). A few notes:

- Here we assume the availability of the host-side TMA API added to upstream Triton in https://github.com/triton-lang/triton/pull/4498. As of time of writing, this is not a part of the PT2 OSS Triton pin (although back-ported internally). OSS Triton pin update should be done in December 2024.
- To capture the chain of calls `t.data_ptr() --> create_{1d,2d}_tma_descriptor(ptr, ...) --> kernel[grid](tma_desc, ...)`, we add three new variable trackers: `DataPtrVariable`, `CreateTMADescriptorVariable` (for the function), `TMADescriptorVariable` (for TMA descriptor object). This is to maintain the path back from the Triton kernel to the Tensor from which the TMA descriptor has been created.
- The newly introduced variables have `reconstruct` methods used in case of graph breaks.
- The `tma_descriptor_metadata` extracted from the captured `create_{1d,2d}_tma_descriptor` calls is propagated through the HOPs in Dynamo and AOTAutograd to be used by the downstream compiler (e.g., Inductor). See the unit tests for how the captured HOP arguments look like.
- In the Dynamo-captured fx graph, we replace the TMA descriptor arguments of the Triton kernel by the underlying Tensors, to be able to track the input/output relationships in terms of Tensors.
- In the Triton kernel mutation analysis pass (in AOTAutograd), we use the `tt.experimental_descriptor_store` TTIR op to detect mutations of the underlying tensors via TMA descriptors. So that downstream AOTAutograd can perform functionalizations as required.
- JIT Inductor and AOT Inductor support will be implemented in follow-up PRs.

Differential Revision: [D64404928](https://our.internmc.facebook.com/intern/diff/D64404928)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137677
Approved by: https://github.com/zou3519
2024-10-16 02:18:48 +00:00
PyTorch MergeBot
16a2c2cfd4 Revert "Introduce torch.sym_sum (#136429)"
This reverts commit 90bed32b98.

Reverted https://github.com/pytorch/pytorch/pull/136429 on behalf of https://github.com/ezyang due to fails internal stuff ([comment](https://github.com/pytorch/pytorch/pull/136429#issuecomment-2403335147))
2024-10-09 20:08:01 +00:00
Ryan Guo
394c143e4e [dynamo] Fix error when inlining certain nested closure returned by another function (#137510)
See `test_inline_closure_returned_by_another_function_and_captures` and #136814 for more context.

In #90286, we introduced an optimization so that for captured cells that are unmodified during a Dynamo trace, `UserFunctionVariable` will represent them as variable of the cell's actual value, rather than a `NewCellVariable`.

Later on we introduced more mechanisms to model such cells across function calls (#104222), and across function calls where `NestedUserFunctionVariable::bind_args` need to look up further in the parent frames (#106491) to find these cells' values.

This patch removes `InlinedClosureVariable` in favor of a simpler modelling, which is also more consistent with what was introduced in #90286, i.e., just model these cells as their contents, in `symbolic_locals`.

This fixes #136814 because resolution of `InlinedClosureVariable` to the underlying cell content value happens in
`NestedUserFunctionVariable::bind_args`, which requires Dynamo to have the value in scope at the function call site (when Dynamo does inlining), but's not always the case (as the test case shows). However, if we model the cells in `symbolic_locals`, we never need such resolution, and the values are directly stored into the `NestedUserFunctionVariable::closure` upon the function creation, at which point Dynamo always has the cell value in `symbolic_locals` for look up.

Fixes #136814.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137510
Approved by: https://github.com/williamwen42
2024-10-09 18:13:57 +00:00
Duygu Altinok
2a1829d728 Error message for allow_in_graph decorator and arbitrary function combo (#135972)
Fixes #103615

Quick error message for non-allowed allow_in_graph decorator and arbitrary function combo.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135972
Approved by: https://github.com/anijain2305
2024-10-08 22:48:38 +00:00
Edward Z. Yang
90bed32b98 Introduce torch.sym_sum (#136429)
Partially addresses https://github.com/pytorch/pytorch/issues/128150

When you have big sums of values, we end up computing long chains of
binary addition in our FX graph representation.  Not only is this ugly,
it also is quadratic, as the sympy.Add constructor is O(N) in number
of arguments.  Instead, ensure that we maintain the summation as a
single FX node so we can do the entire addition all in one go.

update_hint_regression benchmark, before and after:

```
update_hint_regression,compile_time_instruction_count,2648328980
update_hint_regression,compile_time_instruction_count,2563748678
```

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136429
Approved by: https://github.com/isuruf
2024-10-08 18:12:57 +00:00
David Berard
ef3142d2a0 [user triton] Make tl.constexpr specialization work for triton_op & capture_triton (#136686)
In #136512, we fixed handling for tl.constexpr and dynamic shapes: if a symint is passed to tl.constexpr, you should specialize on it, because tl.constexpr implies needing to know the concrete value at compile time.

However, when using triton_op, capture_triton, or non-strict export, the regression remains (and #136512 might technically regress some specific export scenarios) - see [Richard's comment](https://github.com/pytorch/pytorch/pull/136512/files#r1775999871).

This fixes these scenarios: implement the handling differently depending on whether we're expecting a SymNodeVariable or a SymInt(/SymBool/SymFloat)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136686
Approved by: https://github.com/zou3519
2024-09-27 23:02:46 +00:00
PyTorch MergeBot
287dc36395 Revert "[user triton] Make tl.constexpr specialization work for triton_op & capture_triton (#136686)"
This reverts commit 9f5b97a006.

Reverted https://github.com/pytorch/pytorch/pull/136686 on behalf of https://github.com/davidberard98 due to breaks lint on main. Please rebase to see and fix the error ([comment](https://github.com/pytorch/pytorch/pull/136686#issuecomment-2379830921))
2024-09-27 18:25:49 +00:00
David Berard
9f5b97a006 [user triton] Make tl.constexpr specialization work for triton_op & capture_triton (#136686)
In #136512, we fixed handling for tl.constexpr and dynamic shapes: if a symint is passed to tl.constexpr, you should specialize on it, because tl.constexpr implies needing to know the concrete value at compile time.

However, when using triton_op, capture_triton, or non-strict export, the regression remains (and #136512 might technically regress some specific export scenarios) - see [Richard's comment](https://github.com/pytorch/pytorch/pull/136512/files#r1775999871).

This fixes these scenarios: implement the handling differently depending on whether we're expecting a SymNodeVariable or a SymInt(/SymBool/SymFloat)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136686
Approved by: https://github.com/zou3519
2024-09-27 16:11:02 +00:00