Revert "[FSDP2] Move to public torch.distributed.fsdp (#141868)"

This reverts commit 45583a5df9.

Reverted https://github.com/pytorch/pytorch/pull/141868 on behalf of https://github.com/atalman due to failing internally ([comment](https://github.com/pytorch/pytorch/pull/141868#issuecomment-2523925180))
This commit is contained in:
PyTorch MergeBot 2024-12-06 18:38:11 +00:00
parent 4af7aa5e64
commit bab15df40a
44 changed files with 170 additions and 359 deletions

View File

@ -1,85 +0,0 @@
torch.distributed.fsdp.fully_shard
==================================
PyTorch FSDP2 (``fully_shard``)
-------------------------------
PyTorch FSDP2 provides a fully sharded data parallelism (FSDP) implementation
targeting performant eager-mode while using per-parameter sharding for improved
usability.
- If you are new to FSDP, we recommend that you start with FSDP2 due to improved
usability.
- If you are currently using FSDP1, consider evaluating the following
differences to see if you should switch to FSDP2:
Compared to PyTorch FSDP1 (``FullyShardedDataParallel``):
- FSDP2 uses ``DTensor``-based dim-0 per-parameter sharding for a simpler
sharding representation compared to FSDP1's flat-parameter sharding, while
preserving similar throughput performance. More specifically, FSDP2 chunks
each parameter on dim-0 across the data parallel workers (using
``torch.chunk(dim=0)``), whereas FSDP1 flattens, concatenates, and chunks a
group of tensors together, making reasoning about what data is present on
each worker and resharding to different parallelisms complex. Per-parameter
sharding provides a more intuitive user experience, relaxes constraints
around frozen parameters, and allows for communication-free (sharded) state
dicts, which otherwise require all-gathers in FSDP1.
- FSDP2 implements a different memory management approach to handle the
multi-stream usages that avoids ``torch.Tensor.record_stream``. This ensures
deterministic and expected memory usage and does not require blocking the CPU
like in FSDP1's ``limit_all_gathers=True``.
- FSDP2 exposes APIs for manual control over prefetching and collective
scheduling, allowing power users more customization. See the methods on
``FSDPModule`` below for details.
- FSDP2 simplifies some of the API surface: e.g. FSDP2 does not directly
support full state dicts. Instead, users can reshard the sharded state dicts
containing ``DTensor`` s to full state dicts themselves using ``DTensor``
APIs like ``DTensor.full_tensor()`` or by using higher-level APIs like
`PyTorch Distributed Checkpoint <https://pytorch.org/docs/stable/distributed.checkpoint.html>`_ 's
distributed state dict APIs. Also, some other args have been removed; see
`here <https://github.com/pytorch/torchtitan/blob/main/docs/fsdp.md>`_ for
details.
If you are onboarding FSDP for the first time or if any of the above appeals to
your use case, we recommend that you consider using FSDP2.
See `this RFC <https://github.com/pytorch/pytorch/issues/114299>`_ for details
on system design and implementation.
.. note::
``torch.distributed.fsdp.fully_shard`` is currently in prototype state and
under development. The core API will likely not change, but we may make some
API changes if necessary.
.. currentmodule:: torch.distributed.fsdp
The frontend API is ``fully_shard`` that can be called on a ``module``:
.. autofunction:: fully_shard
Calling ``fully_shard(module)`` dynamically constructs a new class that
subclasses ``type(module)`` and an FSDP class ``FSDPModule``. For example, if
we call ``fully_shard(linear)`` on a module ``linear: nn.Linear``, then FSDP
constructs a new class ``FSDPLinear`` and changes ``linear`` 's type to this.
Otherwise, ``fully_shard`` does not change the module structure and parameter
fully-qualified names. The class ``FSDPModule`` allows providing some
FSDP-specific methods on the module.
.. autoclass:: FSDPModule
:members:
:member-order: bysource
.. autoclass:: UnshardHandle
:members:
.. autofunction:: register_fsdp_forward_method
.. autoclass:: MixedPrecisionPolicy
:members:
.. autoclass:: OffloadPolicy
:members:
.. autoclass:: CPUOffloadPolicy
:members:

View File

@ -79,7 +79,6 @@ Features described in this documentation are classified by release status:
torch.distributed.algorithms.join <distributed.algorithms.join>
torch.distributed.elastic <distributed.elastic>
torch.distributed.fsdp <fsdp>
torch.distributed.fsdp.fully_shard <distributed.fsdp.fully_shard>
torch.distributed.tensor.parallel <distributed.tensor.parallel>
torch.distributed.optim <distributed.optim>
torch.distributed.pipelining <distributed.pipelining>

View File

@ -10,7 +10,7 @@ from typing import Any, List, Optional, Type, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import fully_shard
from torch.distributed._composable.fsdp import fully_shard
from torch.nn.parallel.scatter_gather import _is_namedtuple
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu

View File

@ -7,8 +7,8 @@ from typing import Optional, Union
import torch
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.fsdp import fully_shard
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLPStack

View File

@ -11,30 +11,30 @@ import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint, replicate
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.fsdp import (
from torch.distributed._composable.fsdp import (
FSDPModule,
fully_shard,
MixedPrecisionPolicy,
OffloadPolicy,
)
from torch.distributed.fsdp._fully_shard._fsdp_collectives import (
from torch.distributed._composable.fsdp._fsdp_collectives import (
_div_if_needed,
_get_gradient_divide_factors,
foreach_all_gather,
foreach_all_gather_copy_out,
foreach_reduce,
)
from torch.distributed.fsdp._fully_shard._fsdp_common import FSDPMeshInfo, TrainingState
from torch.distributed.fsdp._fully_shard._fsdp_init import (
from torch.distributed._composable.fsdp._fsdp_common import FSDPMeshInfo, TrainingState
from torch.distributed._composable.fsdp._fsdp_init import (
_get_post_forward_mesh_info,
_init_default_fully_shard_mesh,
)
from torch.distributed.fsdp._fully_shard._fsdp_param import ShardedState
from torch.distributed.fsdp._fully_shard._fsdp_param_group import FSDPParamGroup
from torch.distributed.tensor import DTensor
from torch.distributed._composable.fsdp._fsdp_param import ShardedState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import DTensor
from torch.distributed._tensor.experimental import implicit_replication
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.experimental import implicit_replication
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (

View File

@ -12,19 +12,17 @@ from unittest import mock
import torch
import torch._dynamo.testing
import torch.distributed._composable.fsdp._fsdp_param
import torch.nn.functional as F
from torch import nn
from torch._dynamo.utils import counters
from torch._inductor import comms
from torch._inductor.utils import is_fallback_op, run_and_get_code
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_common import TrainingState
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tensor import init_device_mesh
from torch.distributed.fsdp import (
fully_shard,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._fully_shard._fsdp_common import TrainingState
from torch.distributed.fsdp._fully_shard._fsdp_param_group import FSDPParamGroup
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy
from torch.testing import FileCheck
from torch.testing._internal.common_distributed import (
at_least_x_gpu,
@ -85,7 +83,7 @@ class TestFullyShardCompileCompute(FSDPTest):
):
torch._dynamo.reset()
trace_rules_check_count = 0
HOOKS_FILE_NAME = "torch/distributed/fsdp/_fully_shard/_fsdp_state.py"
HOOKS_FILE_NAME = "torch/distributed/_composable/fsdp/_fsdp_state.py"
HOOK_WRAPPER_NAME = "fsdp_hook_wrapper"
def patched_trace_rules_check(*args, **kwargs):

View File

@ -13,8 +13,8 @@ import torch.distributed as dist
import torch.nn as nn
import torch.utils._pytree as pytree
from torch.autograd.grad_mode import _unsafe_preserve_version_counter
from torch.distributed._composable.fsdp import fully_shard, MixedPrecisionPolicy
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.fsdp import fully_shard, MixedPrecisionPolicy
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (

View File

@ -10,8 +10,8 @@ import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint, replicate
from torch.distributed.fsdp import fully_shard
from torch.distributed.fsdp._fully_shard._fsdp_param_group import (
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_param_group import (
RegisterPostBackwardFunction,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu

View File

@ -4,8 +4,8 @@ import copy
import torch
import torch.nn as nn
from torch.amp.grad_scaler import GradScaler, OptState
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._tensor import init_device_mesh
from torch.distributed.fsdp import fully_shard
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,

View File

@ -9,6 +9,13 @@ import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_init import (
_get_managed_modules,
_get_managed_states,
)
from torch.distributed._composable.fsdp._fsdp_param import ParamModuleInfo
from torch.distributed._composable.fsdp._fsdp_param_group import _get_param_module_infos
from torch.distributed._tensor import (
DeviceMesh,
distribute_tensor,
@ -17,15 +24,6 @@ from torch.distributed._tensor import (
Shard,
)
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import fully_shard
from torch.distributed.fsdp._fully_shard._fsdp_init import (
_get_managed_modules,
_get_managed_states,
)
from torch.distributed.fsdp._fully_shard._fsdp_param import ParamModuleInfo
from torch.distributed.fsdp._fully_shard._fsdp_param_group import (
_get_param_module_infos,
)
from torch.distributed.fsdp._init_utils import (
_init_inter_node_process_group,
_init_intra_node_process_group,
@ -1158,26 +1156,5 @@ class TestFullyShardShardPlacementFn(FSDPTestMultiThread):
fully_shard(model, shard_placement_fn=shard_placement_fn)
# TODO: Remove this test class once we remove the old import path:
# torch/distributed/_composable/fsdp
class TestFullyShardOldImport(FSDPTestMultiThread):
@property
def world_size(self) -> int:
return 2
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_old_import_training(self):
from torch.distributed._composable.fsdp import fully_shard, MixedPrecisionPolicy
model = nn.Sequential(nn.Linear(16, 16), nn.Linear(16, 16))
mp_policy = MixedPrecisionPolicy(param_dtype=torch.bfloat16)
fully_shard(model[0], mp_policy=mp_policy)
fully_shard(model[1], mp_policy=mp_policy)
fully_shard(model, mp_policy=mp_policy)
inp = torch.randn((8, 16), device="cuda")
model(inp).sum().backward()
if __name__ == "__main__":
run_tests()

View File

@ -32,7 +32,7 @@ import logging
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import fully_shard
from torch.distributed._composable.fsdp import fully_shard
logger = logging.getLogger("torch.distributed._composable.fsdp")
logger.setLevel(logging.DEBUG)
device = "cuda"

View File

@ -4,7 +4,11 @@ import functools
import gc
import torch
from torch.distributed.fsdp import CPUOffloadPolicy, fully_shard, OffloadPolicy
from torch.distributed._composable.fsdp import (
CPUOffloadPolicy,
fully_shard,
OffloadPolicy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests

View File

@ -8,8 +8,8 @@ import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed.fsdp import fully_shard, MixedPrecisionPolicy
from torch.distributed.fsdp._fully_shard._fsdp_collectives import (
from torch.distributed._composable.fsdp import fully_shard, MixedPrecisionPolicy
from torch.distributed._composable.fsdp._fsdp_collectives import (
_get_gradient_divide_factors,
)
from torch.distributed.tensor import Shard

View File

@ -7,8 +7,8 @@ from typing import Callable
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._tensor.experimental import implicit_replication
from torch.distributed.fsdp import fully_shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
FSDPTest,

View File

@ -4,7 +4,7 @@ import copy
import unittest
import torch.nn as nn
from torch.distributed.fsdp import FSDPModule, fully_shard
from torch.distributed._composable.fsdp import FSDPModule, fully_shard
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_fsdp import FSDPTestMultiThread, MLP
from torch.testing._internal.common_utils import run_tests

View File

@ -8,8 +8,8 @@ from typing import Dict, Optional
import torch
import torch.nn as nn
from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.fsdp import CPUOffloadPolicy, fully_shard
from torch.distributed.tensor import distribute_tensor, DTensor, Shard
from torch.distributed.tensor.parallel import (
ColwiseParallel,

View File

@ -12,18 +12,18 @@ import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import checkpoint, replicate
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_PREFIX,
apply_activation_checkpointing,
)
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.fsdp import (
from torch.distributed._composable.fsdp import (
CPUOffloadPolicy,
FSDPModule,
fully_shard,
OffloadPolicy,
register_fsdp_forward_method,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_PREFIX,
apply_activation_checkpointing,
)
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.tensor import DTensor, init_device_mesh, Shard
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_cuda import TEST_CUDA
@ -671,7 +671,7 @@ class TestFullyShard1DTrainingCompose(FSDPTest):
module_grouping: str,
):
assert checkpoint_impl in ("composable", "utils", "wrapper")
testing_compile = fully_shard != torch.distributed.fsdp.fully_shard
testing_compile = fully_shard != torch.distributed._composable.fsdp.fully_shard
if testing_compile and checkpoint_impl == "composable":
return
torch.manual_seed(42)

View File

@ -12,6 +12,7 @@ import torch.distributed.checkpoint as dcp
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import replicate
from torch.distributed._composable.fsdp import CPUOffloadPolicy, fully_shard
from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard
from torch.distributed.checkpoint.state_dict import (
get_model_state_dict,
@ -21,11 +22,7 @@ from torch.distributed.checkpoint.state_dict import (
StateDictOptions,
)
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.fsdp import (
CPUOffloadPolicy,
fully_shard,
FullyShardedDataParallel as FSDP,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._common_utils import (
_get_module_fsdp_state,
clean_tensor_name,

View File

@ -6,6 +6,10 @@ from typing import TYPE_CHECKING
import torch
import torch.distributed.checkpoint as dcp
import torch.nn as nn
from torch.distributed._composable.fsdp.fully_shard import (
fully_shard,
MixedPrecisionPolicy,
)
from torch.distributed._tensor import DTensor
from torch.distributed.checkpoint import FileSystemReader
from torch.distributed.checkpoint.default_planner import _EmptyStateDictLoadPlanner
@ -13,7 +17,6 @@ from torch.distributed.checkpoint.state_dict import get_state_dict, set_state_di
from torch.distributed.checkpoint.state_dict_loader import _load_state_dict
from torch.distributed.checkpoint.stateful import Stateful
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import fully_shard, MixedPrecisionPolicy
from torch.distributed.pipelining import PipelineStage
from torch.distributed.pipelining.schedules import (
PipelineScheduleSingle,

View File

@ -7,9 +7,9 @@ import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch import nn
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.replicate import replicate
from torch.distributed._tensor import DTensor
from torch.distributed.fsdp import fully_shard
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
skip_if_lt_x_gpu,

View File

@ -6,12 +6,12 @@ import itertools
import torch
import torch.distributed._functional_collectives as funcol
import torch.distributed.tensor._random as random
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._tensor import DeviceMesh, DTensor, init_device_mesh
from torch.distributed._tensor._utils import compute_local_shape_and_global_offset
from torch.distributed._tensor.api import distribute_tensor
from torch.distributed._tensor.placement_types import Replicate, Shard
from torch.distributed.distributed_c10d import broadcast_object_list
from torch.distributed.fsdp import fully_shard
from torch.distributed.tensor._random import (
is_rng_supported_mesh,
manual_seed,

View File

@ -6,18 +6,18 @@ from typing import Union
import torch
import torch.nn as nn
from torch.distributed._composable import checkpoint
from torch.distributed._composable.fsdp import (
CPUOffloadPolicy,
fully_shard,
MixedPrecisionPolicy,
OffloadPolicy,
)
from torch.distributed._tensor import init_device_mesh
from torch.distributed._tools.fsdp2_mem_tracker import FSDPMemTracker
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
CheckpointWrapper,
)
from torch.distributed.fsdp import (
CPUOffloadPolicy,
fully_shard,
MixedPrecisionPolicy,
OffloadPolicy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP
from torch.testing._internal.common_utils import run_tests

View File

@ -6,6 +6,7 @@ import copy
import torch
import torch.distributed.checkpoint as dcp
import torch.nn as nn
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._tensor import DTensor, init_device_mesh
from torch.distributed._tensor.experimental import implicit_replication
from torch.distributed.checkpoint.state_dict import (
@ -13,11 +14,7 @@ from torch.distributed.checkpoint.state_dict import (
get_optimizer_state_dict,
StateDictOptions,
)
from torch.distributed.fsdp import (
fully_shard,
FullyShardedDataParallel as FSDP,
StateDictType,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, StateDictType
from torch.distributed.fsdp.wrap import always_wrap_policy
from torch.distributed.tensor.parallel import (
ColwiseParallel,

View File

@ -10,6 +10,7 @@ import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._tensor import DTensor, init_device_mesh
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
@ -27,7 +28,6 @@ from torch.distributed.checkpoint.state_dict import (
StateDictOptions,
)
from torch.distributed.fsdp import (
fully_shard,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
StateDictType,

View File

@ -3263,7 +3263,7 @@ if torch.distributed.is_available():
"torch.distributed._composable.replicate",
}
if not torch._dynamo.config.skip_fsdp_hooks:
LEGACY_MOD_INLINELIST.add("torch.distributed.fsdp._fully_shard")
LEGACY_MOD_INLINELIST.add("torch.distributed._composable.fsdp")
# Force inline functions under these modules, even they are in *_SKIPLIST.
@ -3323,7 +3323,7 @@ MOD_INLINELIST = set(MOD_INLINELIST)
if torch.distributed.is_available():
MOD_INLINELIST.add("torch.distributed")
if not torch._dynamo.config.skip_fsdp_hooks:
MOD_INLINELIST.add("torch.distributed.fsdp._fully_shard")
MOD_INLINELIST.add("torch.distributed._composable.fsdp")
@functools.lru_cache(None)

View File

@ -994,7 +994,7 @@ class FSDPParamGroupUseTrainingStateVariable(ContextWrappingVariable):
self.param_group_var.value._training_state = value
def module_name(self):
return "torch.distributed.fsdp._fully_shard._fsdp_param_group.FSDPParamGroup"
return "torch.distributed._composable.fsdp._fsdp_param_group.FSDPParamGroup"
def fn_name(self):
return "use_training_state"

View File

@ -30,7 +30,7 @@ from .constant import ConstantVariable
try:
from torch.distributed.fsdp._fully_shard import _fsdp_param_group
from torch.distributed._composable.fsdp import _fsdp_param_group
except ModuleNotFoundError:
_fsdp_param_group = None
@ -305,7 +305,7 @@ class UserFunctionVariable(BaseUserFunctionVariable):
and not tx.output.current_tracer.allow_side_effects_under_checkpoint
):
try:
from torch.distributed.fsdp._fully_shard._fsdp_state import FSDPState
from torch.distributed._composable.fsdp._fsdp_state import FSDPState
except Exception:
FSDPState = None
if FSDPState is not None and self.fn in [

View File

@ -56,7 +56,7 @@ except ModuleNotFoundError:
np = None # type: ignore[assignment]
try:
from torch.distributed.fsdp._fully_shard import _fsdp_param_group
from torch.distributed._composable.fsdp import _fsdp_param_group
except ModuleNotFoundError:
_fsdp_param_group = None # type: ignore[assignment]

View File

@ -536,7 +536,7 @@ Graph: {graph}
def reinplace_fsdp_all_gather(graph: torch.fx.Graph) -> None:
try:
import torch.distributed.fsdp._fully_shard._fsdp_collectives
import torch.distributed._composable.fsdp._fsdp_collectives
assert torch.distributed.is_available()
# Assert existence of these ops

View File

@ -1,8 +1,2 @@
from torch.distributed.fsdp import (
CPUOffloadPolicy,
FSDPModule,
fully_shard,
MixedPrecisionPolicy,
OffloadPolicy,
register_fsdp_forward_method,
)
from ._fsdp_api import CPUOffloadPolicy, MixedPrecisionPolicy, OffloadPolicy
from .fully_shard import FSDPModule, fully_shard, register_fsdp_forward_method

View File

@ -57,10 +57,7 @@ class MixedPrecisionPolicy:
@dataclass
class OffloadPolicy:
"""
This base class represents the policy of no offloading and is only used as
the default value for the ``offload_policy`` arg.
"""
"""This base class represents the policy of no offloading."""
@dataclass
@ -74,10 +71,10 @@ class CPUOffloadPolicy(OffloadPolicy):
Attributes:
pin_memory (bool): Whether to pin sharded parameter and gradient
memory. Pinning memory allows both more efficient H2D/D2H copies
and for the copies to overlap with compute. However, the pinned
memory cannot be used by other processes. Set this to ``False`` if
you have insufficient CPU memory. (Default: ``True``)
memory. Pinning memory allows H2D/D2H copying without blocking the
CPU and in turn, overlap with compute, but pinned memory cannot be
used by other processes. Set this to ``False`` if you have
insufficient CPU memory. (Default: ``True``)
"""
pin_memory: bool = True

View File

@ -29,7 +29,7 @@ from ._fsdp_common import (
from ._fsdp_param import FSDPParam, ParamModuleInfo, ShardedState
logger = logging.getLogger("torch.distributed.fsdp.fully_shard")
logger = logging.getLogger("torch.distributed._composable.fsdp")
_ModuleToHandleDict = Dict[nn.Module, RemovableHandle] # for state dict

View File

@ -42,7 +42,7 @@ if TYPE_CHECKING:
from ._fsdp_param import FSDPParam
logger = logging.getLogger("torch.distributed.fsdp.fully_shard")
logger = logging.getLogger("torch.distributed._composable.fsdp")
class FSDPStateContext:

View File

@ -34,14 +34,6 @@ from ._fsdp_param_group import FSDPParamGroup
from ._fsdp_state import _get_module_fsdp_state, FSDPState
__all__ = [
"fully_shard",
"FSDPModule",
"UnshardHandle",
"register_fsdp_forward_method",
]
cls_to_fsdp_cls: Dict[Type, Type] = {}
@ -58,80 +50,68 @@ def fully_shard(
offload_policy: OffloadPolicy = OffloadPolicy(),
):
"""
Apply fully sharded data parallelism (FSDP) to ``module``, where FSDP
shards module parameters, gradients, and optimizer states across data
parallel workers to save memory at the cost of communication.
Shard module parameters across data parallel workers.
At initialization, FSDP shards the module's parameters across the data
parallel workers given by ``mesh``. Before forward, FSDP all-gathers the
sharded parameters across the data-parallel workers to get the unsharded
parameters for forward computation. If ``reshard_after_forward`` is
``True``, then FSDP frees the unsharded parameters after forward and
re-all-gathers them in backward before gradient computation. After gradient
computation, FSDP frees the unsharded parameters and reduce-scatters the
unsharded gradients across data-parallel workers.
This function applies fully sharded data parallelism (FSDP) or a variant to
``module``, a technique for memory savings at the cost of communication.
Parameters are sharded across ``mesh``, and in turn, so are their gradients
and optimizer states.
This implementation represents the sharded parameters as :class:`DTensor` s
sharded on dim-0, while the unsharded parameters will be like the original
parameters on ``module`` (e.g. :class:`torch.Tensor` if originally
:class:`torch.Tensor`). A module
`forward pre-hook <https://pytorch.org/docs/main/generated/torch.nn.Module.html#torch.nn.Module.register_forward_pre_hook>`_
on ``module`` all-gathers the parameters, and a module
`forward hook <https://pytorch.org/docs/main/generated/torch.nn.Module.html#torch.nn.Module.register_forward_hook>`_
on ``module`` frees them (if needed). Similar backward hooks all-gather
parameters and later free parameters and reduce-scatter gradients.
The sharded parameters are all-gathered to construct the unsharded
parameters for forward or backward computation. The unsharded parameters
are freed after computation to save memory. The gradients are reduced
across the mesh and divided by the mesh size for data parallelism. The
optimizer step runs on the sharded parameters.
Since grouping multiple tensors together for one collective is critical for
communication efficiency, this implementation makes this grouping first
class. Calling :meth:`fully_shard` on ``module`` constructs one group that
Each call to ``fully_shard`` constructs one communication group that
includes the parameters in ``module.parameters()`` except those already
assigned to a group from an earlier call on a submodule. This means that
:meth:`fully_shard` should be called bottom-up on your model. Each group's
parameters are all-gathered in one collective, and its gradients are
reduce-scattered in one collective. Partitioning the model into multiple
groups ("layer by layer") allows for peak memory savings and communication/computation
overlap. Users generally should *not* call :meth:`fully_shard` only on the
topmost root module.
assigned to a group from a nested call. Each group's parameters and its
gradients are communicated together in one collective, respectively.
Constructing multiple groups across the model (e.g. "layer by layer")
allows for peak memory savings and communication/computation overlap.
Implementation-wise, the sharded parameters are represented as
:class:`DTensor` s, sharded on dim-0, and the unsharded parameters are
represented as :class:`Tensor` s. A module forward pre-hook all-gathers the
parameters, and a module forward hook frees them. Similar backward hooks
gather parameters and later free parameters/reduce gradients.
Args:
module (Union[nn.Module, List[nn.Module]): The module or modules to
shard with FSDP and group together for communication.
mesh (Optional[DeviceMesh]): This data parallel mesh defines the
sharding and device. If 1D, then parameters are fully sharded
across the 1D mesh (FSDP) with ``(Shard(0),)`` placement. If 2D,
then parameters are sharded across the 1st dim and replicated
across the 0th dim (HSDP) with ``(Replicate(), Shard(0))``
placement. The mesh's device type gives the device type used for
communication; if a CUDA or CUDA-like device type, then we use the
current device.
across the 1D mesh (FSDP). If 2D, then parameters are sharded
across the 0th dim and replicated across the 1st dim (HSDP). The
mesh's device type gives the device type used for communication;
if a CUDA or CUDA-like device type, then we use the current device.
reshard_after_forward (Union[bool, int]): This controls the parameter
behavior after forward and can trade off memory and communication:
- If ``True``, then this reshards parameters after forward and
re-all-gathers in backward.
all-gathers in backward.
- If ``False``, then this keeps the unsharded parameters in memory
after forward and avoids the all-gather in backward.
after forward and avoids the all-gather in backward.
- If an ``int``, then this represents the world size to reshard to
after forward. It should be a non-trivial divisor of the ``mesh``
shard dim size (i.e. excluding 1 and the dim size itself). A
choice may be the intra-node size (e.g. ``torch.cuda.device_count()``).
This allows the all-gather in backward to be over a smaller world
size at the cost of higher memory usage than setting to ``True``.
after forward. It should be a non-trivial divisor of the ``mesh``
shard dim size (i.e. excluding 1 and the dim size itself). A choice
may be the intra-node size (e.g. ``torch.cuda.device_count()``).
This allows the all-gather in backward to be over a smaller world
size at the cost of higher memory usage than setting to ``True``.
- The root FSDP state has its value specially set to ``False`` as a
heuristic since its parameters would typically be immediately
all-gathered for backward.
heuristic since its parameters would typically be immediately
all-gathered for backward.
- After forward, the parameters registered to the module depend on
to this: The registered parameters are the sharded parameters if
``True``; unsharded parameters if ``False``; and the paramters
resharded to the smaller mesh otherwise. To modify the parameters
between forward and backward, the registered parameters must be
the sharded parameters. For ``False`` or an ``int``, this can be
done by manually resharding via :meth:`reshard`.
to this: The registered parameters are the sharded parameters if
``True``; unsharded parameters if ``False``; and the paramters
resharded to the smaller mesh otherwise. To modify the parameters
between forward and backward, the registered parameters must be the
sharded parameters. For ``False`` or an ``int``, this can be done
by manually resharding via :meth:`reshard`.
shard_placement_fn (Optional[Callable[[nn.Parameter], Optional[Shard]]]):
This callable can be used to override the sharding placement for a
parameter to shard a parameter on a dimension other than dim-0. If
this callable returns a :class:`Shard` placement (not ``None``),
then FSDP will shard according to that placement (e.g. ``Shard(1)``).
this callable returns a ``Shard`` placement (not ``None``), then
FSDP will shard according to that placement (e.g. ``Shard(1)``).
If sharding on a nonzero dim, we currently require even sharding,
i.e. the tensor dim size on that dim must be divisible by the FSDP
shard mesh size.
@ -194,14 +174,14 @@ def fully_shard(
cls = module.__class__
new_cls = cls_to_fsdp_cls.get(cls, None)
if not new_cls:
dct = {"__deepcopy__": _unimplemented_deepcopy}
dct = {"__deepcopy__": unimplemented_deepcopy}
new_cls = type(f"FSDP{cls.__name__}", (FSDPModule, cls), dct)
cls_to_fsdp_cls[cls] = new_cls
module.__class__ = new_cls
return arg_module
def _unimplemented_deepcopy(*args: Any, **kwargs: Any) -> NoReturn:
def unimplemented_deepcopy(*args: Any, **kwargs: Any) -> NoReturn:
raise AssertionError(
"FSDP does not support deepcopy. Please use state dict for serialization."
)
@ -222,9 +202,9 @@ class FSDPModule:
def reshard(self) -> None:
"""
Reshards the module's parameters, freeing the unsharded parameters if
they are allocated and registering the sharded parameters to the
module. This method is *not* recursive.
Reshards the module's parameters, registering the sharded parameters
to the module and freeing the unsharded parameters if needed. This
method is *not* recursive.
"""
state = self._get_fsdp_state()
if fsdp_param_group := state._fsdp_param_group:
@ -233,9 +213,7 @@ class FSDPModule:
def unshard(self, async_op: bool = False) -> Optional["UnshardHandle"]:
"""
Unshards the module's parameters by allocating memory and all-gathering
the parameters. This method is *not* recursive. The unshard follows the
:class:`MixedPrecisionPolicy`, so it will all-gather following
``param_dtype`` if set.
the parameters. This method is *not* recursive.
Args:
async_op (bool): If ``True``, then returns a :class:`UnshardHandle`
@ -243,17 +221,19 @@ class FSDPModule:
``False``, then returns ``None`` and waits on the handle inside
this function.
.. note:: If ``async_op=True``, then FSDP will wait on the pending
unshard in the module's pre-forward for the user. The user only
needs to call :meth:`wait` explicitly if the wait should happen
before pre-forward.
.. warning:: This method is experimental and subject to change.
.. note:: If ``async_op=True``, then the user does not have to call
:meth:`wait` on the returned handle if waiting on the unshard op
in the module's pre-forward is tolerable. FSDP will wait on the
pending unshard op in the pre-forward automatically.
"""
state = self._get_fsdp_state()
fsdp_param_group = state._fsdp_param_group
if fsdp_param_group is not None:
fsdp_param_group.lazy_init()
fsdp_param_group.unshard(async_op=async_op)
handle = _UnshardHandleImpl(fsdp_param_group)
handle = UnshardHandle(fsdp_param_group)
if async_op:
return handle
handle.wait()
@ -261,10 +241,9 @@ class FSDPModule:
def set_is_last_backward(self, is_last_backward: bool) -> None:
"""
Sets whether the next backward is the last one. On the last backward,
FSDP waits on pending gradient reduction and clears internal data
data structures for backward prefetching. This can be useful for
microbatching.
Sets whether the next backward is the last one, meaning that FSDP
should wait for gradient reduction to finish and clear internal data
structures used for explicit prefetching.
"""
state = self._get_fsdp_state()
state._state_ctx.is_last_backward = is_last_backward
@ -274,13 +253,13 @@ class FSDPModule:
) -> None:
"""
Sets if the module should sync gradients. This can be used to implement
gradient accumulation *without communication*. For HSDP, this controls
gradient accumulation without communication. For HSDP, this controls
both reduce-scatter and all-reduce together.
Args:
requires_gradient_sync (bool): Whether to reduce gradients for the
module's parameters.
recurse (bool): Whether to set for all FSDP submodules or just the
recurse (bool): Whether to set for all submodules or just the
passed-in module.
"""
self_module = cast(nn.Module, self)
@ -314,13 +293,12 @@ class FSDPModule:
"""
Sets if the module should reshard parameters after backward. This can
be used during gradient accumulation to trade off higher memory for
reduced communication since the unsharded parameters do not need to be
re-all-gathered before the next forward.
reduced communication.
Args:
reshard_after_backward (bool): Whether to reshard parameters after
backward.
recurse (bool): Whether to set for all FSDP submodules or just the
recurse (bool): Whether to set for all submodules or just the
passed-in module.
"""
self_module = cast(nn.Module, self)
@ -457,22 +435,24 @@ class FSDPModule:
class UnshardHandle:
"""
A handle to wait on a :meth:`FSDPModule.unshard` op.
A handle to wait on the unshard op.
Args:
fsdp_param_group (FSDPParamGroup, optional): FSDP parameter group to
unshard. This should be ``None`` iff the FSDP module does not
manage any parameters, meaning the unshard is a no-op.
"""
def wait(self) -> None:
"""
Waits on the unshard op. This ensures that the current stream can use
the unsharded parameters, which are now registered to the module.
"""
return
class _UnshardHandleImpl(UnshardHandle):
def __init__(self, fsdp_param_group: Optional[FSDPParamGroup]):
self._fsdp_param_group = fsdp_param_group
def wait(self):
"""
Waits on the unshard op.
This ensures that the current stream can use the unsharded parameters,
which are now registered to the module.
"""
if self._fsdp_param_group is not None:
self._fsdp_param_group.wait_for_unshard()
# Avoid keeping a reference
@ -481,15 +461,13 @@ class _UnshardHandleImpl(UnshardHandle):
def register_fsdp_forward_method(module: nn.Module, method_name: str) -> None:
"""
Registers a method on ``module`` to be considered a forward method for
FSDP.
Registers a method on ``module`` to be a forward method for FSDP.
FSDP all-gathers parameters pre-forward and optionally frees parameters
post-forward (depending on ``reshard_after_forward``). FSDP only knows to
do this for :meth:`nn.Module.forward` by default. This function patches a
user-specified method to run the pre/post-forward hooks before/after the
method, respectively. If ``module`` is not an :class:`FSDPModule`, then
this is a no-op.
FSDP only knows to run its pre-forward and post-forward hooks on the
default :meth:`nn.Module.forward` method. This function patches a user
specified method to run the pre/post-forward hooks before/after the method,
respectively. If ``module`` is not an :class:`FSDPModule`, then this is a
no-op.
Args:
module (nn.Module): Module to register the forward method on.

View File

@ -7,6 +7,8 @@ import torch
import torch.distributed as dist
from torch import nn, optim
from torch._guards import active_fake_mode
from torch.distributed._composable.fsdp import FSDPModule
from torch.distributed._composable.fsdp._fsdp_param_group import FSDPParamGroup
from torch.distributed._tools.mem_tracker import _RefType, _State, MemTracker
from torch.distributed.distributed_c10d import (
_IllegalWork,
@ -14,8 +16,6 @@ from torch.distributed.distributed_c10d import (
ReduceOp,
Work,
)
from torch.distributed.fsdp import FSDPModule
from torch.distributed.fsdp._fully_shard._fsdp_param_group import FSDPParamGroup
from torch.futures import Future
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_map_only

View File

@ -1,13 +1,4 @@
from ._flat_param import FlatParameter as FlatParameter
from ._fully_shard import (
CPUOffloadPolicy,
FSDPModule,
fully_shard,
MixedPrecisionPolicy,
OffloadPolicy,
register_fsdp_forward_method,
UnshardHandle,
)
from .fully_sharded_data_parallel import (
BackwardPrefetch,
CPUOffload,
@ -29,7 +20,6 @@ from .fully_sharded_data_parallel import (
__all__ = [
# FSDP1
"BackwardPrefetch",
"CPUOffload",
"FullOptimStateDictConfig",
@ -46,21 +36,4 @@ __all__ = [
"StateDictConfig",
"StateDictSettings",
"StateDictType",
# FSDP2
"CPUOffloadPolicy",
"FSDPModule",
"fully_shard",
"MixedPrecisionPolicy",
"OffloadPolicy",
"register_fsdp_forward_method",
"UnshardHandle",
]
# Set namespace for exposed private names
CPUOffloadPolicy.__module__ = "torch.distributed.fsdp"
FSDPModule.__module__ = "torch.distributed.fsdp"
fully_shard.__module__ = "torch.distributed.fsdp"
MixedPrecisionPolicy.__module__ = "torch.distributed.fsdp"
OffloadPolicy.__module__ = "torch.distributed.fsdp"
register_fsdp_forward_method.__module__ = "torch.distributed.fsdp"
UnshardHandle.__module__ = "torch.distributed.fsdp"

View File

@ -1,18 +0,0 @@
from ._fsdp_api import CPUOffloadPolicy, MixedPrecisionPolicy, OffloadPolicy
from ._fully_shard import (
FSDPModule,
fully_shard,
register_fsdp_forward_method,
UnshardHandle,
)
__all__ = [
"CPUOffloadPolicy",
"FSDPModule",
"fully_shard",
"MixedPrecisionPolicy",
"OffloadPolicy",
"register_fsdp_forward_method",
"UnshardHandle",
]

View File

@ -24,7 +24,7 @@ from typing import (
import torch
import torch.distributed as dist
from torch.distributed.fsdp import FSDPModule, UnshardHandle
from torch.distributed._composable.fsdp.fully_shard import FSDPModule, UnshardHandle
from torch.profiler import record_function
from .microbatch import merge_chunks, split_args_kwargs_into_chunks, TensorChunkSpec

View File

@ -10,7 +10,7 @@ import torch.distributed as dist
import torch.fx as fx
import torch.nn as nn
from torch._subclasses.fake_tensor import FakeTensor
from torch.distributed.fsdp import FSDPModule, fully_shard
from torch.distributed._composable.fsdp.fully_shard import FSDPModule, fully_shard
from torch.fx.node import map_aggregate
from torch.nn.parallel import DistributedDataParallel
from torch.utils._pytree import tree_map_only

View File

@ -31,17 +31,14 @@ import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.fsdp import (
CPUOffload,
fully_shard,
FullyShardedDataParallel as FSDP,
)
from torch.distributed.fsdp._common_utils import TrainingState
from torch.distributed.fsdp._fully_shard._fsdp_param_group import (
from torch.distributed._composable.fsdp import fully_shard
from torch.distributed._composable.fsdp._fsdp_param_group import (
FSDPParamGroup,
RegisterPostBackwardFunction,
)
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.fsdp import CPUOffload, FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._common_utils import TrainingState
from torch.distributed.fsdp._init_utils import NO_RESHARD_AFTER_FORWARD_STRATEGIES
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
@ -1487,7 +1484,7 @@ class FSDPTest(MultiProcessTestCase):
def test_compiled_fsdp(compile_compute_on_module: Optional[type] = None):
def fully_shard_with_compiled_compute(*args, **kwargs):
torch.distributed.fsdp.fully_shard(*args, **kwargs) # type: ignore[operator]
torch.distributed._composable.fsdp.fully_shard(*args, **kwargs) # type: ignore[operator]
if compile_compute_on_module is None or isinstance(
args[0], compile_compute_on_module
):
@ -1500,7 +1497,7 @@ def test_compiled_fsdp(compile_compute_on_module: Optional[type] = None):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
original_fully_shard = torch.distributed.fsdp.fully_shard
original_fully_shard = torch.distributed._composable.fsdp.fully_shard
for mode in FullyShardMode:
if mode != FullyShardMode.EAGER and not has_triton():
warnings.warn("Inductor on GPU needs Triton and recent GPU arch")