Commit Graph

2794 Commits

Author SHA1 Message Date
PyTorch MergeBot
bab15df40a Revert "[FSDP2] Move to public torch.distributed.fsdp (#141868)"
This reverts commit 45583a5df9.

Reverted https://github.com/pytorch/pytorch/pull/141868 on behalf of https://github.com/atalman due to failing internally ([comment](https://github.com/pytorch/pytorch/pull/141868#issuecomment-2523925180))
2024-12-06 18:38:12 +00:00
Shangdi Yu
02c509669a Aoti minifier flatten (#141156)
Flatten the inputs to minifier so AOTI Minifier can handle unflattened inputs and kwargs.

- flatten the inputs in minifier
- changed the "load_and_run" part of the minifier verification to run on the flattened inputs.
- refactored code to keep `torch._inductor.__init__.py` clean
- update doc

`python test/inductor/test_minifier.py`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141156
Approved by: https://github.com/desertfire
2024-12-06 07:12:45 +00:00
Svetlana Karslioglu
ce22a01e11 Add an option for classic search (#142018)
Fixes https://github.com/pytorch/tutorials/issues/3143

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142018
Approved by: https://github.com/albanD
2024-12-06 01:24:52 +00:00
bhack
ae9cda0221 Add truediv support in export serializer (#136364)
Fixes #136113

- [x] Inital `truediv` coverage
- [ ] Expand/reduce coverage?
- [x] Add tests
- [x] Re-check docstrings
- [ ] Linting

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136364
Approved by: https://github.com/pianpwk

Co-authored-by: Angela Yi <angelayi@meta.com>
Co-authored-by: Pian Pawakapan <pianpwk@meta.com>
2024-12-05 17:33:33 +00:00
Yukio Siraichi
f8c212a925 Transform unbacked int expressions into a fresh unbacked int. (#141917)
Fix: #141419

This PR introduces the `torch.sym_fresh_size` API, which transforms an unbacked int
expression into a fresh unbacked int.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141917
Approved by: https://github.com/ezyang
2024-12-05 16:53:44 +00:00
Yu, Guangye
8dd4673cea Support torch.xpu.mem_get_info API (#141230)
# Motivate
Fix https://github.com/pytorch/pytorch/issues/130599
This PR intends to add a new API, `torch.xpu.mem_get_info,` which is widely used in popular model workloads.
For example, [here](403c0714d1/src/accelerate/utils/modeling.py (L721)) we need to get current GPU memory usage to split or load the model.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141230
Approved by: https://github.com/EikanWang, https://github.com/albanD
2024-12-05 08:17:25 +00:00
Yiming Zhou
31f2d4eb4e [export] Update docs (#142011)
Summary:
Update export docs. Including:
1. Update the output graph.
2. Misc fixes for examples.

Test Plan: CI

Differential Revision: D66726729

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142011
Approved by: https://github.com/angelayi
2024-12-05 03:44:46 +00:00
Andrew Gu
45583a5df9 [FSDP2] Move to public torch.distributed.fsdp (#141868)
**Overview**
This PR moves `torch/distributed/_composable/fsdp` to `torch/distributed/fsdp/_fully_shard` and makes public APIs available from `torch.distributed.fsdp`, e.g.:
```
from torch.distributed.fsdp import fully_shard
```
This is targeting 2.6 release. I rewrote some of the documentation with (hopefully) improved phrasing.

**Follow-Ups**
- [x] Add some explanation in the docs about FSDP1 vs. FSDP2
- [ ] Move unit tests from `test/distributed/_composable/fsdp` to `test/distributed/fsdp/fully_shard/`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141868
Approved by: https://github.com/kwen2501, https://github.com/wconstab, https://github.com/weifengpy

Co-authored-by: Svetlana Karslioglu <svekars@meta.com>
2024-12-05 03:04:01 +00:00
Svetlana Karslioglu
f7bd0c6b60 [doc] Fix the toctree level (#142008)
Changing this back 1 in order to not expand on the index.html page.
Before:
![Screenshot 2024-12-04 at 11 47 54 AM (2)](https://github.com/user-attachments/assets/40d730ee-61b9-4d60-ab13-9b9075cb3cba)
After:
![Screenshot 2024-12-04 at 11 48 30 AM (2)](https://github.com/user-attachments/assets/5eb711a0-e76c-4573-9fdf-88b6b94b31a9)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142008
Approved by: https://github.com/sekyondaMeta, https://github.com/malfet
2024-12-04 19:52:14 +00:00
rzou
827c322290 Make torch.library.triton_op public (#141880)
We've been using it privately for half a year and everything's been
good. This PR:
1. Makes torch.library.triton_op public
2. Renames capture_triton -> wrap_triton. We got feedback that no one
   knew what "capture triton" does.
3. Makes torch.library.wrap_triton public.

triton_op is used to construct a Python custom operator that may call 1+
triton kernels. Each of those triton kernels must be annotated with
wrap_triton.

Test Plan:
- existing tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141880
Approved by: https://github.com/albanD
ghstack dependencies: #141894
2024-12-03 16:28:56 +00:00
Benjamin Glass
4959784dac Add API query for available per-process CUDA memory (#140620)
Certain `cpp_wrapper`-enabled tests were OOM-ing in the CI pipeline, with error messages suggesting that sufficient memory was accessible.  This ultimately resulted from an internal memory limitation that was not queryable in the API.  This PR adds querying for that limit.

Additionally, the failing tests had incorrect memory availability checks, and are updated with measured memory requirements.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140620
Approved by: https://github.com/malfet, https://github.com/eqy
ghstack dependencies: #141367
2024-12-03 00:24:03 +00:00
Hyunho Yeo
d70b7029c8 [MTIA] Support torch.mtia.empty_cache() (#141533)
Summary: As title

Test Plan:
Passed a local unit test: `buck2 test //mtia/host_runtime/torch_mtia/tests:test_torch_mtia_api`

https://www.internalfb.com/intern/testinfra/testrun/4785074861101240

Reviewed By: nautsimon

Differential Revision: D66481778

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141533
Approved by: https://github.com/nautsimon
2024-11-28 02:24:19 +00:00
Mark Saroufim
e24190709f [BE] Remove Model Dump utility (#141540)
So I found this utility by accident, trying to find how many html files we have in the repo so I could convert them to markdown

Turns out we package some html and js files in pytorch to visualize torchscript models. This seems kinda strange, probably shouldn't be in core, I removed the tests I could find. Maybe some internal tests will break but considering torchscript is being superseded might make sense to do this

Last time there was a meaningful update to the test for this file was about 2 years ago by @digantdesai since then it's a bunch of routine upgrades

It seems like this package is unused https://github.com/search?type=code&auto_enroll=true&q=torch.utils.model_dump&p=1 I skimmed through 5 pages of these and the only time this shows up in code search is when someone is either cloning pytorch or checking in their venv into github
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141540
Approved by: https://github.com/malfet
2024-11-27 22:52:55 +00:00
Isuru Fernando
b37cfddeb3 Refactor ShapeGuardPrinter for future C++ addiiton (#140968)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140968
Approved by: https://github.com/anijain2305
ghstack dependencies: #140597
2024-11-27 20:09:58 +00:00
PyTorch MergeBot
6e61ff4fd3 Revert "Add truediv support in export serializer (#136364)"
This reverts commit 1df440dc4e.

Reverted https://github.com/pytorch/pytorch/pull/136364 on behalf of https://github.com/huydhn due to Sorry for reverting your change but its doc build failure is legit ([comment](https://github.com/pytorch/pytorch/pull/136364#issuecomment-2502620732))
2024-11-27 03:24:31 +00:00
Svetlana Karslioglu
807a7dbf9f Don't generate modindex (#141601)
Fixes https://github.com/pytorch/pytorch/issues/141591
The generated index looks ugly. Attempting to not generate it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141601
Approved by: https://github.com/malfet, https://github.com/albanD
2024-11-27 02:07:21 +00:00
bhack
1df440dc4e Add truediv support in export serializer (#136364)
Fixes #136113

- [x] Inital `truediv` coverage
- [ ] Expand/reduce coverage?
- [x] Add tests
- [x] Re-check docstrings
- [ ] Linting

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136364
Approved by: https://github.com/pianpwk

Co-authored-by: Angela Yi <angelayi@meta.com>
Co-authored-by: Pian Pawakapan <pianpwk@meta.com>
2024-11-27 00:31:47 +00:00
Nichols A. Romero
a99332eb25 [ROCM] Support Multi-GPU offline tuning in TunableOp (#139673)
This PR enhances offline tuning to support multi-GPUs.

High-level description of algorithm:
- Duplicate GEMMs are first eliminated
- GEMMs are distributed to multi-GPUs for tuning
- Results are gathered into a file with `_full` in the filename

Also adding support for GemmAndBias and ScaledGemm

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139673
Approved by: https://github.com/jeffdaily, https://github.com/hongxiayang
2024-11-26 19:07:41 +00:00
Stephen Matthews
2bbd984aa2 Fix typo in Reproducibility docs (#141341)
Fixes trivial issue in the docs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141341
Approved by: https://github.com/svekars
2024-11-26 16:53:26 +00:00
ZhiweiYan-96
c418a9ac75 [Intel GPU] XPUInductorQuantizer for XPU int8 recipe customization (#139578)
# Motivation
This PR add `XPUInductorQuantizer`, which would defined the recipe of int8 quantization at XPU backend.

# Detailed
The `XPUInductorQuantizer` is class derived from `X86InductorQuantizer` as both quantizer would take the advantage of highly optimized operators in oneDNN library(qconv, qlinear, qconv/qlinear fusion).

We share the same recipe as `X86InductorQuantizer`, so we would have same `annotate_xxxx` methods.  So, in ideal situation, the `XPUInductorQuantizer` would have no class body as all implementation can inherit from base class.

In this PR, we override the `annotate_xxx` method for operators that has NOT be implemented. All operators XPU backend does  not implement would be fallbacked to fp32 implementation as the node in graph is a `dq-op-q` pairs. This would help provide good OOB usability for XPU backend.   On the other hand, the implemented operators would uses `annotate_op` implemented in base class and could be lowered successfully.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139578
Approved by: https://github.com/EikanWang, https://github.com/leslie-fang-intel, https://github.com/CuiYifeng, https://github.com/jerryzh168
ghstack dependencies: #133080
2024-11-26 09:44:14 +00:00
Svetlana Karslioglu
25c0b91dbb [Docs] Make links to source link to source (#141186)
Rewrite [SOURCE] links in the API docs to point to the source file in github repo.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141186
Approved by: https://github.com/malfet, https://github.com/msaroufim

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2024-11-22 00:50:19 +00:00
angelayi
878a849c92 [aoti] Remove example inputs from aoti_compile_and_package (#140991)
Differential Revision: [D66136724](https://our.internmc.facebook.com/intern/diff/D66136724)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140991
Approved by: https://github.com/yushangdi, https://github.com/desertfire
ghstack dependencies: #140990
2024-11-20 02:49:47 +00:00
YangQuan
93aef684d9 fix typo in torch.compiler_dynamo_deepdive.rst (#140871)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140871
Approved by: https://github.com/zou3519
2024-11-19 14:42:36 +00:00
Yu Guo
808da50c2d create a new torch.cuda.device_memory_used api (#140870)
Summary:
the current torch.cuda.memory_usage returns the memory utilization, more specifically, percent of time over the past sample period global memory being read/written for Nvidia.
see more details in https://github.com/pytorch/pytorch/issues/140638

Test Plan: added a new unittest

Differential Revision: D65960134

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140870
Approved by: https://github.com/ngimel, https://github.com/eqy
2024-11-19 06:36:30 +00:00
Tristan Rice
2673a440d0 [distributed] add PG APIs and general doc cleanups (#140853)
Doc updates:

* This adds documentation for the object oriented ProcessGroup APIs that are being used in torchft as well as https://github.com/pytorch/rfcs/pull/71 .
* It also does some general cleanups to simplify the distributed.rst by using `:methods`.
* It adds `__init__` definitions for the Stores
* I've reordered things so the collective APIs are before the Store/PG apis

Test plan:

```
lintrunner -a
cd docs && sphinx-autobuild source build/ -j auto -WT --keep-going
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140853
Approved by: https://github.com/kwen2501
2024-11-19 02:06:32 +00:00
PyTorch MergeBot
43de32d948 Revert "create a new torch.cuda.device_memory_used api (#140870)"
This reverts commit 478204cad6.

Reverted https://github.com/pytorch/pytorch/pull/140870 on behalf of https://github.com/yuguo68 due to the test is still flaky on ROCm, test_cuda.py::TestCudaMallocAsync is not skipped with the unittest.skipIf(TEST_CUDAMALLOCASYNC ([comment](https://github.com/pytorch/pytorch/pull/140870#issuecomment-2484161914))
2024-11-18 21:26:25 +00:00
Yuanhao Ji
4bb1bf0573 [Docs] Remove duplicate declaration of double_tensor (#140927)
Fixes #140920

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140927
Approved by: https://github.com/malfet
2024-11-18 21:22:30 +00:00
Yu Guo
478204cad6 create a new torch.cuda.device_memory_used api (#140870)
Summary:
the current torch.cuda.memory_usage returns the memory utilization, more specifically, percent of time over the past sample period global memory being read/written for Nvidia.
see more details in https://github.com/pytorch/pytorch/issues/140638

Test Plan: added a new unittest

Differential Revision: D65960134

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140870
Approved by: https://github.com/ngimel
2024-11-18 19:13:43 +00:00
PyTorch MergeBot
03b7ec9237 Revert "create a new torch.cuda.memory_usage_in_bytes api (#140719)"
This reverts commit 9febc47637.

Reverted https://github.com/pytorch/pytorch/pull/140719 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but the test is flaky on ROCm ([comment](https://github.com/pytorch/pytorch/pull/140719#issuecomment-2479832082))
2024-11-15 20:05:32 +00:00
Laith Sakka
500ce29e4c Use has_free_unbacked_symbols instead of bool(free_unbacked_symbols) (#140027)
with 20K features saves 20 seconds.
257.021589517593-> 237.8304626941681
buck2 run @fbcode//mode/opt fbcode//torchrec/distributed/tests:pt2_compile_benchmark -- --num-features=2000

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140027
Approved by: https://github.com/ezyang
2024-11-15 19:01:06 +00:00
Yu Guo
9febc47637 create a new torch.cuda.memory_usage_in_bytes api (#140719)
Summary:
the current torch.cuda.memory_usage returns the memory utilization, more specifically, percent of time over the past sample period global memory being read/written for Nvidia.

see more details in https://github.com/pytorch/pytorch/issues/140638

Test Plan: added a new unittest

Differential Revision: D65928031

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140719
Approved by: https://github.com/xw285cornell, https://github.com/hongxiayang
2024-11-15 05:59:40 +00:00
Vincent Moens
03cccaa76a Doc: Rewrite the storage.rst file to emphasize untyped storages (#140145)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140145
Approved by: https://github.com/janeyx99
2024-11-13 17:40:16 +00:00
Tongzhou Wang
7b0d199471 [doc] fix grammar in "Extending Torch" (#140209)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140209
Approved by: https://github.com/soulitzer
2024-11-13 05:34:43 +00:00
Tongzhou Wang
4c6eebf4e2 [doc] improve code in fake tensor doc (#140329)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140329
Approved by: https://github.com/soulitzer
2024-11-13 05:14:56 +00:00
William Wen
be172d2a60 [pt2, docs] Add new PT2 troubleshooting doc (#138620)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138620
Approved by: https://github.com/ezyang

Co-authored-by: Svetlana Karslioglu <svekars@meta.com>
2024-11-09 01:17:39 +00:00
Bin Bao
63a0d6587e [AOTI] Update the OSS tutorial (#139956)
Summary: Update the OSS tutorial to use the new aoti_compile_and_package and aoti_load_package APIs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139956
Approved by: https://github.com/angelayi
ghstack dependencies: #139955
2024-11-08 20:46:57 +00:00
Jerry Zhang
1fcc99c6bf Update quantization.rst (#139824)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139824
Approved by: https://github.com/svekars
2024-11-08 02:34:50 +00:00
John MacCormick
81d077cca2 Fix to modules.rst: indent line with activation functions (#139667)
At line 205, I believe the code `x = self.activations[act](x)` should be indented so that it is in the body of the for loop. Otherwise, applying the four linear modules has the same effect as applying a single linear module, in the sense that it is still just a linear map so there is no point in having four of them.  In other words, each layer of this network should have a nonlinearity.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139667
Approved by: https://github.com/malfet
2024-11-08 01:12:52 +00:00
Tongzhou Wang
22dd17c7bb [doc] fixing missing colon in custom op doc (#140060)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140060
Approved by: https://github.com/malfet
2024-11-07 23:48:44 +00:00
Mikayla Gawarecki
2ee91db03d Add APIs to separate norm calculation and gradient scaling in nn.utils.clip_grad_norm_ (#139662)
Fixes https://github.com/pytorch/pytorch/issues/139467

Refactor `nn.utils.clip_grad_norm_` into `nn.utils.get_total_norm` and then `nn.utils.clip_grads_with_norm_` . `clip_grad_norm_` now calls into these two new ops,

`get_total_norm` is generalized (rather than `get_grad_norm` due to the discussion on the issue from @awgu)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139662
Approved by: https://github.com/H-Huang
2024-11-07 23:13:23 +00:00
Shangdi Yu
83e36a6bfa AOTI Minifier (#139351)
See documentation at https://docs-preview.pytorch.org/pytorch/pytorch/139351/torch.compiler_aot_inductor_minifier.html.

Add a minifier for AOTI.

Test Plan:
python test/inductor/test_minifier.py

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139351
Approved by: https://github.com/desertfire
2024-11-07 21:43:44 +00:00
Tom Fogal
b5286ba207 Small fix to Python rendering in documentation. (#138281)
The text was being rendered as normal text but I believe was meant to be code.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138281
Approved by: https://github.com/janeyx99
2024-11-07 20:48:47 +00:00
Will Constable
2b400236c2 [DCP] Cross-link DCP doc to tutorials (#139776)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139776
Approved by: https://github.com/mhorowitz, https://github.com/LucasLLC, https://github.com/fduwjj
ghstack dependencies: #139938
2024-11-07 02:19:49 +00:00
Jay Zhang
99deedff57 [ONNX] Describe memory usage of TorchDynamo-based exporter. (#139388)
Add a new documentation to show one memory usage benefit brought by TorchDynamo-based ONNX exporter.

Also add a unit test to make sure TorchDynamo-based ONNX exporter works well under FakeTensorMode.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139388
Approved by: https://github.com/xadupre
2024-11-06 17:29:11 +00:00
Tongzhou Wang
faab564bda [doc] Fix grammar in export.ir_spec.rst (#139584)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139584
Approved by: https://github.com/zou3519
2024-11-05 23:26:36 +00:00
Ryan Guo
693a0a1bd4 [dynamo][NFC] Rename mutable_local and add documentation (#139339)
This patch addresses the renaming part of #133027, specifically, it
renames the following and adds documentation for relevant classes.
1. `VariableTracker.mutable_local` to `mutation_type`
2. `MatableLocal `to `ValueMutationNew`
3. `MutableSideEffects `to `ValueMutationExisting`
4. `MutableLocalSource` to `SourceType`
5. `MutableLocalSource.Local` to `New`

Note that (2), (3) and (5) are mainly to bring consistency between them
and `AttributeMutationNew`, `AttributeMutationExisting`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139339
Approved by: https://github.com/jansel, https://github.com/mlazos, https://github.com/anijain2305
2024-11-05 19:11:41 +00:00
Henry Tsang
350bc2a166 [export] Add support for symbool to make it usable for torch.cond (#138765)
# Why?

I want the following code to work.

minimal repro:
```
class M(torch.nn.Module):
    def forward(self, dilate_flag):
        return dilate_flag.item()

input1 = (torch.tensor([1], dtype=torch.bool, device="cuda"),)
model = M().cuda()

ep = torch.export.export(model, input1, strict=True)
path = torch._inductor.aot_compile(ep.module(), input1)
aot_model = torch._export.aot_load(path, device="cuda")
actual_output = aot_model(*input1)
```

error: AssertionError: Encountered an unsupported object of type <class 'torch.SymBool'> while writing the metadata for exported program

second error will be handled by https://github.com/pytorch/pytorch/pull/138760

# Motivation

I could technically bypass it with a torch.int tensor. However, it doesn't work with torch.cond. I want the following to work. It would also require https://github.com/pytorch/pytorch/pull/138760 for aot compile to work.

```
class M(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.dilate_flag = 0

    def forward(self, dilate_flag):
        self.dilate_flag = dilate_flag.item()

        def true_fn(dilate_flag):
            return dilate_flag.clone()

        def false_fn(dilate_flag):
            return dilate_flag.clone()

        torch.cond(
            self.dilate_flag,
            true_fn,
            false_fn,
            (dilate_flag,),
        )
        return self.dilate_flag

input1 = (torch.tensor([1], dtype=torch.bool, device="cuda"),)
input2 = (torch.tensor([0], dtype=torch.bool, device="cuda"),)
inputs = (input1, input2)
model = M().cuda()

for input in inputs:
    expected_output = model(*input)

    ep = torch.export.export(model, input, strict=False)
    path = torch._inductor.aot_compile(ep.module(), input)
    aot_model = torch._export.aot_load(path, device="cuda")
    actual_output = aot_model(*input)

    assert (
        expected_output == actual_output
    ), f"henry they are not equal {expected_output} != {actual_output}"
```

Differential Revision: D64867504

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138765
Approved by: https://github.com/ydwu4
2024-11-04 23:31:49 +00:00
Jane Xu
514c466cd9 Redirect the custom ops landing page :D (#139634)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139634
Approved by: https://github.com/zou3519
2024-11-04 22:25:15 +00:00
Will Constable
3d93caf664 [c10d] Add thread-safety initialization warning (#139638)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139638
Approved by: https://github.com/kwen2501, https://github.com/c-p-i-o, https://github.com/XilunWu
2024-11-04 21:38:47 +00:00
Edward Z. Yang
585dbfa583 Profile guided optimization for automatic_dynamic (#139001)
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.

This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
2024-11-03 06:29:57 +00:00