mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
ba0fc71a3a
18 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
ba0fc71a3a |
Codegen: python_torch_functions only include relevant operators (#68693)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/68693 Generation of python bindings for native functions is split over 8 different files. One for each namespace, with the torch namespace split into 3 shards, and methods in their own file as well. This change ensures that editing any single (non-method) operator only causes one of these files to be rebuilt. Test Plan: Imported from OSS Reviewed By: jbschlosser Differential Revision: D32596270 Pulled By: albanD fbshipit-source-id: 0570ec69e7476b8f1bc21138ba18fe8f95ebbe3f |
||
|
|
b737e09f60 |
expose return_types in Python (#66614)
Summary: https://github.com/facebookresearch/functorch/issues/87 TODO: * [x] Add comments * [x] Add test * [x] Fix XLA <details> <summary>Generated python_return_types.cpp</summary> ```cpp #include <Python.h> #include <vector> #include <map> #include <string> #include "torch/csrc/autograd/python_return_types.h" #include "torch/csrc/utils/structseq.h" #include "torch/csrc/Exceptions.h" namespace { PyTypeObject* get__det_lu_based_helper_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"det", ""}, {"lu", ""}, {"pivs", ""}, {nullptr} }; static PyTypeObject _det_lu_based_helperNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types._det_lu_based_helper", nullptr, NamedTuple_fields, 3 }; if (!is_initialized) { PyStructSequence_InitType(&_det_lu_based_helperNamedTuple, &desc); _det_lu_based_helperNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &_det_lu_based_helperNamedTuple; } PyTypeObject* get__fake_quantize_per_tensor_affine_cachemask_tensor_qparams_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"output", ""}, {"mask", ""}, {nullptr} }; static PyTypeObject _fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types._fake_quantize_per_tensor_affine_cachemask_tensor_qparams", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&_fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple, &desc); _fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &_fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple; } PyTypeObject* get__fused_moving_avg_obs_fq_helper_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"output", ""}, {"mask", ""}, {nullptr} }; static PyTypeObject _fused_moving_avg_obs_fq_helperNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types._fused_moving_avg_obs_fq_helper", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&_fused_moving_avg_obs_fq_helperNamedTuple, &desc); _fused_moving_avg_obs_fq_helperNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &_fused_moving_avg_obs_fq_helperNamedTuple; } PyTypeObject* get__lu_with_info_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"LU", ""}, {"pivots", ""}, {"info", ""}, {nullptr} }; static PyTypeObject _lu_with_infoNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types._lu_with_info", nullptr, NamedTuple_fields, 3 }; if (!is_initialized) { PyStructSequence_InitType(&_lu_with_infoNamedTuple, &desc); _lu_with_infoNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &_lu_with_infoNamedTuple; } PyTypeObject* get__unpack_dual_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"primal", ""}, {"tangent", ""}, {nullptr} }; static PyTypeObject _unpack_dualNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types._unpack_dual", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&_unpack_dualNamedTuple, &desc); _unpack_dualNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &_unpack_dualNamedTuple; } PyTypeObject* get_aminmax_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"min", ""}, {"max", ""}, {nullptr} }; static PyTypeObject aminmaxNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.aminmax", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&aminmaxNamedTuple, &desc); aminmaxNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &aminmaxNamedTuple; } PyTypeObject* get_aminmax_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"min", ""}, {"max", ""}, {nullptr} }; static PyTypeObject aminmax_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.aminmax_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&aminmax_outNamedTuple1, &desc); aminmax_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &aminmax_outNamedTuple1; } PyTypeObject* get_cummax_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject cummaxNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.cummax", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&cummaxNamedTuple, &desc); cummaxNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &cummaxNamedTuple; } PyTypeObject* get_cummax_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject cummax_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.cummax_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&cummax_outNamedTuple1, &desc); cummax_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &cummax_outNamedTuple1; } PyTypeObject* get_cummin_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject cumminNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.cummin", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&cumminNamedTuple, &desc); cumminNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &cumminNamedTuple; } PyTypeObject* get_cummin_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject cummin_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.cummin_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&cummin_outNamedTuple1, &desc); cummin_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &cummin_outNamedTuple1; } PyTypeObject* get_eig_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""}, {nullptr} }; static PyTypeObject eig_outNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.eig_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&eig_outNamedTuple, &desc); eig_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &eig_outNamedTuple; } PyTypeObject* get_eig_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""}, {nullptr} }; static PyTypeObject eigNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.eig", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&eigNamedTuple1, &desc); eigNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &eigNamedTuple1; } PyTypeObject* get_frexp_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"mantissa", ""}, {"exponent", ""}, {nullptr} }; static PyTypeObject frexpNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.frexp", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&frexpNamedTuple, &desc); frexpNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &frexpNamedTuple; } PyTypeObject* get_frexp_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"mantissa", ""}, {"exponent", ""}, {nullptr} }; static PyTypeObject frexp_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.frexp_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&frexp_outNamedTuple1, &desc); frexp_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &frexp_outNamedTuple1; } PyTypeObject* get_geqrf_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"a", ""}, {"tau", ""}, {nullptr} }; static PyTypeObject geqrf_outNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.geqrf_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&geqrf_outNamedTuple, &desc); geqrf_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &geqrf_outNamedTuple; } PyTypeObject* get_geqrf_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"a", ""}, {"tau", ""}, {nullptr} }; static PyTypeObject geqrfNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.geqrf", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&geqrfNamedTuple1, &desc); geqrfNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &geqrfNamedTuple1; } PyTypeObject* get_histogram_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"hist", ""}, {"bin_edges", ""}, {nullptr} }; static PyTypeObject histogram_outNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.histogram_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&histogram_outNamedTuple, &desc); histogram_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &histogram_outNamedTuple; } PyTypeObject* get_histogram_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"hist", ""}, {"bin_edges", ""}, {nullptr} }; static PyTypeObject histogramNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.histogram", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&histogramNamedTuple1, &desc); histogramNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &histogramNamedTuple1; } PyTypeObject* get_kthvalue_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject kthvalueNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.kthvalue", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&kthvalueNamedTuple, &desc); kthvalueNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &kthvalueNamedTuple; } PyTypeObject* get_kthvalue_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject kthvalue_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.kthvalue_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&kthvalue_outNamedTuple1, &desc); kthvalue_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &kthvalue_outNamedTuple1; } PyTypeObject* get_linalg_cholesky_ex_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"L", ""}, {"info", ""}, {nullptr} }; static PyTypeObject linalg_cholesky_exNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_cholesky_ex", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_cholesky_exNamedTuple, &desc); linalg_cholesky_exNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_cholesky_exNamedTuple; } PyTypeObject* get_linalg_cholesky_ex_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"L", ""}, {"info", ""}, {nullptr} }; static PyTypeObject linalg_cholesky_ex_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_cholesky_ex_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_cholesky_ex_outNamedTuple1, &desc); linalg_cholesky_ex_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_cholesky_ex_outNamedTuple1; } PyTypeObject* get_linalg_eig_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""}, {nullptr} }; static PyTypeObject linalg_eigNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_eig", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_eigNamedTuple, &desc); linalg_eigNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_eigNamedTuple; } PyTypeObject* get_linalg_eig_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""}, {nullptr} }; static PyTypeObject linalg_eig_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_eig_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_eig_outNamedTuple1, &desc); linalg_eig_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_eig_outNamedTuple1; } PyTypeObject* get_linalg_eigh_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""}, {nullptr} }; static PyTypeObject linalg_eighNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_eigh", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_eighNamedTuple, &desc); linalg_eighNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_eighNamedTuple; } PyTypeObject* get_linalg_eigh_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""}, {nullptr} }; static PyTypeObject linalg_eigh_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_eigh_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_eigh_outNamedTuple1, &desc); linalg_eigh_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_eigh_outNamedTuple1; } PyTypeObject* get_linalg_inv_ex_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"inverse", ""}, {"info", ""}, {nullptr} }; static PyTypeObject linalg_inv_exNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_inv_ex", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_inv_exNamedTuple, &desc); linalg_inv_exNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_inv_exNamedTuple; } PyTypeObject* get_linalg_inv_ex_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"inverse", ""}, {"info", ""}, {nullptr} }; static PyTypeObject linalg_inv_ex_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_inv_ex_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_inv_ex_outNamedTuple1, &desc); linalg_inv_ex_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_inv_ex_outNamedTuple1; } PyTypeObject* get_linalg_lstsq_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"residuals", ""}, {"rank", ""}, {"singular_values", ""}, {nullptr} }; static PyTypeObject linalg_lstsqNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_lstsq", nullptr, NamedTuple_fields, 4 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_lstsqNamedTuple, &desc); linalg_lstsqNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_lstsqNamedTuple; } PyTypeObject* get_linalg_lstsq_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"residuals", ""}, {"rank", ""}, {"singular_values", ""}, {nullptr} }; static PyTypeObject linalg_lstsq_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_lstsq_out", nullptr, NamedTuple_fields, 4 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_lstsq_outNamedTuple1, &desc); linalg_lstsq_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_lstsq_outNamedTuple1; } PyTypeObject* get_linalg_qr_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""}, {nullptr} }; static PyTypeObject linalg_qrNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_qr", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_qrNamedTuple, &desc); linalg_qrNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_qrNamedTuple; } PyTypeObject* get_linalg_qr_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""}, {nullptr} }; static PyTypeObject linalg_qr_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_qr_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_qr_outNamedTuple1, &desc); linalg_qr_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_qr_outNamedTuple1; } PyTypeObject* get_linalg_slogdet_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"sign", ""}, {"logabsdet", ""}, {nullptr} }; static PyTypeObject linalg_slogdetNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_slogdet", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_slogdetNamedTuple, &desc); linalg_slogdetNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_slogdetNamedTuple; } PyTypeObject* get_linalg_slogdet_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"sign", ""}, {"logabsdet", ""}, {nullptr} }; static PyTypeObject linalg_slogdet_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_slogdet_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_slogdet_outNamedTuple1, &desc); linalg_slogdet_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_slogdet_outNamedTuple1; } PyTypeObject* get_linalg_svd_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"Vh", ""}, {nullptr} }; static PyTypeObject linalg_svd_outNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_svd_out", nullptr, NamedTuple_fields, 3 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_svd_outNamedTuple, &desc); linalg_svd_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_svd_outNamedTuple; } PyTypeObject* get_linalg_svd_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"Vh", ""}, {nullptr} }; static PyTypeObject linalg_svdNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.linalg_svd", nullptr, NamedTuple_fields, 3 }; if (!is_initialized) { PyStructSequence_InitType(&linalg_svdNamedTuple1, &desc); linalg_svdNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &linalg_svdNamedTuple1; } PyTypeObject* get_lstsq_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"QR", ""}, {nullptr} }; static PyTypeObject lstsq_outNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.lstsq_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&lstsq_outNamedTuple, &desc); lstsq_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &lstsq_outNamedTuple; } PyTypeObject* get_lstsq_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"QR", ""}, {nullptr} }; static PyTypeObject lstsqNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.lstsq", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&lstsqNamedTuple1, &desc); lstsqNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &lstsqNamedTuple1; } PyTypeObject* get_lu_unpack_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"P", ""}, {"L", ""}, {"U", ""}, {nullptr} }; static PyTypeObject lu_unpackNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.lu_unpack", nullptr, NamedTuple_fields, 3 }; if (!is_initialized) { PyStructSequence_InitType(&lu_unpackNamedTuple, &desc); lu_unpackNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &lu_unpackNamedTuple; } PyTypeObject* get_lu_unpack_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"P", ""}, {"L", ""}, {"U", ""}, {nullptr} }; static PyTypeObject lu_unpack_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.lu_unpack_out", nullptr, NamedTuple_fields, 3 }; if (!is_initialized) { PyStructSequence_InitType(&lu_unpack_outNamedTuple1, &desc); lu_unpack_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &lu_unpack_outNamedTuple1; } PyTypeObject* get_max_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject maxNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.max", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&maxNamedTuple, &desc); maxNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &maxNamedTuple; } PyTypeObject* get_max_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject max_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.max_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&max_outNamedTuple1, &desc); max_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &max_outNamedTuple1; } PyTypeObject* get_median_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject medianNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.median", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&medianNamedTuple, &desc); medianNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &medianNamedTuple; } PyTypeObject* get_median_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject median_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.median_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&median_outNamedTuple1, &desc); median_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &median_outNamedTuple1; } PyTypeObject* get_min_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject minNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.min", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&minNamedTuple, &desc); minNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &minNamedTuple; } PyTypeObject* get_min_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject min_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.min_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&min_outNamedTuple1, &desc); min_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &min_outNamedTuple1; } PyTypeObject* get_mode_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject modeNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.mode", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&modeNamedTuple, &desc); modeNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &modeNamedTuple; } PyTypeObject* get_mode_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject mode_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.mode_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&mode_outNamedTuple1, &desc); mode_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &mode_outNamedTuple1; } PyTypeObject* get_nanmedian_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject nanmedianNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.nanmedian", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&nanmedianNamedTuple, &desc); nanmedianNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &nanmedianNamedTuple; } PyTypeObject* get_nanmedian_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject nanmedian_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.nanmedian_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&nanmedian_outNamedTuple1, &desc); nanmedian_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &nanmedian_outNamedTuple1; } PyTypeObject* get_qr_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""}, {nullptr} }; static PyTypeObject qr_outNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.qr_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&qr_outNamedTuple, &desc); qr_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &qr_outNamedTuple; } PyTypeObject* get_qr_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""}, {nullptr} }; static PyTypeObject qrNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.qr", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&qrNamedTuple1, &desc); qrNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &qrNamedTuple1; } PyTypeObject* get_slogdet_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"sign", ""}, {"logabsdet", ""}, {nullptr} }; static PyTypeObject slogdetNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.slogdet", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&slogdetNamedTuple, &desc); slogdetNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &slogdetNamedTuple; } PyTypeObject* get_solve_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"LU", ""}, {nullptr} }; static PyTypeObject solveNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.solve", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&solveNamedTuple, &desc); solveNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &solveNamedTuple; } PyTypeObject* get_solve_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"LU", ""}, {nullptr} }; static PyTypeObject solve_outNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.solve_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&solve_outNamedTuple1, &desc); solve_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &solve_outNamedTuple1; } PyTypeObject* get_sort_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject sort_outNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.sort_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&sort_outNamedTuple, &desc); sort_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &sort_outNamedTuple; } PyTypeObject* get_sort_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject sortNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.sort", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&sortNamedTuple1, &desc); sortNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &sortNamedTuple1; } PyTypeObject* get_svd_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"V", ""}, {nullptr} }; static PyTypeObject svd_outNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.svd_out", nullptr, NamedTuple_fields, 3 }; if (!is_initialized) { PyStructSequence_InitType(&svd_outNamedTuple, &desc); svd_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &svd_outNamedTuple; } PyTypeObject* get_svd_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"V", ""}, {nullptr} }; static PyTypeObject svdNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.svd", nullptr, NamedTuple_fields, 3 }; if (!is_initialized) { PyStructSequence_InitType(&svdNamedTuple1, &desc); svdNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &svdNamedTuple1; } PyTypeObject* get_symeig_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""}, {nullptr} }; static PyTypeObject symeig_outNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.symeig_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&symeig_outNamedTuple, &desc); symeig_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &symeig_outNamedTuple; } PyTypeObject* get_symeig_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""}, {nullptr} }; static PyTypeObject symeigNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.symeig", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&symeigNamedTuple1, &desc); symeigNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &symeigNamedTuple1; } PyTypeObject* get_topk_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject topk_outNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.topk_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&topk_outNamedTuple, &desc); topk_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &topk_outNamedTuple; } PyTypeObject* get_topk_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""}, {nullptr} }; static PyTypeObject topkNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.topk", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&topkNamedTuple1, &desc); topkNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &topkNamedTuple1; } PyTypeObject* get_triangular_solve_out_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"cloned_coefficient", ""}, {nullptr} }; static PyTypeObject triangular_solve_outNamedTuple; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.triangular_solve_out", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&triangular_solve_outNamedTuple, &desc); triangular_solve_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &triangular_solve_outNamedTuple; } PyTypeObject* get_triangular_solve_namedtuple() { static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"cloned_coefficient", ""}, {nullptr} }; static PyTypeObject triangular_solveNamedTuple1; static bool is_initialized = false; static PyStructSequence_Desc desc = { "torch.return_types.triangular_solve", nullptr, NamedTuple_fields, 2 }; if (!is_initialized) { PyStructSequence_InitType(&triangular_solveNamedTuple1, &desc); triangular_solveNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; is_initialized = true; } return &triangular_solveNamedTuple1; } } namespace torch { namespace autograd { std::map<std::string, PyTypeObject*>& get_namedtuple_types_map() { // [NOTE] Non-global map // This map calls Python functions during its initialization. // If it is a global static variable and in case it is loaded // before Python interpreter is ready, then the calls it makes during // initialization will SEGFAULT. // To avoid this we make it function static variable so that it is // initialized only after the Python interpreter is ready. static std::map<std::string, PyTypeObject*> namedtuple_types_map = { {"_det_lu_based_helper", get__det_lu_based_helper_namedtuple()}, {"_fake_quantize_per_tensor_affine_cachemask_tensor_qparams", get__fake_quantize_per_tensor_affine_cachemask_tensor_qparams_namedtuple()}, {"_fused_moving_avg_obs_fq_helper", get__fused_moving_avg_obs_fq_helper_namedtuple()}, {"_lu_with_info", get__lu_with_info_namedtuple()}, {"_unpack_dual", get__unpack_dual_namedtuple()}, {"aminmax", get_aminmax_namedtuple()}, {"aminmax_out", get_aminmax_out_namedtuple()}, {"cummax", get_cummax_namedtuple()}, {"cummax_out", get_cummax_out_namedtuple()}, {"cummin", get_cummin_namedtuple()}, {"cummin_out", get_cummin_out_namedtuple()}, {"eig_out", get_eig_out_namedtuple()}, {"eig", get_eig_namedtuple()}, {"frexp", get_frexp_namedtuple()}, {"frexp_out", get_frexp_out_namedtuple()}, {"geqrf_out", get_geqrf_out_namedtuple()}, {"geqrf", get_geqrf_namedtuple()}, {"histogram_out", get_histogram_out_namedtuple()}, {"histogram", get_histogram_namedtuple()}, {"kthvalue", get_kthvalue_namedtuple()}, {"kthvalue_out", get_kthvalue_out_namedtuple()}, {"linalg_cholesky_ex", get_linalg_cholesky_ex_namedtuple()}, {"linalg_cholesky_ex_out", get_linalg_cholesky_ex_out_namedtuple()}, {"linalg_eig", get_linalg_eig_namedtuple()}, {"linalg_eig_out", get_linalg_eig_out_namedtuple()}, {"linalg_eigh", get_linalg_eigh_namedtuple()}, {"linalg_eigh_out", get_linalg_eigh_out_namedtuple()}, {"linalg_inv_ex", get_linalg_inv_ex_namedtuple()}, {"linalg_inv_ex_out", get_linalg_inv_ex_out_namedtuple()}, {"linalg_lstsq", get_linalg_lstsq_namedtuple()}, {"linalg_lstsq_out", get_linalg_lstsq_out_namedtuple()}, {"linalg_qr", get_linalg_qr_namedtuple()}, {"linalg_qr_out", get_linalg_qr_out_namedtuple()}, {"linalg_slogdet", get_linalg_slogdet_namedtuple()}, {"linalg_slogdet_out", get_linalg_slogdet_out_namedtuple()}, {"linalg_svd_out", get_linalg_svd_out_namedtuple()}, {"linalg_svd", get_linalg_svd_namedtuple()}, {"lstsq_out", get_lstsq_out_namedtuple()}, {"lstsq", get_lstsq_namedtuple()}, {"lu_unpack", get_lu_unpack_namedtuple()}, {"lu_unpack_out", get_lu_unpack_out_namedtuple()}, {"max", get_max_namedtuple()}, {"max_out", get_max_out_namedtuple()}, {"median", get_median_namedtuple()}, {"median_out", get_median_out_namedtuple()}, {"min", get_min_namedtuple()}, {"min_out", get_min_out_namedtuple()}, {"mode", get_mode_namedtuple()}, {"mode_out", get_mode_out_namedtuple()}, {"nanmedian", get_nanmedian_namedtuple()}, {"nanmedian_out", get_nanmedian_out_namedtuple()}, {"qr_out", get_qr_out_namedtuple()}, {"qr", get_qr_namedtuple()}, {"slogdet", get_slogdet_namedtuple()}, {"solve", get_solve_namedtuple()}, {"solve_out", get_solve_out_namedtuple()}, {"sort_out", get_sort_out_namedtuple()}, {"sort", get_sort_namedtuple()}, {"svd_out", get_svd_out_namedtuple()}, {"svd", get_svd_namedtuple()}, {"symeig_out", get_symeig_out_namedtuple()}, {"symeig", get_symeig_namedtuple()}, {"topk_out", get_topk_out_namedtuple()}, {"topk", get_topk_namedtuple()}, {"triangular_solve_out", get_triangular_solve_out_namedtuple()}, {"triangular_solve", get_triangular_solve_namedtuple()}, }; return namedtuple_types_map; } PyTypeObject* get_namedtuple(std::string name) { static auto& namedtuple_types_map = get_namedtuple_types_map(); return namedtuple_types_map[name]; } void initReturnTypes(PyObject* module) { static struct PyModuleDef def = { PyModuleDef_HEAD_INIT, "torch._C._return_types", nullptr, -1, {}}; PyObject* return_types_module = PyModule_Create(&def); if (!return_types_module) { throw python_error(); } for (const auto& return_type_pair : get_namedtuple_types_map()) { // hold onto the TypeObject for the unlikely case of user // deleting or overriding it. Py_INCREF(return_type_pair.second); if (PyModule_AddObject( return_types_module, return_type_pair.first.c_str(), (PyObject*)return_type_pair.second) != 0) { Py_DECREF((PyObject*)return_type_pair.second); throw python_error(); } } // steals a reference to return_types on success if (PyModule_AddObject(module, "_return_types", return_types_module) != 0) { Py_DECREF(return_types_module); throw python_error(); } } } // namespace autograd } // namespace torch ``` </details> <details> <summary>Eg. updated call in other python_*_functions</summary> ```cpp // linalg_cholesky_ex static PyObject * THPVariable_linalg_cholesky_ex(PyObject* self_, PyObject* args, PyObject* kwargs) { HANDLE_TH_ERRORS static PyTypeObject* NamedTuple = get_namedtuple("linalg_cholesky_ex"); static PyTypeObject* NamedTuple1 = get_namedtuple("linalg_cholesky_ex_out"); static PythonArgParser parser({ "linalg_cholesky_ex(Tensor input, *, bool upper=False, bool check_errors=False, TensorList[2] out=None)", }, /*traceable=*/true); ParsedArgs<4> parsed_args; auto _r = parser.parse(nullptr, args, kwargs, parsed_args); if(_r.has_torch_function()) { return handle_torch_function(_r, nullptr, args, kwargs, THPLinalgVariableFunctionsModule, "torch.linalg"); } if (_r.isNone(3)) { // aten::linalg_cholesky_ex(Tensor self, *, bool upper=False, bool check_errors=False) -> (Tensor L, Tensor info) auto dispatch_linalg_cholesky_ex = [](const at::Tensor & self, bool upper, bool check_errors) -> ::std::tuple<at::Tensor,at::Tensor> { pybind11::gil_scoped_release no_gil; return at::linalg_cholesky_ex(self, upper, check_errors); }; return wrap(NamedTuple, dispatch_linalg_cholesky_ex(_r.tensor(0), _r.toBool(1), _r.toBool(2))); } else { // aten::linalg_cholesky_ex.L(Tensor self, *, bool upper=False, bool check_errors=False, Tensor(a!) L, Tensor(b!) info) -> (Tensor(a!) L, Tensor(b!) info) auto out = _r.tensorlist_n<2>(3); auto dispatch_linalg_cholesky_ex_out = [](at::Tensor & L, at::Tensor & info, const at::Tensor & self, bool upper, bool check_errors) -> ::std::tuple<at::Tensor,at::Tensor> { pybind11::gil_scoped_release no_gil; return at::linalg_cholesky_ex_out(L, info, self, upper, check_errors); }; return wrap(NamedTuple1, dispatch_linalg_cholesky_ex_out(out[0], out[1], _r.tensor(0), _r.toBool(1), _r.toBool(2))); } Py_RETURN_NONE; END_HANDLE_TH_ERRORS } ``` </details> Pull Request resolved: https://github.com/pytorch/pytorch/pull/66614 Reviewed By: H-Huang Differential Revision: D32741134 Pulled By: zou3519 fbshipit-source-id: 27bada30d20e66333ca1be1775608d9f0cbf9f59 |
||
|
|
2b221a9599 |
Remove PyCFunction casts as much as possible. (#46227)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/46227 Follow up from https://github.com/pytorch/pytorch/issues/45419, in this PR I've removed as many PyCFunction casts as I could from the codebase. The only ones I didn't remove were the ones with `METH_VARARGS | METH_KEYWORDS` which have 3 parameters instead of 2 and had to be casted. Example: ` {"copy_", (PyCFunction)(void(*)(void))THPStorage_(copy_), METH_VARARGS | METH_KEYWORDS, nullptr},` ghstack-source-id: 114632704 Test Plan: waitforbuildbot Reviewed By: albanD Differential Revision: D24269435 fbshipit-source-id: 025cfd43a9a2a3e59f6b2951c1a78749193d77cf |
||
|
|
3d46e02ea1 |
Add __torch_function__ for methods (#37091)
Summary: According to pytorch/rfcs#3 From the goals in the RFC: 1. Support subclassing `torch.Tensor` in Python (done here) 2. Preserve `torch.Tensor` subclasses when calling `torch` functions on them (done here) 3. Use the PyTorch API with `torch.Tensor`-like objects that are _not_ `torch.Tensor` subclasses (done in https://github.com/pytorch/pytorch/issues/30730) 4. Preserve `torch.Tensor` subclasses when calling `torch.Tensor` methods. (done here) 5. Propagating subclass instances correctly also with operators, using views/slices/indexing/etc. (done here) 6. Preserve subclass attributes when using methods or views/slices/indexing. (done here) 7. A way to insert code that operates on both functions and methods uniformly (so we can write a single function that overrides all operators). (done here) 8. The ability to give external libraries a way to also define functions/methods that follow the `__torch_function__` protocol. (will be addressed in a separate PR) This PR makes the following changes: 1. Adds the `self` argument to the arg parser. 2. Dispatches on `self` as well if `self` is not `nullptr`. 3. Adds a `torch._C.DisableTorchFunction` context manager to disable `__torch_function__`. 4. Adds a `torch::torch_function_enabled()` and `torch._C._torch_function_enabled()` to check the state of `__torch_function__`. 5. Dispatches all `torch._C.TensorBase` and `torch.Tensor` methods via `__torch_function__`. TODO: - [x] Sequence Methods - [x] Docs - [x] Tests Closes https://github.com/pytorch/pytorch/issues/28361 Benchmarks in https://github.com/pytorch/pytorch/pull/37091#issuecomment-633657778 Pull Request resolved: https://github.com/pytorch/pytorch/pull/37091 Reviewed By: ngimel Differential Revision: D22765678 Pulled By: ezyang fbshipit-source-id: 53f8aa17ddb8b1108c0997f6a7aa13cb5be73de0 |
||
|
|
fb9e44f8dd |
Add support for float[]? arguments in native_functions.yaml (#37175)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/37175 ghstack-source-id: 106938114 Test Plan: Upcoming diffs use this for upsampling. Differential Revision: D21209994 fbshipit-source-id: 1a71c07e45e28772a2bbe450b68280dcc0fe2def |
||
|
|
6d642a6f6c |
Remove (most) Python 2 support from C++ code (#35614)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/35614 Python 2 has reached end-of-life and is no longer supported by PyTorch. Now we can clean up a lot of cruft that we put in place to support it. These changes were all done manually, and I skipped anything that seemed like it would take more than a few seconds, so I think it makes sense to review it manually as well. Test Plan: CI Differential Revision: D20842876 Pulled By: dreiss fbshipit-source-id: 18abf0d324ed2185ec6d27c864e935d856dcc6ad |
||
|
|
287f3b746e |
Remove Backend -> THPLayout mapping. (#37527)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/37527 This is yet another place that needs to be updated for adding a new "Backend" and is unnecessary. Instead, just use layout_from_backend and have a map from Layout -> THPLayout. Other changes: - rename torch::getDtype and torch::getLayout to torch::getTHPDtype and torch::getTHPLayout since e.g. for layout you are both passing in and returning a "layout" type. - add NumOptions to Layout to match the dtype/ScalarType formulation. Test Plan: Imported from OSS Differential Revision: D21309836 Pulled By: gchanan fbshipit-source-id: ede0e4f3bf7ff2cd04a9b17df020f0d4fd654ba3 |
||
|
|
fa80299bdf |
__torch_function__ overrides for torch.functional and torch.nn.functional (#32799)
Summary: This adds `__torch_function__` support for all functions in `torch.functional` and `torch.nn.functional`. The changes to C++ code and codegen scripts are to facilitate adding `__torch_function__` support for the native functions in `torch._C._nn`. Note that I moved the `handle_torch_function` C++ function to a header that both `python_torch_functions.cpp` and `python_nn_functions.cpp` include. The changes to `python_nn_functions.cpp` mirror the changes I made to `python_torch_functions.cpp` when `__torch_function__` support was first added in https://github.com/pytorch/pytorch/issues/27064. Due to the somewhat different way the `torch._C` and `torch._C._nn` namespaces are initialized I needed to create a new static reference to the `torch._C._nn` namespace (`THPNNVariableFunctions`). I'm not sure if that is the best way to do this. In principle I could import these namespaces in each kernel and avoid the global variable but that would have a runtime cost. I added `__torch_function__` support to the Python functions in `torch.nn.functional` following the approach in https://github.com/pytorch/pytorch/issues/32194. I re-enabled the test that checks if all functions in the `torch` namespace are explicitly tested for `__torch_function__` support. I also generalized the check to work for `torch.functional` and `torch.nn.functional` as well. This test was explicitly disabled in https://github.com/pytorch/pytorch/issues/30730 and I'm happy to disable it again if you think that's appropriate. I figured now was as good a time as any to try to re-enable it. Finally I adjusted the existing torch API tests to suppress deprecation warnings and add keyword arguments used by some of the code in `torch.nn.functional` that were missed when I originally added the tests in https://github.com/pytorch/pytorch/issues/27064. Pull Request resolved: https://github.com/pytorch/pytorch/pull/32799 Differential Revision: D19956809 Pulled By: ezyang fbshipit-source-id: 40d34e0109cc4b9f3ef62f409d2d35a1d84e3d22 |
||
|
|
fb159b5236 |
Some work on eager op binding codegen (gen_python_functions.py) (#29986)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29986
Previously in addition to generating a python binding for each op,
we would generate an almost-trivial helper for each overload.
This PR eliminates the helpers, simplifying codegen logic a bit and
reducing the source-level indirection by a step.
Perf should be unchanged.
codegen diff:
|
||
|
|
66f2bba852 |
Adding function to convert Module to channels last
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28991 Test Plan: Imported from OSS Differential Revision: D18430810 Pulled By: VitalyFedyunin fbshipit-source-id: 0693d4e31fc6f9831722c29fc83517f16ddfc028 |
||
|
|
1b4951d3a5 |
Fix remaining invalid function cast warnings that show up with GCC 8/9 (#26104)
Summary:
Follow-up to gh-25483, more of the same fixes for warnings like:
```
../torch/csrc/autograd/python_variable.cpp:503:31: warning: cast between incompatible function types from ‘PyObject* (*)(THPVariable*)’ {aka ‘_object* (*)(THPVariable*)’} to ‘getter’ {aka ‘_object* (*)(_object*, void*)’} [-Wcast-function-type]
503 | {"_backward_hooks", (getter)THPVariable_get_backwards_hooks, (setter)THPVariable_set_backwards_hooks, nullptr, nullptr},
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
This takes the build log output for a full rebuild with GCC 9.1 from ~10,000 to ~7,000 lines.
`clang-tidy` is going to complain, no way around that - see discussion at the end of gh-25483.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26104
Differential Revision: D17396831
Pulled By: ezyang
fbshipit-source-id: d71696bfe4dbe25519e4bcb7753151c118bd39f7
|
||
|
|
5b78a5eadb |
Memory format support for contiguous and is_contiguous (#20455)
Summary: #19975 was separated by 2 PRs. This one: Introduce MemoryFormat argument to the `x.is_contiguous(memory_format=torch.channels_last)` and to the `y = x.contiguous(memory_format=torch.channels_last)` functions. At this moment both functions just operate with strides and doesn't store any tensor state. (Original RFC #19092) ----- Expands functionality of two tensor functions `.is_contiguous` and `.contiguous` (both python and c++ api). Note: We had several complaints about `.to(memory_format)` function, and decided not to support it. 1. `.contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`. - Using `torch.contiguous_format` will preserve existing `.contiguous()` behavior. - Calling `x.contiguous(memory_format=torch.channels_last)` returns new tensor which maintain same semantical layout (NCHW), but have different memory allocation pattern. `x.contiguous(memory_format=torch.channels_last)` expects input tensor to be 3d, 4d or 5d; and fails otherwise. 2. `.is_contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`. - `x.is_contiguous(memory_format=torch.contiguous_format)` preserves same functionality as `x.is_contiguous()` and remains unchanged. - `x.is_contiguous(memory_format=torch.channels_last)` returns true if A) input tensor is contiguous in memory AND B) allocated in the memory in NWHC (or similar for 3d,5d) format. Note: By the end of the phase one `x.is_contiguous(memory_format=torch.channels_last)` will calculate state of the Tensor on every call. This functionality going to be updated later. Pull Request resolved: https://github.com/pytorch/pytorch/pull/20455 Differential Revision: D15341577 Pulled By: VitalyFedyunin fbshipit-source-id: bbb6b4159a8a49149110ad321109a3742383185d |
||
|
|
2e5a8cee82 |
Customize the printing of namedtuple return (#17136)
Summary: Fixes https://github.com/pytorch/pytorch/issues/17112 ```python print("good", torch.randn(5,5,5).max(1)) print("terrible", torch.randn(5,5,10).max(1)) print("not as good", torch.randn(5,5,500).max(1)) print ("old behaviour = gold standard") print(tuple(torch.randn(5,5,5).max(1))) print(tuple(torch.randn(5,5,10).max(1))) print(tuple(torch.randn(5,5,500).max(1))) ``` now gives ``` >>> import torch >>> print("good", torch.randn(5,5,5).max(1)) good torch.return_types.max( values=tensor([[ 1.2821, 1.8063, 1.8075, 1.3082, -0.1267], [ 0.3437, 0.7353, 1.2619, 0.7557, 1.6662], [ 0.8583, 1.8906, 1.0246, 1.7598, 1.1184], [ 1.7821, 0.0230, 0.9452, 1.0318, 1.0823], [ 0.4116, -0.0379, -0.1843, 1.4129, 1.8796]]), indices=tensor([[4, 4, 3, 2, 1], [1, 2, 4, 1, 1], [2, 4, 0, 2, 1], [0, 2, 0, 3, 1], [0, 4, 4, 4, 4]])) >>> print("terrible", torch.randn(5,5,10).max(1)) terrible torch.return_types.max( values=tensor([[ 2.1272, 1.3664, 2.2067, 1.3974, -0.0883, 1.2505, 1.0074, 1.1217, 0.3849, 0.6936], [ 0.6288, -0.4560, 1.2748, 1.5482, 1.2777, 1.6874, 0.7151, 0.6041, 1.3572, 1.6232], [ 1.6703, 1.0075, 1.6480, 2.2839, 1.3390, 0.4938, 1.6449, 1.7628, 0.8141, 2.5714], [ 0.7079, 1.8677, 3.2478, 1.5591, 2.4870, 0.8635, -0.1450, 1.6923, 1.4924, 1.6298], [ 2.4056, 0.8002, 0.9317, 0.7455, 0.7866, 2.1191, 0.3492, 1.2095, 1.8637, 1.7470]]), indices=tensor([[1, 1, 0, 0, 0, 0, 3, 4, 4, 4], [4, 2, 2, 1, 2, 2, 3, 1, 1, 3], [0, 3, 3, 0, 2, 1, 4, 1, 0, 1], [4, 1, 3, 0, 3, 2, 0, 1, 4, 3], [1, 0, 3, 2, 1, 0, 0, 1, 0, 1]])) >>> print("not as good", torch.randn(5,5,500).max(1)) not as good torch.return_types.max( values=tensor([[ 0.3877, 0.7873, 1.8701, ..., 0.5971, 1.6103, -0.3435], [ 1.1300, 2.2418, 1.4239, ..., 1.3943, 0.3872, 1.6475], [ 2.0656, 1.3136, 0.9896, ..., 2.3918, 0.8226, 1.0517], [ 1.1054, 0.9945, 1.0561, ..., 2.1039, 1.1524, 3.0304], [ 1.5041, 2.2809, 1.0883, ..., 0.8504, 2.4774, 1.1041]]), indices=tensor([[4, 3, 1, ..., 1, 4, 0], [4, 4, 4, ..., 3, 0, 3], [3, 0, 1, ..., 2, 2, 4], [0, 1, 1, ..., 4, 2, 2], [1, 0, 4, ..., 2, 0, 2]])) >>> print ("old behaviour = gold standard") old behaviour = gold standard >>> print(tuple(torch.randn(5,5,5).max(1))) (tensor([[ 1.1908, 1.1807, 1.3151, 1.7184, 0.3556], [ 0.3798, 0.9213, 0.3001, 1.3087, 2.2419], [ 1.4233, 1.4814, 1.9900, 1.7744, 1.3059], [ 1.0026, -0.0330, 1.3061, 1.8730, 2.0685], [ 1.3041, 1.6458, 1.3449, 1.8948, 3.6206]]), tensor([[0, 4, 3, 4, 0], [1, 1, 4, 0, 4], [4, 1, 0, 3, 3], [1, 2, 1, 4, 0], [3, 3, 0, 3, 3]])) >>> print(tuple(torch.randn(5,5,10).max(1))) (tensor([[-0.1232, 0.8275, 0.6732, 1.1223, 0.8247, 1.2851, 1.6009, 1.9979, 1.9109, 0.7313], [ 0.2260, 0.5922, 1.6928, 0.6024, 2.1158, 3.0619, 0.5653, 0.7426, 0.8316, 0.6346], [ 0.4319, 0.2231, 0.5255, 1.7620, 1.1657, 0.8875, 0.5782, 0.6506, 0.5032, 1.7097], [ 0.4137, 1.7265, 1.4260, 2.0301, 1.2244, 0.7128, 2.6345, 0.7230, 1.3553, 1.6508], [ 1.0684, 1.7195, 1.4068, 0.7076, -0.0242, 0.8474, 0.8754, 1.7108, 0.2188, 1.1584]]), tensor([[0, 1, 3, 4, 2, 3, 4, 2, 1, 0], [1, 4, 0, 0, 3, 2, 0, 0, 3, 3], [2, 3, 1, 1, 4, 0, 1, 4, 4, 4], [0, 4, 1, 3, 2, 0, 2, 0, 3, 1], [1, 0, 0, 0, 0, 3, 3, 3, 2, 0]])) >>> print(tuple(torch.randn(5,5,500).max(1))) (tensor([[0.9395, 1.5572, 1.8797, ..., 2.0494, 0.8202, 0.9623], [1.7937, 0.7225, 1.8836, ..., 0.7927, 1.4976, 1.1813], [0.8558, 1.6943, 1.4192, ..., 0.8327, 1.9661, 0.4197], [1.2993, 1.4995, 0.9357, ..., 0.7810, 1.3030, 2.6216], [1.4206, 1.8315, 1.0338, ..., 1.4312, 1.3198, 1.5233]]), tensor([[0, 4, 3, ..., 3, 0, 2], [0, 1, 0, ..., 0, 4, 3], [3, 4, 3, ..., 3, 0, 0], [3, 2, 3, ..., 1, 2, 1], [1, 2, 4, ..., 3, 1, 3]])) ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/17136 Differential Revision: D14250021 Pulled By: VitalyFedyunin fbshipit-source-id: aae72f03b35980063b1ac1f07b8353eddb0c8b93 |
||
|
|
ba25e13782 |
Forbid Module.to with copy argument. (#12617)
Summary: Module.to uses the Tensor.to parsing facility. It should not, however, accept "copy" as a keyword/fourth positional argument. See #12571 for discussion. Thank you SsnL for noticing. Pull Request resolved: https://github.com/pytorch/pytorch/pull/12617 Differential Revision: D10392053 Pulled By: ezyang fbshipit-source-id: b67a5def7993189b4b47193abc7b741b7d07512c |
||
|
|
c0a419e6ba
|
Add non_blocking to Tensor/Module.to (#7312)
* Add non_blocking to Tensor/Module.to * flake8 * Add argparse tests * cpp parse * Use C++ parser * use a commong parse function with Tensor.to * fix test_jit * use THPObjectPtr * increase refcount for None, True, and False * address comments * address comments |
||
|
|
57549b7e44
|
Bind functions with out= arguments in VariableType (#4565)
This adds overrides in VariableType for the xxx_out ATen functions and implements Python bindings. There is no support for automatic differentiation. If any of the inputs (or outputs) requires grad, then the function will throw an exception unless it's running in "no-grad" mode. The bindings for calling torch.xxx functions on Variables are moved to a different object. Previously, they were static method on VariableBase. This change prevents users from accidentally calling static methods as if they were instance methods. |
||
|
|
b92e06e50e |
Fix reference counting bug in python_nn_functions.cpp (#3236)
Py_InitModule returns a borrowed reference. PyModule_AddObject steals the reference, so we need to incref the `_nn` object. (The Python 3 function PyModule_Create returns a new reference.) |
||
|
|
f1f64c8d07 |
Generate autograd functions for NN / more refactors (#3136)
Generate autograd functions for NN and implement more derivatives in derivatives.yaml A big refactor of gen_variable_type.py |