mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
* Add non_blocking to Tensor/Module.to * flake8 * Add argparse tests * cpp parse * Use C++ parser * use a commong parse function with Tensor.to * fix test_jit * use THPObjectPtr * increase refcount for None, True, and False * address comments * address comments
79 lines
2.1 KiB
C++
79 lines
2.1 KiB
C++
#include "python_nn_functions.h"
|
|
|
|
// ${generated_comment}
|
|
|
|
#include "torch/csrc/Device.h"
|
|
#include "torch/csrc/DynamicTypes.h"
|
|
#include "torch/csrc/Exceptions.h"
|
|
#include "torch/csrc/autograd/python_variable.h"
|
|
#include "torch/csrc/autograd/utils/wrap_outputs.h"
|
|
#include "torch/csrc/autograd/utils/python_arg_parsing.h"
|
|
#include "torch/csrc/utils/python_arg_parser.h"
|
|
|
|
#include "python_nn_functions_dispatch.h"
|
|
|
|
using at::Tensor;
|
|
using at::Scalar;
|
|
using namespace torch::autograd::utils;
|
|
|
|
namespace torch { namespace autograd {
|
|
|
|
static PyObject * THPVariable__parse_to(PyObject* module, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto parsed = parse_to_conversion(args, kwargs);
|
|
auto& device = std::get<0>(parsed);
|
|
auto& scalarType = std::get<1>(parsed);
|
|
auto non_blocking = std::get<2>(parsed);
|
|
auto tuple = THPObjectPtr{PyTuple_New(3)};
|
|
if (!tuple) throw python_error();
|
|
if (device) {
|
|
PyTuple_SET_ITEM(tuple.get(), 0, THPDevice_New(*device));
|
|
} else {
|
|
Py_INCREF(Py_None);
|
|
PyTuple_SET_ITEM(tuple.get(), 0, Py_None);
|
|
}
|
|
if (scalarType) {
|
|
PyTuple_SET_ITEM(tuple.get(), 1, torch::autograd::utils::wrap(torch::getDtype(*scalarType)));
|
|
} else {
|
|
Py_INCREF(Py_None);
|
|
PyTuple_SET_ITEM(tuple.get(), 1, Py_None);
|
|
}
|
|
PyTuple_SET_ITEM(tuple.get(), 2, torch::autograd::utils::wrap(non_blocking));
|
|
return tuple.release();
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
${py_methods}
|
|
|
|
static PyMethodDef nn_functions[] = {
|
|
{"_parse_to", (PyCFunction)THPVariable__parse_to, METH_VARARGS | METH_KEYWORDS, nullptr},
|
|
${py_method_defs}
|
|
{NULL}
|
|
};
|
|
|
|
void initNNFunctions(PyObject* module) {
|
|
#if PY_MAJOR_VERSION == 2
|
|
PyObject* nn = Py_InitModule("torch._C._nn", nn_functions);
|
|
Py_XINCREF(nn); // Py_InitModule returns "borrowed" reference
|
|
#else
|
|
static struct PyModuleDef def = {
|
|
PyModuleDef_HEAD_INIT,
|
|
"torch._C._nn",
|
|
NULL,
|
|
-1,
|
|
nn_functions
|
|
};
|
|
PyObject* nn = PyModule_Create(&def);
|
|
#endif
|
|
if (!nn) {
|
|
throw python_error();
|
|
}
|
|
// steals a reference to nn
|
|
if (PyModule_AddObject(module, "_nn", nn) != 0) {
|
|
throw python_error();
|
|
}
|
|
}
|
|
|
|
}} // namespace torch::autograd
|