```
# supposed we have a 3d mesh
mesh_3d = init_device_mesh("cuda", (2,2,2), mesh_dim_names=("dp", "cp", "tp")
dp_cp_mesh = mesh_3d["dp", "cp"]._flatten()
"""
then we would have
flatten_name_to_root_dims[mesh_3d]: {
"dp_cp": (0, 1)
}
"""
```
We need this information to validate the order mesh slice including flatten mesh dim.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133838
Approved by: https://github.com/fegin
More context in [#132471](https://github.com/pytorch/pytorch/issues/132471) and https://github.com/pytorch/pytorch/issues/132366.
TLDR:
When cuda is available and users move tensors to cuda, we cannot really reuse the default pg if default pg is gloo, as lots of collectives are not supported on gloo for cuda tensors. For example, `dtensor.full_tensor()` would result in a mysterious SIGTERM when all_gather a cuda tensor using gloo. Without the change in this PR, users would have to know the context and explicitly move the cuda tensor to cpu before invoking most collectives, which I think is not so ideal UX.
Therefore, given most collectives are not supported on gloo for cuda tensors, we should init a new pg if the default pg is gloo when torch.cuda.is_available() and device_type is cuda.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132709
Approved by: https://github.com/awgu, https://github.com/wanchaol
Previously, when we slice out a submesh from a mesh, we assign the mesh as the parent mesh of the submesh. In this case, when we have a 3D mesh topology, the parent mesh of a 1D mesh sliced out from the 3D mesh is different from the parent mesh of the same 1D mesh sliced out from the 2D submesh of the 3D mesh. For example:
```
mesh_3d = init_device_mesh("cuda", (2,2,2), ("dim0", "dim1", "dim2"))
mesh_dim0 = mesh_3d["dim0"]
mesh_2d = mesh_2d["dim0", "dim1"]
mesh_dim0_2 = mesh_2d["dim0_2"]
# This would evaluate to be True
print(_mesh_resources.get_parent_mesh(mesh_dim0) != _mesh_resources.get_parent_mesh(mesh_dim0))
```
We can always reconstruct the mesh needed from the mesh dim names, as long as two dims come from the same root. For simplicity, we do not see the necessity of building a tree structure to represent child-parent relationship. Therefore, we are replacing the parent mesh concept with a root mesh concept in `_MeshEnv` so we would have:
```
mesh_3d = init_device_mesh("cuda", (2,2,2), ("dim0", "dim1", "dim2"))
mesh_dim0 = mesh_3d["dim0"]
mesh_2d = mesh_2d["dim0", "dim1"]
mesh_dim0_2 = mesh_2d["dim0_2"]
# This would evaluate to be True
print(_mesh_resources.get_root_mesh(mesh_dim0) == _mesh_resources.get_root_mesh(mesh_dim0))
```
With this change, we will have two types of meshes in an environment.
1. `device_mesh != _mesh_resources.get_root_mesh(device_mesh)` means that the device_mesh is created by slicing.
2. `device_mesh == _mesh_resources.get_root_mesh(device_mesh)` means that the device_mesh is a root mesh not created through slicing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132339
Approved by: https://github.com/wanchaol
ghstack dependencies: #132310, #132311
More context in [#132471](https://github.com/pytorch/pytorch/issues/132471) and https://github.com/pytorch/pytorch/issues/132366.
TLDR:
When cuda is available and users move tensors to cuda, we cannot really reuse the default pg if default pg is gloo, as lots of collectives are not supported on gloo for cuda tensors. For example, `dtensor.full_tensor()` would result in a mysterious SIGTERM when all_gather a cuda tensor using gloo. Without the change in this PR, users would have to know the context and explicitly move the cuda tensor to cpu before invoking most collectives, which I think is not so ideal UX.
Therefore, given most collectives are not supported on gloo for cuda tensors, we should init a new pg if the default pg is gloo when torch.cuda.is_available() and device_type is cuda.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132709
Approved by: https://github.com/awgu, https://github.com/wanchaol
Summary:
As a followup to https://github.com/pytorch/pytorch/pull/130454, users are hitting the cross-mesh operation error because the DeviceMesh thread ID differs between the saved vs. loaded DTensor due to thread id being different.
This is a hot fix to only consider the real thread_id in DeviceMesh hash under threaded backend, but set it to None for all other cases.
As a follow up, we need to look at the following test failures to better root cause specific DeviceMesh related failures related to MTPG, if thread_id is not included as part of the hash.
```
test/distributed/_composable/fsdp/test_fully_shard_training.py::TestFullyShardRegisteredParams::test_param_registration_after_forward
test/distributed/_tensor/test_dtensor_ops.py::TestDTensorOpsCPU::test_dtensor_op_db_column_stack_cpu_float32
```
Adding an additional is_initialized() check since APF has a test mocking the backend without pg initialized. Therefore, we need to add the is_initialized() check to avoid test failure. In real use case, we should have a pg initialized before the get_backend() check. Not sure if we want to add this specifically for the test, but temporarily adding it to unblock APF conveyor runs.
Test Plan:
```
[irisz@devgpu051.cln3 /data/users/irisz/fbsource/fbcode (38e4a0a3b)]$ buck2 test 'fbcode//mode/opt' fbcode//apf/distributed/tests:pipeline_parallel_test_cpu -- --exact 'apf/distributed/tests:pipeline_parallel_test_cpu - apf.distributed.tests.pipeline_parallel_test_cpu.PipelineParallelContextTestCPU: test_stage_pg_creation_with_different_backends'
```
Reviewed By: gag1jain
Differential Revision: D59725924
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130685
Approved by: https://github.com/gag1jain
Fixes #ISSUE_NUMBER
As a followup to https://github.com/pytorch/pytorch/pull/130454, users are hitting the cross-mesh operation error because the DeviceMesh thread ID differs between the saved vs. loaded DTensor due to thread id being different.
This is a hot fix to only consider the real thread_id in DeviceMesh hash under threaded backend, but set it to None for all other cases.
As a follow up, we need to look at the following test failures to better root cause specific DeviceMesh related failures related to MTPG, if thread_id is not included as part of the hash.
```
test/distributed/_composable/fsdp/test_fully_shard_training.py::TestFullyShardRegisteredParams::test_param_registration_after_forward
test/distributed/_tensor/test_dtensor_ops.py::TestDTensorOpsCPU::test_dtensor_op_db_column_stack_cpu_float32
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130495
Approved by: https://github.com/awgu, https://github.com/wanchaol
Ensures the submesh used to create sharded parameters are created on a
submesh that excludes the Pipeline Parallelism dimension.
Also cleans up the logic for storing placements to no longer consider the outer / global dims. Since we store an 'spmd' submesh, we can avoid this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127585
Approved by: https://github.com/wanchaol
**Overview**
This PR supports constructing an ND mesh with `from_group()` by passing in `group: List[ProcessGroup]` and `mesh: Union[torch.Tensor, "ArrayLike"]` together. The `ndim` of the device mesh returned from `from_group()` is equal to the number of `ProcessGroup`s passed. If the `ndim` is greater than 1, then the `mesh` argument is required (since there is no simple way to recover the `mesh` tensor from the process groups otherwise).
This PR also adds `mesh_dim_names` as an argument to forward to the device mesh for convenience.
<details>
<summary> Old Approach </summary>
**Overview**
- This PR mainly adds `mesh_shape` to `from_group()` so that the user can construct an ND (N > 1) device mesh from a process group. This is to unblock HSDP, where we can pass the overall data parallel process group to `from_group()` with `mesh_shape = (replicate_dim_size, shard_dim_size)` and `from_group()` will construct subgroups for the user. (The user can then get the subgroups from the submeshes.)
- Constructing the 2D `DeviceMesh` from an existing shard process group and replicate process group is hard because we cannot easily recover the array of ranks in their parent group on each rank in general.
- This PR also adds `mesh_dim_names` to `from_group()` so that the user can name the mesh dimensions of the constructed device mesh.
</details>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126258
Approved by: https://github.com/wanchaol
This PR adds a `DeviceMesh.from_group()` static method to convert an existing process group to a device mesh.
Motivation: We need `DeviceMesh.from_group()` to allow FSDP2 to interoperate with distributed libraries that do not use `DeviceMesh` for all parallelisms.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124787
Approved by: https://github.com/wanchaol
ghstack dependencies: #124651, #124741, #124767, #124768, #124780
This PR makes sure to construct the `DeviceMesh`'s `mesh` tensor on CPU device in `init_device_mesh()`. This means that we can call `init_device_mesh()` under meta-device context and still construct the correct `mesh` tensor.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124767
Approved by: https://github.com/wz337
ghstack dependencies: #124651, #124741
This PR adds a private init backend option, to tackle the issues sub
mesh creation:
in device mesh slicing we don't want to create process groups again,
so explicitly turn the group creation off it's useful
Also I think there might be more submesh creation functionality so
having this flag would ensure that there's no new group created
Differential Revision: [D56497780](https://our.internmc.facebook.com/intern/diff/D56497780)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124780
Approved by: https://github.com/awgu
Fixes#118849
Add a map for parent_to_child_mappings in _mesh_resources so we can cache and reuse submesh slicing result so that we can avoid recreating submesh and the underlying sub pg repeatedly, which could lead to funky behaviors.
We will follow up with reusing pg from the parent_mesh during submesh creation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122975
Approved by: https://github.com/wanchaol
Summary:
Original commit changeset: e52b8809c8d8
Original Phabricator Diff: D54778906
We have to backout this diff.
D54778906 seems to be causing test failures for APF blocking trunk health and hence release. Just starting to look at the issue. T182209248
Test Plan: Sandcastle
Reviewed By: satgera
Differential Revision: D54825114
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121763
Approved by: https://github.com/osalpekar
Summary:
The reuse subgroup logic is causing GLOO to timeout on two internal modelstore tests (relevant tests in test plan).
We temporarily disabling re-use subgroup during root-causing to allow the internal tests to be able to run again, as they are now omitted shown in T176426987.
Test Plan:
CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118940
Approved by: https://github.com/wanchaol
### Summary
- Added `group_name` as the third field in `dim_group_infos`.
- `DeviceMeshTest` now runs both w/ and w/0 `_USE_NATIVE_C10D_FUNCTIONAL=1` in CI.
### Other fixes
- Convert `reduceOp` to lower case before passing it into c10d_functional ops.
- Added a finalizer to handle unwaited collectives (this mirrors the treatment for Python functional collective ops).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118423
Approved by: https://github.com/wanchaol, https://github.com/LucasLLC, https://github.com/wconstab
Fixes https://github.com/pytorch/pytorch/issues/118129
Suppressions automatically added with
```
import re
with open("error_file.txt", "r") as f:
errors = f.readlines()
error_lines = {}
for error in errors:
match = re.match(r"(.*):(\d+):\d+: error:.*\[(.*)\]", error)
if match:
file_path, line_number, error_type = match.groups()
if file_path not in error_lines:
error_lines[file_path] = {}
error_lines[file_path][int(line_number)] = error_type
for file_path, lines in error_lines.items():
with open(file_path, "r") as f:
code = f.readlines()
for line_number, error_type in sorted(lines.items(), key=lambda x: x[0], reverse=True):
code[line_number - 1] = code[line_number - 1].rstrip() + f" # type: ignore[{error_type}]\n"
with open(file_path, "w") as f:
f.writelines(code)
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Co-authored-by: Catherine Lee <csl@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118533
Approved by: https://github.com/Skylion007, https://github.com/zou3519
Fixes https://github.com/pytorch/pytorch/issues/118129
Suppressions automatically added with
```
import re
with open("error_file.txt", "r") as f:
errors = f.readlines()
error_lines = {}
for error in errors:
match = re.match(r"(.*):(\d+):\d+: error:.*\[(.*)\]", error)
if match:
file_path, line_number, error_type = match.groups()
if file_path not in error_lines:
error_lines[file_path] = {}
error_lines[file_path][int(line_number)] = error_type
for file_path, lines in error_lines.items():
with open(file_path, "r") as f:
code = f.readlines()
for line_number, error_type in sorted(lines.items(), key=lambda x: x[0], reverse=True):
code[line_number - 1] = code[line_number - 1].rstrip() + f" # type: ignore[{error_type}]\n"
with open(file_path, "w") as f:
f.writelines(code)
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118533
Approved by: https://github.com/Skylion007, https://github.com/zou3519
Currently, we create new_group for sub_group pg during mesh initialization. The PR changes this so we will:
1) re-use sub_group pg if it exsits,
2) create new sub_group pg if it does not exist.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115716
Approved by: https://github.com/wanchaol