pytorch/torch/distributed/device_mesh.py
wz337 87053132ea [DeviceMesh] Remove parent mesh concept from _MeshEnv and replace by root mesh (#132339)
Previously, when we slice out a submesh from a mesh, we assign the mesh as the parent mesh of the submesh. In this case, when we have a 3D mesh topology, the parent mesh of a 1D mesh sliced out from the 3D mesh is different from the parent mesh of the same 1D mesh sliced out from the 2D submesh of the 3D mesh. For example:
```
mesh_3d = init_device_mesh("cuda", (2,2,2), ("dim0", "dim1", "dim2"))
mesh_dim0 = mesh_3d["dim0"]

mesh_2d = mesh_2d["dim0", "dim1"]
mesh_dim0_2 =  mesh_2d["dim0_2"]

# This would evaluate to be True
print(_mesh_resources.get_parent_mesh(mesh_dim0) != _mesh_resources.get_parent_mesh(mesh_dim0))
```

We can always reconstruct the mesh needed from the mesh dim names, as long as two dims come from the same root. For simplicity, we do not see the necessity of building a tree structure to represent child-parent relationship. Therefore, we are replacing the parent mesh concept with a root mesh concept in `_MeshEnv` so we would have:

```
mesh_3d = init_device_mesh("cuda", (2,2,2), ("dim0", "dim1", "dim2"))
mesh_dim0 = mesh_3d["dim0"]

mesh_2d = mesh_2d["dim0", "dim1"]
mesh_dim0_2 =  mesh_2d["dim0_2"]

# This would evaluate to be True
print(_mesh_resources.get_root_mesh(mesh_dim0) == _mesh_resources.get_root_mesh(mesh_dim0))
```
With this change, we will have two types of meshes in an environment.
1. `device_mesh != _mesh_resources.get_root_mesh(device_mesh)` means that the device_mesh is created by slicing.
2. `device_mesh == _mesh_resources.get_root_mesh(device_mesh)` means that the device_mesh is a root mesh not created through slicing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132339
Approved by: https://github.com/wanchaol
ghstack dependencies: #132310, #132311
2024-08-07 07:01:12 +00:00

730 lines
32 KiB
Python

# mypy: allow-untyped-defs
# Copyright (c) Meta Platforms, Inc. and affiliates
import logging
import math
import threading
from typing import Dict, List, Optional, Tuple, TYPE_CHECKING, Union
import torch
from torch.distributed import is_available
from torch.utils._typing_utils import not_none
__all__ = ["init_device_mesh", "DeviceMesh"]
if not is_available():
import sys
# We need to create the stubs when distributed is not available.
# Otherwise, we would fail the doc tests (```./.ci/pytorch/docs-test.sh```),
# since it would try to import ``torch.distributed.device_mesh`` or
# ``torch.distributed.init_device_mesh`` but cannot find them.
class _DeviceMeshStub:
pass
def _init_device_mesh_stub():
pass
sys.modules["torch.distributed.device_mesh"].DeviceMesh = _DeviceMeshStub # type: ignore[attr-defined]
sys.modules[
"torch.distributed.device_mesh"
].init_device_mesh = _init_device_mesh_stub # type: ignore[attr-defined]
else:
from torch.distributed.distributed_c10d import (
_find_pg_by_ranks_and_tag,
_get_default_group,
_get_group_tag,
get_backend,
get_process_group_ranks,
get_rank,
get_world_size,
init_process_group,
is_initialized,
new_group,
ProcessGroup,
)
logger = logging.getLogger(__name__)
# only import numpy typing when type checking
if TYPE_CHECKING:
try:
from numpy.typing import ArrayLike
except ImportError:
logger.warning(
"DeviceMesh requires numpy >= 1.21 to be installed for type checking"
)
class _MeshEnv(threading.local):
def __init__(self) -> None:
self.mesh_stack: List[DeviceMesh] = []
self.child_to_root_mapping: Dict[DeviceMesh, DeviceMesh] = {}
self.mesh_dim_group_options: Dict[
int, Tuple[str, Optional[ProcessGroup.Options]]
] = {}
def get_current_mesh(self) -> "DeviceMesh":
if len(self.mesh_stack) == 0:
raise RuntimeError("No device mesh is currently active!")
return self.mesh_stack[-1]
def create_sub_mesh(
self, device_mesh: "DeviceMesh", submesh_dim_names: Tuple[str, ...]
) -> "DeviceMesh":
if device_mesh != self.get_root_mesh(device_mesh):
raise RuntimeError("Cannot create a submesh from a submesh.")
# submesh_dims are the mesh dimension of the submesh in the device mesh.
submesh_dims = [
not_none(device_mesh.mesh_dim_names).index(mesh_dim_name)
for mesh_dim_name in submesh_dim_names
]
submesh_dim_sizes = [
device_mesh.mesh.size(mesh_dim) for mesh_dim in submesh_dims
]
mesh_dims_remained = list(range(device_mesh.mesh.ndim))
for submesh_dim in submesh_dims:
mesh_dims_remained.remove(submesh_dim)
# pg_ranks_by_dim is the size of [number of local ranks of the outermost submesh dimension, *sub_mesh_dims]
# This means on each local rank of the outermost slice mesh dim, we have a tensor of submesh size with
# the pg ranks of the submesh. From this, we can extract the submesh mesh tensor contains the current rank.
pg_ranks_by_dim = device_mesh.mesh.permute(
*mesh_dims_remained, *submesh_dims
).reshape(-1, *submesh_dim_sizes)
cur_rank = device_mesh.get_rank()
for mesh_nd in pg_ranks_by_dim:
submesh = DeviceMesh(
device_mesh.device_type,
mesh_nd,
mesh_dim_names=submesh_dim_names,
_init_backend=False,
)
if cur_rank in mesh_nd:
res_submesh = submesh
res_submesh._dim_group_infos = [ # type: ignore[possibly-undefined]
device_mesh._dim_group_infos[mesh_dim] for mesh_dim in submesh_dims
]
self.child_to_root_mapping[res_submesh] = device_mesh
return res_submesh
def get_root_mesh(self, device_mesh: "DeviceMesh") -> "DeviceMesh":
# If a mesh could not be found in the child_to_root_mapping, it is a root mesh itself.
# A root mesh is not created through slicing.
# We considers the root mesh of a root mesh is itself.
root_mesh = self.child_to_root_mapping.get(device_mesh, None)
return device_mesh if not root_mesh else root_mesh
def get_root_mesh_dim(self, device_mesh: "DeviceMesh") -> Optional[int]:
"""
Returns the index of the mesh dim in the root mesh.
The device_mesh passed in needs to be sliced out from the root mesh
or submesh of the root mesh.
"""
root_mesh = self.get_root_mesh(device_mesh)
child_mesh_dim_names = device_mesh.mesh_dim_names
if root_mesh and child_mesh_dim_names:
assert (
len(child_mesh_dim_names) == 1
), "The submesh can only be a 1D mesh."
child_mesh_dim_name = child_mesh_dim_names[0]
return self.get_mesh_dim_by_name(root_mesh, child_mesh_dim_name)
return None
@staticmethod
def num_devices_per_host(device_type: str) -> int:
return _get_device_handle(device_type).device_count()
@staticmethod
def num_hosts(device_type: str) -> int:
# ProcessGroup can't tell us this info so we have to infer it, assume
# homogeneous hardware for now
return get_world_size() // _MeshEnv.num_devices_per_host(device_type)
def get_mesh_dim_by_name(
self, device_mesh: "DeviceMesh", mesh_dim_name: str
) -> int:
if (
device_mesh.mesh_dim_names is None
or len(device_mesh.mesh_dim_names) == 0
):
raise KeyError(
"No `mesh_dim_names` found.",
)
if mesh_dim_name not in device_mesh.mesh_dim_names:
raise KeyError(
f"Mesh dimension '{mesh_dim_name}' does not exist.",
f"Available mesh dimensions are: mesh_dim_names={device_mesh.mesh_dim_names}",
)
return not_none(device_mesh.mesh_dim_names.index(mesh_dim_name))
def _set_mesh_dim_group_options(
self,
dim: int,
backend: str,
pg_options: Optional[ProcessGroup.Options] = None,
) -> None:
self.mesh_dim_group_options[dim] = (backend, pg_options)
_mesh_resources: _MeshEnv = _MeshEnv()
def _get_device_handle(device_type: str = "cuda"):
"""
Get the module corresponding to the device_type which is cuda or cuda-like device.
For example, when the device_type is cuda, the module `torch.cuda` is returned.
Return None when there is no corresponding module for device_type, otherwise
return the corresponding module.
"""
return getattr(torch, device_type, None)
class DeviceMesh:
"""
DeviceMesh represents a mesh of devices, where layout of devices could be
represented as a n-d dimension array, and each value of the n-d dimensional
array is the global id of the default process group ranks.
DeviceMesh could be used to describe the layout of devices across the cluster,
and serves as a proxy for communication among the device lists within the cluster.
DeviceMesh can be used as a context manager.
.. note::
DeviceMesh follows SPMD programming model, which means the same PyTorch Python program
is running on all processes/ranks in the cluster. Therefore, users need to make sure the
`mesh` array (which describes the layout of devices) should be identical across all ranks.
Inconsistent `mesh` will lead to silent hang.
Args:
device_type (str): The device type of the mesh. Currently supports: "cpu", "cuda/cuda-like".
mesh (ndarray): A multi-dimensional array or an integer tensor describing the layout
of devices, where the IDs are global IDs of the default process group.
Returns:
DeviceMesh: A :class:`DeviceMesh` object representing the device layout.
The following program runs on each process/rank in an SPMD manner. In this example, we have 2
hosts with 4 GPUs each.
A reduction over the first dimension of mesh will reduce across
columns (0, 4), .. and (3, 7), a reduction over the second dimension
of mesh reduces across rows (0, 1, 2, 3) and (4, 5, 6, 7).
Example::
>>> # xdoctest: +SKIP("no rank")
>>> from torch.distributed.device_mesh import DeviceMesh
>>>
>>> # Initialize device mesh as (2, 4) to represent the topology
>>> # of cross-host(dim 0), and within-host (dim 1).
>>> mesh = DeviceMesh(device_type="cuda", mesh=[[0, 1, 2, 3],[4, 5, 6, 7]])
"""
device_type: str
mesh: torch.Tensor
mesh_dim_names: Optional[Tuple[str, ...]]
def __init__(
self,
device_type: str,
mesh: Union[torch.Tensor, "ArrayLike"],
*,
mesh_dim_names: Optional[Tuple[str, ...]] = None,
_init_backend: bool = True,
) -> None:
self.device_type = device_type
if isinstance(mesh, torch.Tensor) and mesh.device.type != "cpu":
raise ValueError(f"`mesh` must be a CPU tensor, got {mesh}")
self.mesh = (
mesh.detach().to(dtype=torch.int)
if isinstance(mesh, torch.Tensor)
else torch.tensor(mesh, device="cpu", dtype=torch.int)
)
self.mesh_dim_names = tuple(mesh_dim_names) if mesh_dim_names else None
# private field to pre-generate DeviceMesh's hash
self._flatten_mesh_list = tuple(self.mesh.flatten().tolist())
self._thread_id = None
# Skip process group initialization if xla device or init backend is False
# TODO(yeounoh) implement DeviceMesh backend and register XLA backend.
if device_type != "xla":
# always try to create default (world) pg, even if it is not initialized
# already. The world pg is used for device mesh identity (rank) on each
# process (we need to know if the current global rank is in the mesh or not).
if _init_backend:
self._get_or_create_default_group()
self._init_process_groups()
if is_initialized() and get_backend() == "threaded":
self._thread_id = threading.get_ident()
# calculate the coordinates of the current global rank on the mesh
rank_coords = (self.mesh == get_rank()).nonzero()
assert rank_coords.size(0) in (0, 1)
self._coordinate_on_dim: Optional[List[int]] = (
rank_coords[0].tolist() if rank_coords.size(0) > 0 else None
)
def _get_or_create_default_group(self):
default_initialized = is_initialized()
if not default_initialized:
init_process_group()
world_size = get_world_size()
if self.mesh.numel() > world_size:
raise RuntimeError(
f"Mesh should not be bigger than default world size, but found {self.mesh.numel()} ranks!"
)
device_handle = _get_device_handle(self.device_type)
# TODO: if user want to pass pg_options, offer a way to do it
if not default_initialized and device_handle:
# automatically set the current cuda/cuda-like device base on num of gpu devices available in each host
# NOTE: This device selection would only work for homogeneous hardware.
num_devices_per_host = device_handle.device_count()
if (
world_size > num_devices_per_host
and world_size % num_devices_per_host != 0
):
raise RuntimeError(
f"DeviceMesh only support homogeneous hardware, but found "
f"{world_size} ranks and {num_devices_per_host} {self.device_type} devices!"
)
device_handle.set_device(get_rank() % num_devices_per_host)
return _get_default_group()
def _init_process_groups(self):
# tag/ranks/group_name associated with each mesh dimension, each
# mesh dimension should have one sub-group per rank
#
# TODO(yifu): remove tag and ranks once we fully migrate to native
# functional collectives. See details in:
# https://github.com/pytorch/pytorch/issues/93173#issuecomment-1907095208
dim_group_infos: List[Tuple[str, List[int], str]] = []
if self.mesh.ndim == 1 and self.mesh.numel() == get_world_size():
# if the mesh is the same as world_pg, we just append the default
# pg to the first dim groups, as new_group cannot have the exact
# same ranks as world
dim_group_infos.append(
(
_get_group_tag(_get_default_group()),
list(range(get_world_size())),
_get_default_group().group_name,
)
)
else:
# create sub pgs base on the mesh argument specified
for dim in range(self.mesh.ndim):
# swap the current dim to the last dim
# then reshape to flatten out other dims
pg_ranks_by_dim = self.mesh.swapdims(-1, dim).reshape(
-1, self.mesh.size(dim)
)
# multi-dim mesh, create subgroups by looping over the pg_ranks
# for each dim and append the groups
for dim_mesh in pg_ranks_by_dim:
subgroup_ranks = dim_mesh.tolist()
# Respect dim group options specified via _MeshEnv.set_dim_group_options().
# Inherit from the parent group if no options are specified for the group.
if dim in _mesh_resources.mesh_dim_group_options:
(
backend,
pg_options,
) = _mesh_resources.mesh_dim_group_options[dim]
else:
backend, pg_options = None, None
# We temporarily revert the re-use subgroup, since it breaks two internal tests.
# Temporarily reverting to resolve test timeout while root-causing.
# TODO: Add two tests to cover internal tests scenarios and re-enable reuse subgroup if exists.
dim_group = new_group(
ranks=subgroup_ranks,
backend=backend,
pg_options=pg_options,
)
# only add to dim_groups if the current rank in the subgroup
if self.get_rank() in subgroup_ranks:
if len(dim_group_infos) > dim:
raise RuntimeError(
f"Each device mesh dimension should get only one process group, but got {self.get_rank()} "
f"in {subgroup_ranks}!"
)
dim_group_infos.append(
(
_get_group_tag(not_none(dim_group)),
subgroup_ranks,
dim_group.group_name,
)
)
self._dim_group_infos = dim_group_infos
def __enter__(self) -> "DeviceMesh":
# set this mesh as the current mesh in mesh env
_mesh_resources.mesh_stack.append(self)
return self
# pyre-fixme[2]: Parameter must be annotated.
def __exit__(self, exc_type, exc_value, exc_traceback) -> None:
# pop this mesh from mesh env
_mesh_resources.mesh_stack.pop()
def __repr__(self) -> str:
device_mesh_repr = (
f"DeviceMesh('{self.device_type}', {self.mesh.tolist()})"
if not self.mesh_dim_names
else f"DeviceMesh('{self.device_type}', {self.mesh.tolist()}, mesh_dim_names={self.mesh_dim_names})"
)
return device_mesh_repr
def __hash__(self):
# lazily compute hash
self._hash = getattr(self, "_hash", None)
if not self._hash:
self._hash = hash(
(
self._flatten_mesh_list,
self.mesh.shape,
self.device_type,
self.mesh_dim_names,
self._thread_id,
)
)
return self._hash
def __eq__(self, other: object) -> bool:
if not isinstance(other, DeviceMesh):
return False
if id(self) == id(other):
return True
else:
return (
self._flatten_mesh_list == other._flatten_mesh_list
and self.mesh.shape == other.mesh.shape
and self.device_type == other.device_type
and self.mesh_dim_names == other.mesh_dim_names
and self._thread_id == other._thread_id
)
def __getitem__(
self, mesh_dim_names: Union[str, Tuple[str, ...]]
) -> "DeviceMesh":
"""
Slice the current DeviceMesh based on the mesh_dim_names given to create a submesh.
The submesh created consists of the dimensions and the communicators indicated by
``mesh_dim_names``
Args:
mesh_dim_names (Union[str, Tuple[str]]): the name or the tuple of names of the
mesh dimension of the DeviceMesh to create the submesh for.
Returns:
A :class:`DeviceMesh` object
The following program runs on each process/rank in an SPMD manner in a world size of 8.
In the first example:
Calling mesh_2d["tp"] on rank 0, 1, 2, 3 returns a 1D submesh of DeviceMesh:([0, 1, 2, 3]).
Calling mesh_2d["tp"] on rank 4, 5, 6, 7 returns a 1D submesh of DeviceMesh:([4, 5, 6, 7]).
Calling mesh_2d["dp"] on rank 0, 4 returns a 1D submesh of DeviceMesh:([0, 4]).
Calling mesh_2d["dp"] on rank 1, 5 returns a 1D submesh of DeviceMesh:([1, 5]).
Calling mesh_2d["dp"] on rank 2, 6 returns a 1D submesh of DeviceMesh:([2, 6]).
Calling mesh_2d["dp"] on rank 3, 7 returns a 1D submesh of DeviceMesh:([3, 7]).
In the second example:
Calling mesh_3d["dp", "cp"] on rank 0, 1, 4, 5 returns a 2D submesh of DeviceMesh:([[0, 1], [4, 5]]).
Calling mesh_3d["dp", "cp"] on rank 2, 3, 6, 7 returns a 2D submesh of DeviceMesh:([[2, 3], [6, 7]]).
Calling mesh_3d["cp", "dp"] on rank 0, 1, 4, 5 returns a 2D submesh of DeviceMesh:([[0, 4], [1, 5]]).
Calling mesh_3d["cp", "dp"] on rank 2, 3, 6, 7 returns a 2D submesh of DeviceMesh:([[2, 6], [3, 7]]).
Example::
>>> # xdoctest: +SKIP("no rank")
>>> from torch.distributed.device_mesh import DeviceMesh
>>>
>>> # Initialize a 2D device mesh as (2, 4) to represent the topology
>>> # of cross-host(dim 0), and within-host (dim 1).
>>> mesh_2d = init_device_mesh(device_type="cuda", (2,4), mesh_dim_names=("dp", "tp"))
>>> tp_mesh = mesh_2d["tp"]
>>> dp_mesh = mesh_2d["dp"]
>>>
>>> # Initialize a 3D mesh.
>>> mesh_3d = init_device_mesh(device_type="cuda", (2,2,2), mesh_dim_names=("dp", "pp", "cp"))
>>> # The order of the mesh_dim_names provided deteremines the order of dimensions in the submesh.
>>> dp_cp_mesh = mesh_3d["dp", "cp"]
>>> cp_dp_mesh = mesh_3d["cp", "dp"]
"""
if not self.mesh_dim_names:
raise RuntimeError("Cannot slice a DeviceMesh without mesh_dim_names!")
mesh_dim_names = (
(mesh_dim_names,) if isinstance(mesh_dim_names, str) else mesh_dim_names
)
if mesh_dim_names == self.mesh_dim_names:
return self
elif len(mesh_dim_names) > len(self.mesh_dim_names) or not all(
mesh_dim_name in self.mesh_dim_names for mesh_dim_name in mesh_dim_names
):
raise KeyError(
f"Invalid mesh_dim_name {mesh_dim_names} specified. "
"Valid mesh_dim_names should be a subsequence of valid"
f"mesh_dim_names from {self.mesh_dim_names}."
)
submesh = _mesh_resources.create_sub_mesh(self, mesh_dim_names)
return submesh
def get_group(self, mesh_dim: Optional[Union[int, str]] = None) -> ProcessGroup:
"""
Returns the single ProcessGroup specified by mesh_dim, or, if mesh_dim is not specified and the
DeviceMesh is 1-dimensional, returns the only ProcessGroup in the mesh.
Args:
mesh_dim (str/int, optional): it can be the name of the mesh dimension or the index
of the mesh dimension. Default is None.
Returns:
A :class:`ProcessGroup` object.
"""
if not hasattr(self, "_dim_group_infos"):
raise RuntimeError("DeviceMesh process groups not initialized!")
if self.mesh.ndim > 1 and mesh_dim is None:
raise RuntimeError(
f"Found the DeviceMesh have {self.mesh.ndim} dimensions",
"Optional kwarg `mesh_dim` needs to be specified when device_mesh.ndim > 1.",
"If you want to get the list of all the ProcessGroups in the DeviceMesh,"
"please use `get_all_groups()` instead.",
)
if self.mesh.ndim == 1 and mesh_dim is None:
mesh_dim = 0
else:
mesh_dim = (
_mesh_resources.get_mesh_dim_by_name(self, mesh_dim)
if isinstance(mesh_dim, str)
else mesh_dim
)
return not_none(
_find_pg_by_ranks_and_tag(*self._dim_group_infos[mesh_dim][:2]) # type: ignore[index]
)
def get_all_groups(self) -> List[ProcessGroup]:
"""
Returns a list of ProcessGroups for all mesh dimensions.
Returns:
A list of :class:`ProcessGroup` object.
"""
return [self.get_group(i) for i in range(self.mesh.ndim)]
@staticmethod
def from_group(
group: Union[ProcessGroup, List[ProcessGroup]],
device_type: str,
mesh: Optional[Union[torch.Tensor, "ArrayLike"]] = None,
*,
mesh_dim_names: Optional[Tuple[str, ...]] = None,
) -> "DeviceMesh":
"""
Contstructs a :class:`DeviceMesh` with ``device_type`` from an
existing :class:`ProcessGroup`.
The constructed device mesh has number of dimensions equal to the
number of groups passed. If more than one group is passed, then the
``mesh`` argument is required.
"""
if isinstance(group, ProcessGroup):
group_ranks = get_process_group_ranks(group)
if (
isinstance(mesh, torch.Tensor) and mesh.tolist() != group_ranks
) or (mesh is not None and mesh != group_ranks):
raise ValueError(
f"Invalid mesh {str(mesh)} for ProcessGroup with ranks {group_ranks}"
)
mesh = torch.tensor(group_ranks, device="cpu", dtype=torch.int)
device_mesh = DeviceMesh(
device_type,
mesh,
mesh_dim_names=mesh_dim_names,
_init_backend=False,
)
device_mesh._dim_group_infos = [
(_get_group_tag(group), group_ranks, group.group_name)
]
return device_mesh
groups = list(group)
if len(groups) == 0:
raise ValueError("Expects at least one ProcessGroup to be passed")
if mesh is None:
raise ValueError("Must pass mesh if passing multiple ProcessGroups")
mesh = (
mesh.detach().to(dtype=torch.int, device="cpu")
if isinstance(mesh, torch.Tensor)
else torch.tensor(mesh, device="cpu", dtype=torch.int)
)
if mesh.ndim != len(groups):
raise ValueError(
"Expects mesh with ndim equal to number of ProcessGroups but got "
f"mesh {mesh.tolist()} and {len(groups)} ProcessGroups"
)
device_mesh = DeviceMesh(
device_type, mesh, mesh_dim_names=mesh_dim_names, _init_backend=False
)
device_mesh._dim_group_infos = [
(
_get_group_tag(group),
get_process_group_ranks(group),
group.group_name,
)
for group in groups
]
return device_mesh
def size(self, mesh_dim: Optional[int] = None) -> int:
return self.mesh.numel() if mesh_dim is None else self.mesh.size(mesh_dim)
@property
def ndim(self) -> int:
return self.mesh.ndim
@property
def shape(self) -> Tuple[int, ...]:
return tuple(self.mesh.shape)
def get_rank(self) -> int:
"""
Returns the current global rank.
"""
return get_rank()
def get_local_rank(self, mesh_dim: Optional[Union[int, str]] = None) -> int:
"""
Returns the local rank of the given mesh_dim of the DeviceMesh.
Args:
mesh_dim (str/int, optional): it can be the name of the mesh dimension or the index
of the mesh dimension. Default is None.
Returns:
An integer denotes the local rank.
The following program runs on each process/rank in an SPMD manner. In this example, we have 2
hosts with 4 GPUs each.
Calling mesh_2d.get_local_rank(mesh_dim=0) on rank 0, 1, 2, 3 would return 0.
Calling mesh_2d.get_local_rank(mesh_dim=0) on rank 4, 5, 6, 7 would return 1.
Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 0, 4 would return 0.
Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 1, 5 would return 1.
Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 2, 6 would return 2.
Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 3, 7 would return 3.
Example::
>>> # xdoctest: +SKIP("no rank")
>>> from torch.distributed.device_mesh import DeviceMesh
>>>
>>> # Initialize device mesh as (2, 4) to represent the topology
>>> # of cross-host(dim 0), and within-host (dim 1).
>>> mesh = DeviceMesh(device_type="cuda", mesh=[[0, 1, 2, 3],[4, 5, 6, 7]])
"""
if self.ndim > 1 and mesh_dim is None:
raise RuntimeError(
f"Found the DeviceMesh have {self.mesh.ndim} dimensions",
"Optional kwarg `mesh_dim` needs to be specified when device_mesh.ndim > 1.",
)
elif mesh_dim is None:
mesh_dim = 0
mesh_dim_group = not_none(self.get_group(mesh_dim))
assert isinstance(
mesh_dim_group, ProcessGroup
), "We expect ProcessGroup before calling `get_rank`!"
return not_none(get_rank(mesh_dim_group))
def get_coordinate(self) -> Optional[List[int]]:
"""
Return the relative indices of this rank relative to all
dimensions of the mesh. If this rank is not part of the mesh, return None.
"""
return self._coordinate_on_dim if self._coordinate_on_dim else None
def init_device_mesh(
device_type: str,
mesh_shape: Tuple[int, ...],
*,
mesh_dim_names: Optional[Tuple[str, ...]] = None,
) -> DeviceMesh:
"""
Initializes a `DeviceMesh` based on `device_type`, `mesh_shape`, and `mesh_dim_names` parameters.
This creates a DeviceMesh with an n-dimensional array layout, where `n` is the length of `mesh_shape`.
If `mesh_dim_names` is provided, each dimension is labeled as `mesh_dim_names[i]`.
.. note::
`init_device_mesh` follows SPMD programming model, meaning the same PyTorch Python program
runs on all processes/ranks in the cluster. Ensure `mesh_shape` (the dimensions of the nD array
describing device layout) is identical across all ranks. Inconsistent `mesh_shape` may lead to hanging.
.. note::
If no process group is found, init_device_mesh will initialize distributed process group/groups
required for distributed communications behind the scene.
Args:
device_type (str): The device type of the mesh. Currently supports: "cpu", "cuda/cuda-like".
Passing in a device type with a GPU index, such as "cuda:0", is not allowed.
mesh_shape (Tuple[int]): A tuple defining the dimensions of the multi-dimensional array
describing the layout of devices.
mesh_dim_names (Tuple[str], optional): A tuple of mesh dimension names to assign to each dimension
of the multi-dimensional array describing the layout of devices. Its length must match the length
of `mesh_shape`. Each string in `mesh_dim_names` must be unique.
Returns:
DeviceMesh: A :class:`DeviceMesh` object representing the device layout.
Example::
>>> # xdoctest: +SKIP("no rank")
>>> from torch.distributed.device_mesh import init_device_mesh
>>>
>>> mesh_1d = init_device_mesh("cuda", mesh_shape=(8,))
>>> mesh_2d = init_device_mesh("cuda", mesh_shape=(2, 8), mesh_dim_names=("dp", "tp"))
"""
if mesh_dim_names is not None:
if len(set(mesh_dim_names)) != len(mesh_dim_names):
raise RuntimeError(
"Each mesh_dim_name must be unique.",
f"Found repeated mesh_dim_name in mesh_dim_names {mesh_dim_names}",
)
if len(mesh_shape) != len(mesh_dim_names):
raise RuntimeError(
"mesh_shape and mesh_dim_names should have same length!",
f"Found len(mesh_dim_names): {len(mesh_dim_names)} and len(mesh_shape):{len(mesh_shape)}.",
)
# assume valid device types are all letters
if device_type and not device_type.isalpha():
raise RuntimeError(
f"Device type with GPU index is not supported but got {device_type}. ",
"If you maintained a 'torch.device' object, it's recommended to pass in 'device.type'.",
)
# Always initialize the mesh's tensor on CPU, regardless of what the
# external device type has been set to be (e.g. meta)
with torch.device("cpu"):
mesh = torch.arange(math.prod(mesh_shape), dtype=torch.int).view(mesh_shape)
device_mesh = DeviceMesh(
device_type=device_type,
mesh=mesh,
mesh_dim_names=mesh_dim_names,
)
return device_mesh