The PyTorch Dispatcher's "no kernel found for DispatchKey" error message
is a bit long and winded. This PR adds a way to add a custom error
callback and changes the CustomOp API to use the custom error callback
to deliver better error messages.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101015
Approved by: https://github.com/ezyang
Previously, to specify e.g. int[], a user needed to do Tuple[int, ...].
This PR changes it to Sequence[int].
Bikeshedding: we could totally just use List[int] instead. The types
that the user gives us that we use to infer a schema is not entirely
faithful: for example, we convert `int` to SymInt.
I didn't feel strongly between Sequence[int] and List[int] so I went
with the more faithful one, plus Python recommends that you use Sequence
for input arguments (over list or tuple), though we don't subscribe to
that philosophy in general.
Test Plan:
- new test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101190
Approved by: https://github.com/bdhirsh
This PR tells the custom op tests to destroy all custom ops with
specified namespace after each test.
The general problem is that if a test fails, the custom op isn't cleaned
up. We could fix this via try-finally, but using a tearDown method
seemed like a nice O(1) solution.
Test Plan:
- deleted some foo._destroy, verified that the test suite passes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100980
Approved by: https://github.com/soulitzer, https://github.com/bdhirsh
Previously the error message went through torch.library. This PR changes
it so that on each custom_op.impl_* call:
- we store a (function, location) tuple
- if a (function, location) tuple exists already, then we raise an
error.
This logic already existed for the abstract impl (the impl for meta and
fake tensors), so this PR just extends it to the others.
Test Plan:
- new test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100979
Approved by: https://github.com/bdhirsh, https://github.com/soulitzer
Enables PyLint error codes implemented in ruff. These are un-opinionated static analysis checks on Python code that finds common bugs. After running all the PLE error codes that are implemented in ruff, I fixed the bugs, added a few ignores for malformed Python code that is part of our JIT test script, and finally added a few ignores for a false positive on PLE0605 and submitted an issue upstream to fix in ruff https://github.com/charliermarsh/ruff/issues/4345 .
Common bugs found here include analysis for malformed logging format calls, bad string format calls, invalid escape sequences, and more.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101079
Approved by: https://github.com/malfet
This adds a new operator debugprims::load_storage which does the unusual thing of loading a tensor from disk (via ContentStoreReader). This will be used in a later PR to implement delta debugging in the minifier, even when the repro is too big to fit into memory. The way it works is that you specify a name of the tensor you want to load, as well as enough metadata to reconstruct the tensor, if the store isn't available. If there is an active content store, we read and return the tensor from that store; otherwise we use `rand_strided` to create it.
I needed some infra improvements to do this:
* `custom_op` now supports factory functions. Factory functions have to be registered specially via `impl_factory`
* I modified `clone_input` to also support dtype conversion, which I use to change the dtype of a loaded tensor if necessary.
* ContentStore needs to work with a device argument, so we torch.load directly to the correct device. This is for fake tensor support.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100519
Approved by: https://github.com/zou3519, https://github.com/anijain2305
This PR changes the CustomOp API. There are now two ways to create a
CustomOp object.
Method 1: with no schema string. We will infer what the schema string is
from your type annotations
```py
@custom_op("customlib::foo")
def foo(x: Tensor) -> Tensor:
...
```
Method 2: with a schema string, if the inference doesn't work well.
```py
@custom_op("customlib::foo", "(Tensor x) -> Tensor")
def foo(x):
...
```
Some details:
- We support most combinations of {Tensor, Number, int, float, bool} and
{Optional[typ], Tuple[typ, ...]} as inputs. The combinations we support are mostly
from me reading native_functions.yaml.
- We support only Tensor or Tuple of Tensor of fixed size returns.
- A lot of this PR is input validation for both of the above two
methods. For example, when a user provides a manual schema string, then
their function must not have any type annotations and the number of args
and arg names must match the schema.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100127
Approved by: https://github.com/ezyang
This PR makes a CustomOp live forever. The motivation for it living
forever is that:
1. It doesn't matter to a user if it lives forever or not
2. it is a higher-level abstraction over OpOverload, and OpOverload
assumes that OpOverload lives forever.
The only place where it matters that CustomOp lives forever is testing:
I don't want to generate random names for my CustomOp objects. To
resolve the testing problem, This PR adds a CustomOp._destroy() that
clears all the C++ state, including the OpOverloadPacket, that is
associated with the CustomOp object.
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100114
Approved by: https://github.com/ezyang
This PR:
- adds an abstract registration API for CustomOp (CustomOp.impl_abstract)
that is used for both FakeTensor and meta tensors
- deletes CustomOp.impl_meta
The user story behind this API is that it is the one-stop shop for
registering implementations for data-less Tensors, i.e. FakeTensor and
Meta tensor.
The abstract implementation provided by the user:
- gets registered as the FakeTensor implementation AND the meta formula
- can be written like a regular meta formula. If the user decides that
they need something more special (i.e. data-dependent output shape),
then they are able to query a current context object (FakeTensorImplCtx)
that has methods to construct new unbacked symints.
Caveats:
- we really need to make FakeTensor/FakeTensorMode public. Otherwise,
there isn't a way for the user to interactively test that their abstract
implementation is correct without running through large pieces of the
PT2 stack (make_fx or torch.compile).
- We do not memoize the symints produced by
ctx.create_unbacked_symint(). It is possible to do this in the
future, but it is difficult to do soundly and I am not convinced of
the utility outside of the nonzero() usecase mentioned in #95399
Public API:
- More docs will come when we actually expose this API to users by
putting it in a public namespace, unless you folks want it now.
- The APIs mentioned in `__all__` are the ones that are intended to be
public.
Test Plan:
- Updated existing custom_op_db operators
- Added new numpy_nonzero and numpy_nms operations that test operations
that have data-dependendent output shape.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99439
Approved by: https://github.com/ezyang
This PR introduces CustomOp, a wrapper around a dispatcher operator that allows
users to define custom operators. It adds the skeleton for CustomOp and
some very simple behavior: as of this PR:
- one can create a CustomOp for an operator that does not have inplace or aliasing
- give it CPU/CUDA and Meta implementations
- and trace it into a graph via make_fx.
The design follows
https://docs.google.com/document/d/19Uc5OUCA187q9BZggJb70RT2ZoSTDoG5QQkJkZwd25M/edit
Concretely, we implement the following things mentioned in the doc in this PR:
- Entrypoint 1 (CustomOp.define, creating a new custom operator)
- impl (to define device-specific code) and impl_meta (to define meta
formulas)
The goal for the short term is to get the code to a state where it can be trialed
by the export folks. On top of this PR, the blockers are:
- adding Entrypoint 3 (CustomOp.from_existing)
- adding a way to do data-dependent shape formulas
These will come in future PRs since this one is getting long.
Things that will come in the longer-near-term (before 2.1):
- adding the other entrypoints mentioned in the doc (2 & 3)
- more safety checks and better error messages
- support for views and mutation
- support for defining autograd formulas
- support for functionalization
- making this API public (it's private right now).
Test Plan:
- added a new test case, TestCustomOp. It mostly tests a bunch of error
cases.
- added OpInfos for custom operators and hooked these up to
test_proxy_tensor to test that they work with make_fx. These custom
operators were based off of the ones in the autograd_function_db.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98440
Approved by: https://github.com/ezyang
In C++ we have TORCH_LIBRARY_FRAGMENT. This PR adds the same
functionality to the Python torch.library API.
The motivation for this is: for the simple custom op API, we don't want
users to need to deal with Library objects. One way to hide this from
users is to create library fragments.
Test Plan:
- tests that you can create multiple fragments and def+impl operators on each.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98439
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
Running an operator registered in python returning a symint will result in the following error:
```
RuntimeError: Unable to cast Python instance of type <class 'torch.SymInt'> to C++ type 'long'
```
The interaction of 2 things make the issue being triggered:
- We use boxed kernel here. For boxed kernel, we need convert py::object to IValue in torch/csrc/autograd/python_variable.cpp pushPyOutToStack .
- In the schema parsing code in torch/csrc/jit/frontend/schema_type_parser.cpp SchemaTypeParser::parseFakeAndRealType , if a SymInt is found, we register a Int type instead (not sure why we do this), and register SymInt as the real type.
The result is we would convert an SymInt to int in pushPyOutToStack and cause the issue.
The fix is to use real type when we convert py::object to IValue.
BTW, registering the same op using C++ API does not trigger the issue.
```
TORCH_LIBRARY(clib, m) {
m.def("sqsum(SymInt a, SymInt b) -> SymInt", [](SymInt a, SymInt b) -> SymInt {
return a * a + b * b;
});
}
```
The reason is, the kernel registered in C++ is unboxed kernel and it does not trigger the code path above that converts an py::object to IValue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95240
Approved by: https://github.com/larryliu0820, https://github.com/ezyang
Applies some more harmless pyupgrades. This one gets rid of deprecated aliases in unit_tests and more upgrades yield for loops into yield from generators which are more performance and propagates more information / exceptions from original generator. This is the modern recommended way of forwarding generators.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94309
Approved by: https://github.com/albanD
We would handle py::error_already_set correctly from pybind11 bindings,
but not from our regular TH bindings, which meant that anything from
an inner pybind11 function call was getting unconditionally transformed
into a RuntimeError. Not too many cases where we do this, but
PySymNodeImpl was one of them.
To test this, I need to raise a non-RuntimeError from a function which
is invoked from pybind11 and then propagated to a non-pybind11 call
site. I introduce GuardOnDataDependentSymNode for expressly this
purpose (this is how I discovered the bug anyway.)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93238
Approved by: https://github.com/Skylion007, https://github.com/albanD
Previously, our handling for contiguity was inconsistent in the following ways:
- is_strides_like 2d/3d and is_non_overlapping_and_dense always were computed
based on sizes_and_strides_, even if you had symbolic ints
- Furthermore, even if you set custom policy for strides, these quantities were
not overridable by subclasses
- Furthermore, we didn't even store these fields on ExtraMeta
- We duplicate implementations of compute_contiguous (plain, channels last,
channels last 3d)
- We inconsistently called refresh_numel()/refresh_contiguous(), versus
recomputing it ourselves
This factor makes a consistent strategy for all of the boolean fields, and
for numel computation. After this refactor:
- All layout boolean fields are interposable via strides policy
and can be overridden from Python; you will never access a garbage field
- All layout boolean fields are on ExtraMeta
- You can always call refresh_numel/contiguous, no matter if your Tensor is
contiguous or not
- The numel/layout boolean fields are always populated consistently with
the sizes strides fields (either on Tensor or ExtraMeta), even if you
have custom policy
- There is only one implementation of the actual computation logic
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: [D39907696](https://our.internmc.facebook.com/intern/diff/D39907696)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85858
Approved by: https://github.com/albanD
Based on @ezyang's suggestion, mode stack now has "one true mode" which is the _only_ mode that can ever be active at the C++ level. That mode's torch dispatch is just to take the top mode in the stack, reenable itself (if we aren't at the end of the mode stack), and run the top mode's torch_{dispatch|function}
This maintains that in the middle of a mode's torch dispatch, the mode itself will not be active. It changes the function the user has to call to see what the current mode is (no longer queries the C++, it's python only) but allows the user to also see the entire mode stack easily
Removes `enable_torch_dispatch_mode` and `.restore()` since neither makes sense in this new setup
### Background
Why do we want this? Well, a pretty common pattern that was coming up was that users had to do something like
```python
## PRE-PR UX
def f(mode):
with mode.restore(): # user needs to understand this restore thing?
...
with Mode() as m:
pass
f(m)
```
Many users were getting error from forgetting to call `.restore` or from forgetting to add the (tbh weird) "mode instantiation" step where they use the mode as a context manager with an empty body. Really, they wanted to treat modes like context managers and just write
```python
## FROM FEEDBACK, USER DESIRED CODE. POSSIBLE POST-PR
def f(mode):
with mode:
...
f(Mode())
```
** Technical Details **
With the old mode stack, we basically had a linked list so the mode itself could only be used once and had a fixed parent. In this new design, the mode stack is just a python list that we're pushing to and popping from. There's only one mode that's ever active at the C++ level and it runs the next mode in the Python list. The modes don't have state on them anymore
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84774
Approved by: https://github.com/ezyang, https://github.com/zou3519
Signed-off-by: Edward Z. Yang <ezyangfb.com>
From @ezyang's original PR:
There are a number of situations where we have non-backend kernels (e.g., CompositeImplicitAutograd, batching rules) which we would like to port to Python, but we have no way to integrate these ports with the overall system while using preexisting C++ registrations otherwise. This PR changes that by introducing a Python dispatcher (which can have its own kernels directly in Python), which can be interpose over ordinary C++ dispatch. The ingredients:
We introduce a new PythonDispatcher dispatch key, that has the same tenor as FuncTorchDynamicLayerFrontMode: it works by getting triggered before every other dispatch key in the dispatch key, and shunting to a Python implementation
The Python dispatcher is a per-interpreter global object that is enabled/disabled via the guard EnablePythonDispatcher/DisablePythonDispatcher. We don't make it compositional as I have no idea what a compositional version of this feature would look like. Because it is global, we don't need to memory manage it and so I use a simpler SafePyHandle (newly added) to control access to this pointer from non-Python C++. Like __torch_dispatch__, we use PyInterpreter to get to the Python interpreter to handle the dispatch.
I need to reimplement dispatch table computation logic in Python. To do this, I expose a lot more helper functions for doing computations on alias dispatch keys and similar. I also improve the pybind11 handling for DispatchKey so that you can either accept the pybind11 bound enum or a string; this simplifies our binding code. See https://github.com/pybind/pybind11/issues/483#issuecomment-1237418106 for how this works; the technique is generally useful.
I need to be able to call backend fallbacks. I do this by permitting you to call at a dispatch key which doesn't have a kernel for the operator; if the kernel doesn't exist, we check the backend fallback table instead.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84826
Approved by: https://github.com/ezyang
Make it so that it is valid to set metadata after detach calls, like `x.detach().resize_(...)`.
This technically lifts some restrictions around `.data`. This PR means that you can now technically call `x.data.resize_(...)`, which can now directly resize `x` instead of erroring.
My understanding: Before the tensor-variable merge, when `x` and `x.data` were really different tensors, you could resize `x.data` independently of `x`, and during the merge, this error was added to avoid silent confusing behavior changes.
It was agreed that this error has been around long enough (several years) that it's acceptable to drop. cc @albanD @ezyang.
(Ed already had a prototype PR [here](https://github.com/pytorch/pytorch/pull/83545) - I ended up making one to try to slog through test failures).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83590
Approved by: https://github.com/ezyang
I noticed I was missing tensor creations with modes when I tried
to delete proxy tensor. This was the cause.
Hypothetically, all PyInterpreter calls could get this treatment.
But I think it only matters for detach; the rest do not return
Tensors and most modes will not be interested in them.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83372
Approved by: https://github.com/zou3519
Fixes#81774
`TensorOptions` arguments in the JIT schema are optional, but in the Python API these were being translated to non-optional but with a default value. This change makes the arguments accept `None` for consistency with the JIT schema. However, it also means that `dtype=c10::nullopt` was previously completely untested so this also fixes several related bugs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82241
Approved by: https://github.com/ngimel
Currently we have 2 ways of doing the same thing for torch dispatch and function modes:
`with push_torch_dispatch_mode(X)` or `with X.push(...)`
is now the equivalent of doing
`with X()`
This removes the first API (which is older and private so we don't need to go through a deprecation cycle)
There is some risk here that this might land race with a PR that uses the old API but in general it seems like most are using the `with X()` API or `enable_torch_dispatch_mode(X())` which isn't getting removed.
EDIT: left the `with X.push(...)` API since there were ~3 land races with that over the past day or so. But made it give a warning and ask users to use the other API
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78215
Approved by: https://github.com/ezyang
This PR is doing a few interrelated things, all of which are necessary to get correctness. Read the comment in torch/fx/experimental/proxy_tensor.py for the high level overview.
Let's break down the parts of this PR:
* Bug fix where `enable_torch_dispatch_mode` with `None` doesn't work. This make `enable_torch_dispatch_mode(current_mode.inner)` work which is the basis for how we temporarily disable fake tensor mode.
* Bug fix for when fake tensor mode is combined with a non-mode tensor subclass. This actually could be ablated from this PR but it affects where the logic for allowing non fake tensor inputs with lift goes, so it's all in here in one go. There are some relevant tests for the fix in fake tensor, but it turns out I didn't need this because I'm always using proxy tensors as a mode (which ensures the ordering is right.)
* New `lift_fresh` view operator. Note that like lift, we have to manually write the functionalize kernel for these functions.
* The actual change, which is to save constants when we see them in the proxy tensor mode, and then propagate them as we go (because otherwise you'll handle mutations on constants incorrectly--see test.)
This is mildly BC-breaking if anyone was previously interposing on
at::lift, but this operator was relatively new and I checked
functorch which has no explicit reference to lift. So I think it
should not be too disruptive.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81192
Approved by: https://github.com/samdow, https://github.com/bdhirsh
I noticed that in some situations torch dispatch modes were being
invoked with a mode active, which isn't supposed to happen (we
disable modes before calling into the user mode.) I also noticed that
I was getting a warning that I had a deprecated non-static definition of
torch dispatch on an argument even though there wasn't any.
It turns out this is because modes were part of the overloaded arguments
list in the Python fallback kernel for torch dispatch. This is wrong;
instead we should rely on the actual dispatching function to consult
modes. This makes the code simpler.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80992
Approved by: https://github.com/zou3519