pytorch/test/test_python_dispatch.py
Edward Z. Yang fca03eeec1 Make proxy tensor support item() calls on torch.tensor constants (#81192)
This PR is doing a few interrelated things, all of which are necessary to get correctness. Read the comment in torch/fx/experimental/proxy_tensor.py for the high level overview.

Let's break down the parts of this PR:

* Bug fix where `enable_torch_dispatch_mode` with `None` doesn't work. This make `enable_torch_dispatch_mode(current_mode.inner)` work which is the basis for how we temporarily disable fake tensor mode.
* Bug fix for when fake tensor mode is combined with a non-mode tensor subclass. This actually could be ablated from this PR but it affects where the logic for allowing non fake tensor inputs with lift goes, so it's all in here in one go. There are some relevant tests for the fix in fake tensor, but it turns out I didn't need this because I'm always using proxy tensors as a mode (which ensures the ordering is right.)
* New `lift_fresh` view operator.  Note that like lift, we have to manually write the functionalize kernel for these functions.
* The actual change, which is to save constants when we see them in the proxy tensor mode, and then propagate them as we go (because otherwise you'll handle mutations on constants incorrectly--see test.)

This is mildly BC-breaking if anyone was previously interposing on
at::lift, but this operator was relatively new and I checked
functorch which has no explicit reference to lift.  So I think it
should not be too disruptive.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81192
Approved by: https://github.com/samdow, https://github.com/bdhirsh
2022-07-15 03:53:40 +00:00

1879 lines
72 KiB
Python

# Owner(s): ["module: __torch_dispatch__"]
import tempfile
import torch
from copy import deepcopy
from torch.library import Library
from torch.cuda.jiterator import _create_jit_fn
import unittest
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ROCM, IS_WINDOWS
from torch.utils._mode_utils import no_dispatch, find_outermost_mode, all_same_mode, all_same_mode_scope
from torch.testing._internal.logging_tensor import LoggingTensor, LoggingTensorReentrant, LoggingTensorMode, \
log_input, capture_logs, capture_logs_with_logging_tensor_mode
from torch.utils._pytree import tree_map
from torch.utils._python_dispatch import enable_torch_dispatch_mode, push_torch_dispatch_mode, TorchDispatchMode
import logging
from functools import partial
class TestPythonRegistration(TestCase):
def test_override_aten_ops_with_multiple_libraries(self) -> None:
x = torch.tensor([1, 2])
my_lib1 = Library("aten", "IMPL")
my_lib2 = Library("aten", "IMPL")
# Example 1
def my_neg(*args, **kwargs):
return args[0]._neg_view()
# Now we are secretly making the operator a view op so autograd needs to know how
# to handle it
my_lib1.impl('neg', my_neg, "AutogradCPU")
self.assertTrue(torch.neg(x).is_neg())
# RuntimeError: impl("aten::neg", ...):
# Explicitly provided namespace (aten) in operator name does not match ...
with self.assertRaisesRegex(RuntimeError, "operator name does not match namespace"):
my_lib3 = Library("foo", "DEF")
my_lib3.define("neg(Tensor self) -> Tensor")
my_lib3.impl(torch.ops.aten.neg.default, my_neg, "AutogradCPU")
del my_lib3
# Example 2
def my_mul(*args, **kwargs):
return torch.zeros_like(args[0])
# torch.ops.aten.mul.Tensor
my_lib2.impl("aten::mul.Tensor", my_mul, "ZeroTensor")
y = torch._efficientzerotensor(2)
self.assertFalse(torch.mul(x, y)._is_zerotensor())
# Assert that a user can't override the behavior of a (ns, op, dispatch_key)
# combination if someone overrided the behavior for the same before them
with self.assertRaisesRegex(RuntimeError, 'already a kernel registered from python'):
my_lib2.impl(torch.ops.aten.mul.Tensor, my_mul, "ZeroTensor")
del my_lib1
# Validate that lib2 is not affected by removing lib1
self.assertFalse(torch.mul(x, y)._is_zerotensor())
del my_lib2
# Validate that the old behavior is restored for neg and mul
self.assertFalse(torch.neg(x).is_neg())
self.assertTrue(torch.mul(x, y)._is_zerotensor())
def test_error_if_fn_not_callable(self):
with self.assertRaisesRegex(TypeError, "Input function is required to be a callable"):
my_lib = Library("aten", "IMPL")
my_lib.impl(torch.ops.aten.neg.default, [], "AutogradCPU")
def test_override_cpu_sum(self) -> None:
# Example 1
run = [False]
def my_sum(*args, **kwargs):
run[0] = True
return args[0]
my_lib1 = Library("aten", "IMPL")
my_lib1.impl('aten::sum', my_sum, "CPU")
x = torch.tensor([1, 2])
self.assertEqual(torch.sum(x), x)
self.assertTrue(run[0])
del my_lib1
# Validate that the old behavior is restored for sum
self.assertEqual(torch.sum(x), torch.tensor(3))
def test_override_cuda_with_jiterator(self) -> None:
def override_where_cuda() -> None:
# Example 1: Invert the behavior of where's condition input
not_where_code_string = '''
template <typename T> T inverted_where(bool cond, T a, T b){
return !cond ? a : b;
}
'''
jitted_where = _create_jit_fn(not_where_code_string)
CALLED = [False]
def inverted_where(*args, **kwargs):
CALLED[0] = True
return jitted_where(*args, **kwargs)
# overriding where's cuda kernel with Jiterator generated kernel
my_lib = Library("aten", "IMPL")
my_lib.impl('aten::where.self', inverted_where, "CUDA")
device = 'cuda'
cond = torch.tensor([True, True, False], device=device, dtype=torch.bool)
x = torch.tensor([1, 2, 3], device=device)
y = torch.tensor([-1, -2, -3], device=device)
self.assertEqual(torch.where(cond, x, y), torch.tensor([-1, -2, 3]))
self.assertTrue(CALLED[0])
del my_lib
# behavior restored after deregistration
self.assertEqual(torch.where(cond, x, y), torch.tensor([1, 2, -3]))
def override_gelu_cuda() -> None:
# Example 2: Use relu to approximate gelu for faster compute
fastest_gelu_code_string = '''
template <typename T> T fast_gelu(T a){
return a > 0 ? a : 0;
}
'''
jitted_gelu = _create_jit_fn(fastest_gelu_code_string)
CALLED = [False]
def fast_gelu(*args, **kwargs):
CALLED[0] = True
return jitted_gelu(*args, **kwargs)
# overriding gelu's cuda kernel with Jiterator generated relu kernel
my_lib = Library("aten", "IMPL")
my_lib.impl('aten::gelu', fast_gelu, "CUDA")
x = torch.rand([3, 3], device='cuda', dtype=torch.float)
self.assertEqual(torch.nn.functional.gelu(x), torch.nn.functional.relu(x))
self.assertTrue(CALLED[0])
del my_lib
# behavior restored after deregistration
self.assertNotEqual(torch.nn.functional.gelu(x), torch.nn.functional.relu(x))
def override_exp_cuda() -> None:
# Example 3: Preventing exp from exploding for float16
clipped_exp_code_string = '''
template <typename T> T clipped_exp(T a){
return a > T(10.0) ? T(22026.4657948) : exp(a);
}
'''
jitted_exp = _create_jit_fn(clipped_exp_code_string)
CALLED = [False]
def clipped_exp(*args, **kwargs):
CALLED[0] = True
return jitted_exp(*args, **kwargs)
# overriding exp's cuda kernel with clipped_exp kernel
my_lib = Library("aten", "IMPL")
my_lib.impl('aten::exp', clipped_exp, "CUDA")
x = torch.tensor([0.0, 100.0], device='cuda', dtype=torch.float16)
self.assertEqual(torch.exp(x), torch.tensor([1.0, 22026.4657948], dtype=torch.float16))
self.assertTrue(CALLED[0])
del my_lib
# behavior restored after deregistration
self.assertEqual(torch.exp(x), torch.tensor([1.0, torch.inf], dtype=torch.float16))
def override_add_cuda() -> None:
# Example 4: simulate a hardware bug, where the adder is always off by 1
buggy_add_code_string = '''
template <typename T> T buggy_add(T a, T b){
return a + b + T(1);
}
'''
jitted_add = _create_jit_fn(buggy_add_code_string)
CALLED = [False]
def buggy_add(*args, **kwargs):
CALLED[0] = True
return jitted_add(*args, **kwargs)
my_lib = Library("aten", "IMPL")
my_lib.impl('aten::add.Tensor', buggy_add, "CUDA")
x_cpu = torch.rand([3, 3], device='cpu')
y_cpu = torch.rand([3], device='cpu')
x_cuda = x_cpu.cuda()
y_cuda = y_cpu.cuda()
self.assertEqual(x_cuda + y_cuda, x_cpu + y_cpu + 1)
self.assertTrue(CALLED[0])
del my_lib
# behavior restored after deregistration
self.assertEqual(x_cuda + y_cuda, x_cpu + y_cpu)
if torch.cuda.is_available() and not TEST_WITH_ROCM:
override_where_cuda()
override_gelu_cuda()
override_exp_cuda()
override_add_cuda()
def test_extend_library_with_dispatch_key_arg(self):
def my_sum(*args, **kwargs):
return args[0]
my_lib1 = Library("aten", "IMPL", dispatch_key="CPU")
# RuntimeError: Explicitly provided dispatch key (Conjugate) is
# inconsistent with the dispatch key of the enclosing TORCH_LIBRARY_IMPL block
with self.assertRaisesRegex(RuntimeError, "inconsistent with the dispatch key"):
my_lib1.impl('sum', my_sum, "Conjugate")
my_lib1.impl('aten::sum', my_sum)
x = torch.tensor([1, 2])
self.assertEqual(torch.sum(x), x)
del my_lib1
def test_create_new_library(self) -> None:
my_lib1 = Library("foo", "DEF")
my_lib1.define("sum(Tensor self) -> Tensor")
# Example 1
@torch.library.impl(my_lib1, "sum", "CPU")
def my_sum(*args, **kwargs):
return args[0]
x = torch.tensor([1, 2])
self.assertEqual(torch.ops.foo.sum(x), x)
my_lib2 = Library("foo", "IMPL")
# Example 2
@torch.library.impl(my_lib2, torch.ops.foo.sum.default, "ZeroTensor")
def my_sum_zt(*args, **kwargs):
if args[0]._is_zerotensor():
return torch._efficientzerotensor(args[0].shape)
else:
return args[0]
y = torch._efficientzerotensor(3)
self.assertTrue(torch.ops.foo.sum(y)._is_zerotensor())
self.assertEqual(torch.ops.foo.sum(x), x)
del my_lib2
del my_lib1
@unittest.skipIf(IS_WINDOWS, "Skipped under Windows")
def test_alias_analysis(self):
def test_helper(alias_analysis=""):
my_lib1 = Library("foo", "DEF")
called = [0]
@torch.library.define(my_lib1, "_op() -> None", alias_analysis=alias_analysis)
def _op(*args, **kwargs):
called[0] += 1
@torch.jit.script
def _test():
torch.ops.foo._op()
assert "foo::_op" in str(_test.graph)
with self.assertRaises(AssertionError):
test_helper("") # alias_analysis="FROM_SCHEMA"
test_helper("CONSERVATIVE")
def test_error_for_unsupported_ns_or_kind(self) -> None:
with self.assertRaisesRegex(ValueError, "Unsupported kind"):
my_lib1 = Library("myns", "BLA")
with self.assertRaisesRegex(ValueError, "reserved namespace"):
my_lib1 = Library("prim", "DEF")
class TestPythonDispatch(TestCase):
def test_basic(self) -> None:
with capture_logs() as logs:
x = LoggingTensor(torch.tensor([3.0]), requires_grad=True)
log_input("x", x)
y = x * x
saved_x = y.grad_fn._saved_self
grad_y = LoggingTensor(torch.tensor([1.0]))
log_input("grad_y", grad_y)
g, = torch.autograd.grad((y,), (x,), (grad_y,))
self.assertEqual(g.elem, torch.tensor([6.0]))
with torch.no_grad():
self.assertEqual(saved_x, x)
self.assertEqual(saved_x._version, x._version)
x.add_(2)
self.assertEqual(saved_x, x)
# TODO: figure out why broken
# self.assertEqual(saved_x._version, x._version)
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = torch._ops.aten.mul.Tensor($0, $0)
$2 = input('grad_y')
True = torch._ops.aten.is_same_size.default($1, $2)
$3 = torch._ops.aten.mul.Tensor($2, $0)
$4 = torch._ops.aten.mul.Tensor($2, $0)
$5 = torch._ops.aten.add.Tensor($4, $3)''')
def test_out(self) -> None:
with capture_logs() as logs:
x = LoggingTensor(torch.ones(1))
y = LoggingTensor(torch.zeros(1))
log_input("x", x)
log_input("y", y)
torch.abs(x, out=y)
self.assertEqual(y.elem, torch.ones(1))
# TODO: arguably this shouldn't pass and we should complain
# that out isn't a kwarg
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = input('y')
$2 = torch._ops.aten.abs.out($0, out=$1)''')
def test_kwarg_only(self) -> None:
with capture_logs() as logs:
x = LoggingTensor(torch.ones(1))
y = LoggingTensor(torch.ones(1, 1))
z = LoggingTensor(torch.ones(1))
log_input("x", x)
log_input("y", y)
log_input("z", z)
torch.addmv(x, y, z)
torch.addmv(x, y, z, beta=1)
torch.addmv(x, y, z, beta=2)
torch.addmv(x, y, z, alpha=2)
torch.addmv(x, y, z, beta=2, alpha=2)
# The expectation is that beta/alpha don't show up when they're
# defaulted. This is even if the user explicitly specified it.
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = input('y')
$2 = input('z')
$3 = torch._ops.aten.addmv.default($0, $1, $2)
$4 = torch._ops.aten.addmv.default($0, $1, $2)
$5 = torch._ops.aten.addmv.default($0, $1, $2, beta=2)
$6 = torch._ops.aten.addmv.default($0, $1, $2, alpha=2)
$7 = torch._ops.aten.addmv.default($0, $1, $2, beta=2, alpha=2)''')
def test_kwarg_only_and_positional_default(self) -> None:
with capture_logs() as logs:
x = LoggingTensor(torch.ones(1))
log_input("x", x)
torch.ops.aten._foobar(x)
torch.ops.aten._foobar(x, False)
torch.ops.aten._foobar(x, arg3=False)
torch.ops.aten._foobar(x, False, arg3=False)
# What we are testing here is that we omit arg2
# if it is defaulted, even if a kwarg is set
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = torch._ops.aten._foobar.default($0)
$2 = torch._ops.aten._foobar.default($0, False)
$3 = torch._ops.aten._foobar.default($0, arg3=False)
$4 = torch._ops.aten._foobar.default($0, False, arg3=False)''')
def test_produce_real_type(self) -> None:
with capture_logs() as logs:
x = LoggingTensor(torch.ones(2, 2))
log_input("x", x)
x.to(dtype=torch.double) # non-optional dtype
torch.cumprod(x, 0, dtype=torch.double) # optional dtype
x[:, 1].contiguous(memory_format=torch.contiguous_format) # optional memory format
# There doesn't appear to be any layout signatures which are
# triggerable using tensor subclasses (need to use a mode)
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = torch._ops.aten._to_copy.default($0, dtype=torch.float64)
$2 = torch._ops.aten.cumprod.default($0, 0, dtype=torch.float64)
$3 = torch._ops.aten.slice.Tensor($0, 0, 0, 9223372036854775807)
$4 = torch._ops.aten.select.int($3, 1, 1)
$5 = torch._ops.aten.clone.default($4, memory_format=torch.contiguous_format)''')
def test_list_ret(self) -> None:
# test all sequence types are permissible returns
for list_type in (list, tuple):
class A(torch._C._TensorBase):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
if func.overloadpacket == torch.ops.aten.split:
with no_dispatch():
return list_type(torch.split(*args))
else:
raise AssertionError(f"unrecognized func: {func}")
self.assertEqual(
torch.split(A(torch.tensor([0, 1])), 2),
torch.split(torch.tensor([0, 1]), 2)
)
def test_invalid_ret(self) -> None:
# test invalid return gets reasonable error message
class A(torch._C._TensorBase):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
return "arf"
# Wobbles depending on NDEBUG mode of pybind11
self.assertRaisesRegex(
RuntimeError, "Unable to cast", lambda: A(torch.zeros(1)).neg(),
)
self.assertRaisesRegexp(
RuntimeError, "Unable to cast", lambda: A(torch.zeros(1)).detach(),
)
def test_detach_appears_twice_when_called_once(self) -> None:
with capture_logs() as logs:
x = LoggingTensor(torch.tensor([3.0]), requires_grad=True)
log_input("x", x)
x.detach()
# FIXME: We actually want this to emit a single detach. However,
# it currently emits two, for reasons unclear to us. Leaving
# this test here to make sure we don't regress even further (it
# would be bad if calling .detach() once emits 3+ detaches).
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = torch._ops.aten.detach.default($0)
$2 = torch._ops.aten.detach.default($1)''')
def test_metadata_change_not_allowed(self) -> None:
x = LoggingTensor(torch.ones(1))
y = x.data
self.assertIsInstance(y, LoggingTensor)
self.assertRaises(RuntimeError, lambda: y.resize_(4))
def test_storage(self) -> None:
# For now, just make sure it doesn't crash. Ideally, we should
# return some virtual storage that is safe to work with
x = LoggingTensor(torch.ones(1))
self.assertRaises(RuntimeError, lambda: x.storage())
def test_make_wrapper_subclass_noalloc(self) -> None:
# This is ludicrously big (8TB) and this should pass because wrapper
# subclasses don't allocate
torch.Tensor._make_wrapper_subclass(LoggingTensor, (1000000000000,))
def test_version(self) -> None:
x = LoggingTensor(torch.ones(1))
prev_vc = x._version
x.detach().add_(2)
cur_vc = x._version
self.assertNotEqual(prev_vc, cur_vc)
x.data.add_(2)
self.assertEqual(cur_vc, x._version)
def test_subclass_priority(self) -> None:
class ErrorA(RuntimeError):
pass
class ErrorB(RuntimeError):
pass
# The big tests for code coverage are test_precedence_semantics in
# test_overrides.py; this is just to make sure it is wired up at all
# correctly for __torch_dispatch__
class A(torch.Tensor):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
raise ErrorA
class B(A):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
raise ErrorB
self.assertRaises(ErrorA, lambda: torch.add(A(torch.empty(1)), A(torch.empty(1))))
self.assertRaises(ErrorB, lambda: torch.add(A(torch.empty(1)), B(torch.empty(1))))
self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), A(torch.empty(1))))
self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), B(torch.empty(1))))
def test_format(self) -> None:
x = LoggingTensor(torch.ones(1))
s1 = str(x)
s2 = repr(x)
s3 = f"{x}"
self.assertExpectedInline(s1, """LoggingTensor(tensor([1.]))""")
self.assertEqual(s1, s2)
self.assertEqual(s1, s3)
def test_custom_autograd(self) -> None:
escape = [None]
class Square(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
y = x ** 2
ctx.save_for_backward(x)
return y
@staticmethod
def backward(ctx, grad_output):
assert isinstance(grad_output, LoggingTensor)
x, = ctx.saved_tensors
assert isinstance(x, LoggingTensor)
escape[0] = x
return grad_output * 2 * x
with capture_logs() as logs:
x = LoggingTensor(torch.ones(1), requires_grad=True)
log_input("x", x)
x.grad = LoggingTensor(torch.zeros(1))
log_input("x.grad", x.grad)
y = Square.apply(x)
grad_output = LoggingTensor(torch.ones(1))
log_input("grad_output", grad_output)
y.backward(grad_output)
with torch.no_grad():
self.assertEqual(escape[0], x)
self.assertEqual(escape[0]._version, x._version)
# TODO: figure out why x.requires_grad = False doesn't
# trigger an error for LoggingTensor
x.add_(2)
self.assertEqual(escape[0], x)
# TODO: figure out why this is broken
# self.assertEqual(escape[0]._version, x._version)
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = input('x.grad')
$2 = torch._ops.aten.pow.Tensor_Scalar($0, 2)
$3 = input('grad_output')
True = torch._ops.aten.is_same_size.default($2, $3)
$4 = torch._ops.aten.mul.Tensor($3, 2)
$5 = torch._ops.aten.mul.Tensor($4, $0)
$6 = torch._ops.aten.add_.Tensor($1, $5)''')
def test_subclass_creation(self):
# Make sure these statements runs without error
# In particular checking that when internal detach returns
# subclasses, these are cleanly overwritten.
class Foo(torch.Tensor):
pass
err_msg = "subclass Foo but.*already associated to a python object of type LoggingTensor"
with self.assertRaisesRegex(RuntimeError, err_msg):
a = torch.Tensor._make_subclass(Foo, LoggingTensor(torch.rand(2)))
with self.assertRaisesRegex(RuntimeError, err_msg):
b = LoggingTensor(torch.rand(2)).as_subclass(Foo)
with self.assertRaisesRegex(RuntimeError, err_msg):
Foo(LoggingTensor(torch.rand(2)))
with self.assertRaisesRegex(TypeError, "Foo must define __torch_dispatch__"):
torch.Tensor._make_wrapper_subclass(Foo, (2, 2))
def test_new_ones(self) -> None:
class MyTensor(torch.Tensor):
__torch_function__ = torch._C._disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
return MyTensor(3)
self.assertEqual(type(MyTensor(2).new_ones(3)), MyTensor)
def test_like(self) -> None:
class MyTensor(torch.Tensor):
__torch_function__ = torch._C._disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
return MyTensor(3)
for f in ["empty", "ones", "rand", "randn", "zeros"]:
f_name = f + "_like"
self.assertEqual(type(getattr(torch, f_name)(MyTensor(2))), MyTensor)
self.assertEqual(type(torch.full_like(MyTensor(2), 1.)), MyTensor)
self.assertEqual(type(torch.randint_like(MyTensor(2), high=3)), MyTensor)
def test_make_wrapper_subclass_propagates_metadata(self) -> None:
class WrapperTensor(torch.Tensor):
elem: torch.Tensor
__slots__ = ['elem']
@staticmethod
def __new__(cls, elem, *args, **kwargs):
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
cls, elem.size(),
dtype=elem.dtype, layout=elem.layout,
device=elem.device, requires_grad=elem.requires_grad,
strides=elem.stride(), storage_offset=elem.storage_offset())
r.elem = elem
return r
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
raise RuntimeError("NYI")
# non-contiguous strides, non-zero storage offset
x = torch.randn(4, 6).t().diagonal(offset=2)
y = WrapperTensor(x)
self.assertEqual(y.size(), x.size())
self.assertEqual(y.stride(), x.stride())
self.assertEqual(y.storage_offset(), x.storage_offset())
def test_wrapper_subclass_serializes(self) -> None:
with tempfile.TemporaryFile() as f:
x = LoggingTensor(torch.randn(3))
torch.save(x, f)
f.seek(0)
x_loaded = torch.load(f)
self.assertTrue(type(x_loaded) is type(x))
self.assertEqual(x.elem, x_loaded.elem)
self.assertFalse(x is x_loaded)
def test_deepcopy_wrapper_subclass(self) -> None:
x = LoggingTensor(torch.randn(3))
x_copy = deepcopy(x)
self.assertTrue(type(x_copy) is type(x))
self.assertEqual(x.elem, x_copy.elem)
self.assertFalse(x is x_copy)
def test_deepcopy_wrapper_subclass_with_clone_returning_different_type(self) -> None:
class MyWrapperTensor(torch.Tensor):
elem: torch.Tensor
__slots__ = ['elem']
@staticmethod
def __new__(cls, elem, *args, **kwargs):
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
cls, elem.size(),
dtype=elem.dtype, layout=elem.layout,
device=elem.device, requires_grad=elem.requires_grad,
strides=elem.stride(), storage_offset=elem.storage_offset())
r.elem = elem
return r
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
if func.overloadpacket.__name__ == "clone":
# Return a plain tensor from clone().
return args[0].elem.clone()
raise RuntimeError("NYI")
# NB: The default Tensor.__torch_function__ implementation called for deepcopy
# disables __torch_function__ by the time we get to clone(), so there is no need to
# explicitly disable __torch_function__ for this subclass.
x = MyWrapperTensor(torch.randn(3))
with self.assertRaisesRegex(RuntimeError,
"for which cloning returns another instance of the same subclass"):
x_copy = deepcopy(x)
def test_deepcopy_non_wrapper_subclass(self) -> None:
# Ensure correct error is thrown for common error cases.
class SubTensorError1(torch.Tensor):
# Default implementation of new_empty() returns a plain tensor.
pass
class SubTensorError2(torch.Tensor):
# new_empty() incorrectly returns a different type (i.e. a plain tensor).
def new_empty(self, shape):
return torch.Tensor(shape)
for error_cls in [SubTensorError1, SubTensorError2]:
x = error_cls(3)
with self.assertRaisesRegex(RuntimeError,
"for which that function returns another instance of the same subclass"):
x_copy = deepcopy(x)
# Ensure a correctly implemented new_empty() causes deepcopy() to work.
class SubTensorSuccess(torch.Tensor):
def new_empty(self, shape):
return type(self)(shape)
x = SubTensorSuccess(3)
x_copy = deepcopy(x)
self.assertIs(type(x_copy), type(x))
def test_index_put_where_only_index_is_subclass(self) -> None:
called_funcs = []
class MyTensor(torch.Tensor):
__torch_function__ = torch._C._disabled_torch_function_impl
elem: torch.Tensor
__slots__ = ['elem']
@staticmethod
def __new__(cls, elem, *args, **kwargs):
r = torch.Tensor._make_wrapper_subclass(
cls, elem.size(),
dtype=elem.dtype, layout=elem.layout,
device=elem.device, requires_grad=elem.requires_grad
)
r.elem = elem
return r
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
called_funcs.append(func)
return MyTensor(torch.tensor(3))
x = torch.randn(3, 3)
idxs = (MyTensor(torch.tensor(0)),)
v = torch.randn(1)
res = x.index_put_(idxs, v)
self.assertEqual(called_funcs, [torch.ops.aten.index_put_.default])
def test_enable_torch_dispatch_mode_error(self) -> None:
z = LoggingTensor(torch.empty([]))
with self.assertRaisesRegex(ValueError, "expected to get TorchDispatchMode, Tensor-like class, or None"):
with enable_torch_dispatch_mode(z):
pass
def test_enable_torch_dispatch_mode_basic(self) -> None:
with capture_logs(is_mode=True) as logs:
with enable_torch_dispatch_mode(LoggingTensorMode(inner=None)):
torch.empty([])
self.assertExpectedInline('\n'.join(logs), ("$0 = torch._ops.aten.empty.SymInt([], dtype=torch.float32," +
" device=device(type='cpu'), pin_memory=False)"))
def test_enable_torch_dispatch_mode_unrelated_tensors(self) -> None:
x = torch.randn([])
y = torch.randn([])
with capture_logs(is_mode=True) as logs:
with enable_torch_dispatch_mode(LoggingTensorMode(inner=None)):
x + y
self.assertExpectedInline('\n'.join(logs), """\
$2 = torch._ops.aten.add.Tensor($0, $1)""")
def test_nested_push_regular(self):
with LoggingTensorMode.push() as mode:
# This previously errored
with LoggingTensorMode():
pass
def test_nested_push_logging_tensor_mode(self):
x = torch.randn([])
y = torch.randn([])
with capture_logs(is_mode=True) as logs:
with push_torch_dispatch_mode(LoggingTensorMode):
with push_torch_dispatch_mode(LoggingTensorMode):
torch.empty([])
x + y
self.assertExpectedInline('\n'.join(logs), """\
$0 = torch._ops.aten.empty.SymInt([], dtype=torch.float32, device=device(type='cpu'), pin_memory=False)
$0 = torch._ops.aten.empty.SymInt([], dtype=torch.float32, device=device(type='cpu'), pin_memory=False)
$3 = torch._ops.aten.add.Tensor($1, $2)
$3 = torch._ops.aten.add.Tensor($1, $2)""")
def test_capture_logs_with_torch_dispatch_mode(self):
x = torch.randn([])
y = torch.randn([])
with capture_logs_with_logging_tensor_mode() as logs:
torch.empty([])
x + y
self.assertExpectedInline('\n'.join(logs), """\
$0 = torch._ops.aten.empty.SymInt([], dtype=torch.float32, device=device(type='cpu'), pin_memory=False)
$3 = torch._ops.aten.add.Tensor($1, $2)""")
x = torch.randn([])
y = torch.randn([])
with capture_logs_with_logging_tensor_mode() as logs1:
with capture_logs_with_logging_tensor_mode() as logs2:
torch.empty([])
x + y
self.assertExpectedInline('\n'.join(logs2), """\
$0 = torch._ops.aten.empty.SymInt([], dtype=torch.float32, device=device(type='cpu'), pin_memory=False)
$0 = torch._ops.aten.empty.SymInt([], dtype=torch.float32, device=device(type='cpu'), pin_memory=False)
$3 = torch._ops.aten.add.Tensor($1, $2)
$3 = torch._ops.aten.add.Tensor($1, $2)""")
self.assertEqual(logs1, logs2)
def test_enable_torch_dispatch_mode_subclass_priority(self) -> None:
class ErrorA(RuntimeError):
pass
class ErrorB(RuntimeError):
pass
class A(torch.Tensor):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
raise ErrorA
class B(A):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
raise ErrorB
a = A(torch.empty(1))
b = B(torch.empty(1))
with self.assertRaises(ErrorA):
a + a
with self.assertRaises(ErrorB):
a + b
# B has precedence over A due to the subclass relationship yet
# modes take precedence over arguments
with self.assertRaises(ErrorA):
with enable_torch_dispatch_mode(A):
b + b
with self.assertRaises(ErrorB):
with enable_torch_dispatch_mode(B):
a + a
with self.assertRaises(ErrorB):
with enable_torch_dispatch_mode(B):
a + b
def test_enable_torch_dispatch_mode_respects_no_dispatch(self) -> None:
with capture_logs(is_mode=True) as logs1:
with enable_torch_dispatch_mode(LoggingTensorMode(inner=None)):
torch.ones([2, 3])
with no_dispatch():
torch.ones([2, 3])
with capture_logs(is_mode=True) as logs2:
with enable_torch_dispatch_mode(LoggingTensorMode(inner=None)):
torch.ones([2, 3])
self.assertEqual(logs1, logs2)
def test_enable_torch_dispatch_mode_instance(self) -> None:
class TestMode(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return func(*args, **kwargs)
x = TestMode()
y = torch.tensor([2.])
with enable_torch_dispatch_mode(x):
y + y
def test_nested_enable_torch_dispatch_mode(self) -> None:
class A(LoggingTensorMode):
pass
with self.assertRaisesRegex(ValueError, "there is already an active mode"):
with enable_torch_dispatch_mode(LoggingTensorMode(inner=None)):
with enable_torch_dispatch_mode(A(inner=None)):
pass
# For nesting to be a noop, they need to be the same instance
with self.assertRaisesRegex(ValueError, "there is already an active mode"):
with enable_torch_dispatch_mode(LoggingTensorMode(inner=None)):
with enable_torch_dispatch_mode(LoggingTensorMode(inner=None)):
pass
def test_nesting_with_same_enable_torch_dispatch_mode(self) -> None:
# "nested" enable_torch_dispatch_modes are allowed if they're the same mode (same instance).
# It's the equivalent of a noop, so it will only write once to the log
x = torch.tensor([3.])
mode = LoggingTensorMode(inner=None)
with capture_logs(is_mode=True) as logs:
log_input("x", x)
with enable_torch_dispatch_mode(mode):
with enable_torch_dispatch_mode(mode):
x + x
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = torch._ops.aten.add.Tensor($0, $0)''')
def test_enable_torch_dispatch_mode_ignore_preexisting(self):
class A(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
raise AssertionError
x = torch.tensor([3.])
with capture_logs(is_mode=True) as logs:
with enable_torch_dispatch_mode(A(inner=None)):
with enable_torch_dispatch_mode(LoggingTensorMode(inner=None), ignore_preexisting=True):
x + x
self.assertExpectedInline('\n'.join(logs), """\
$1 = torch._ops.aten.add.Tensor($0, $0)""")
def test_enable_torch_dispatch_mode_replace(self):
class A(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
raise AssertionError
x = torch.tensor([3.])
outer_mode = A(inner=None)
with capture_logs(is_mode=True) as logs:
with enable_torch_dispatch_mode(outer_mode):
with enable_torch_dispatch_mode(LoggingTensorMode(inner=None), replace=outer_mode):
x + x
self.assertExpectedInline('\n'.join(logs), """\
$1 = torch._ops.aten.add.Tensor($0, $0)""")
def test_exception_handling(self):
class A(torch.Tensor):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
if func.__name__ == 'randn.default':
raise RuntimeError()
return cls(torch.zeros(()))
with enable_torch_dispatch_mode(A):
try:
torch.randn(())
except RuntimeError:
pass
self.assertTrue(isinstance(torch.zeros(()), A))
def test_push_torch_dispatch_mode(self) -> None:
class ErrorA(RuntimeError):
def __init__(self, msg=None):
return super().__init__(msg)
class A(TorchDispatchMode):
def __init__(self, msg=None):
self.msg = msg
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
raise ErrorA(self.msg)
x = torch.randn(3)
with self.assertRaises(ErrorA):
with push_torch_dispatch_mode(A):
torch.add(x, x)
with self.assertRaisesRegex(ErrorA, r"partial constructor"):
with push_torch_dispatch_mode(partial(A, "partial constructor")):
x + x
def test_torch_dispatch_mode_stack(self) -> None:
logs = []
class Logger(TorchDispatchMode):
def __init__(self, name):
self.name = name
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
logs.append(self.name)
return func(*args, **kwargs)
x = torch.randn(1)
with Logger.push("A"):
with Logger.push("B"):
x + x
self.assertEqual(logs, ["B", "A"])
def test_push_mode_instance_errors(self):
class A(TorchDispatchMode):
pass
with self.assertRaisesRegex(ValueError, 'instance of TorchDispatchMode'):
with push_torch_dispatch_mode(A()):
pass
def test_push_mode_returns_unrelated(self):
with self.assertRaisesRegex(ValueError, 'return a TorchDispatchMode'):
with push_torch_dispatch_mode(lambda *, inner: None):
pass
def test_ctor_no_inner(self):
class A(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
return torch.zeros([])
with enable_torch_dispatch_mode(A()):
x = torch.randn((3, 4))
self.assertEqual(x, torch.zeros([]))
def test_with_mode(self):
class ErrorA(RuntimeError):
pass
class A(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
raise ErrorA()
with self.assertRaises(ErrorA):
with A():
torch.empty([])
def test_with_mode_created_separately(self):
class ErrorA(RuntimeError):
pass
class A(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
raise ErrorA()
x = A()
with self.assertRaises(ErrorA):
with x:
torch.empty([])
def test_with_nested_modes(self):
class ErrorA(RuntimeError):
def __init__(self, msg):
return super().__init__(msg)
class A(TorchDispatchMode):
def __init__(self, msg):
self.msg = msg
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
raise ErrorA(self.msg)
with self.assertRaisesRegex(ErrorA, "layer2"):
with A("layer1"):
with A("layer2"):
torch.empty([])
def test_make_subclass_with_modes(self):
class ModeTensor(torch.Tensor):
def __new__(cls, elem, mode):
r = torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
r.elem = elem
r.mode = mode
return r
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
modes = (arg.mode for arg in args + tuple(kwargs.values()) if isinstance(arg, ModeTensor))
outermost = find_outermost_mode(modes)
with outermost.restore():
return func(*args, **kwargs)
class Mode(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
def unwrap(e):
if isinstance(e, ModeTensor):
return e.elem
else:
return e
def wrap(t):
if isinstance(t, torch.Tensor):
return ModeTensor(t, self)
else:
return t
return wrap(func(*tuple(unwrap(a) for a in args), **kwargs))
class BasicMode(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
return func(*args, **kwargs)
x = torch.tensor(4.)
with Mode():
y = x + x
z = y + y
self.assertIsInstance(y, ModeTensor)
self.assertIsInstance(z, ModeTensor)
with Mode():
with BasicMode(): # we can't nest two modes that call make_subclass because it only accepts vanilla tensors
y = x + x
z = y + y
self.assertIsInstance(y, ModeTensor)
self.assertIsInstance(z, ModeTensor)
assert self.assertRaisesRegex(RuntimeError, "subclass Mode but.* associated to a python object of type Mode")
def test_notimplemented_mode(self):
sub_count = 0
class PoliteMode(TorchDispatchMode):
def __init__(self):
self.pre_count = 0
self.post_count = 0
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
self.pre_count += 1
if any(t is not torch.Tensor for t in types):
return NotImplemented
self.post_count += 1
return func(*args, **kwargs)
class SubTensor(torch.Tensor):
def __new__(cls, elem):
r = torch.Tensor._make_wrapper_subclass(cls, elem.shape)
r.elem = elem
return r
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
nonlocal sub_count
sub_count += 1
def unwrap(t):
if isinstance(t, SubTensor):
return t.elem
else:
return t
return func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs))
__torch_function__ = torch._C._disabled_torch_function_impl
a = SubTensor(torch.randn(2))
with PoliteMode() as mode:
a.abs()
self.assertEqual(mode.pre_count, 2)
self.assertEqual(mode.post_count, 1)
self.assertEqual(sub_count, 1)
# make sure this doesn't error
with PoliteMode():
with PoliteMode():
a.abs()
def test_disable_mode(self):
class FailEverythingMode(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
raise RuntimeError("arf")
with FailEverythingMode() as m:
self.assertRaises(RuntimeError, lambda: torch.ones([2, 3]))
with enable_torch_dispatch_mode(None, replace=m):
torch.ones([2, 3])
def test_make_wrapper_subclass_with_modes(self):
class ModeTensor(torch.Tensor):
def __new__(cls, elem, mode):
r = torch.Tensor._make_wrapper_subclass(cls, elem.shape)
r.elem = elem
r.mode = mode
return r
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
modes = (arg.mode for arg in args + tuple(kwargs.values()) if isinstance(arg, ModeTensor))
outermost = find_outermost_mode(modes)
with outermost.restore():
return func(*args, **kwargs)
class Mode(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
def unwrap(e):
if isinstance(e, ModeTensor):
return e.elem
else:
return e
def wrap(t):
if isinstance(t, torch.Tensor):
return ModeTensor(t, self)
else:
return t
return wrap(func(*tuple(unwrap(a) for a in args), **kwargs))
x = torch.tensor(4.)
with Mode():
y = x + x
z = y + y
self.assertIsInstance(y, ModeTensor)
self.assertIsInstance(z, ModeTensor)
with Mode():
with Mode():
y = x + x
z = y + y
self.assertIsInstance(y, ModeTensor)
self.assertIsInstance(z, ModeTensor)
def test_error_using_same_mode(self):
class A(TorchDispatchMode):
pass
x = A()
with x:
with self.assertRaisesRegex(RuntimeError, "has already been used as a mode. Please use a fresh version"):
with x:
pass
def test_error_using_class_method_on_mode(self):
class A(TorchDispatchMode):
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
return func(args, kwargs)
x = torch.tensor(5.)
with self.assertRaisesRegex(RuntimeError, "should be a normal method not a class method"):
with A():
x + x
def test_error_with_ancestor(self):
x = LoggingTensorMode()
with x:
pass
with self.assertRaisesRegex(RuntimeError, "has already been used as a mode. Please use a fresh version"):
with x:
pass
def test_restore_errors(self):
with self.assertRaisesRegex(RuntimeError, "does not have any ancestors. Use the standard version instead"):
with LoggingTensorMode().restore():
pass
x = LoggingTensorMode()
with LoggingTensorMode():
with x:
pass
with LoggingTensorMode(): # a different mode instance than the one above
with self.assertRaisesRegex(RuntimeError, "the current mode is not its ancestor"):
with x.restore():
pass
def test_restore_ancestor_mode(self):
x = LoggingTensorMode()
y = LoggingTensorMode()
with x:
with y:
pass
z = LoggingTensorMode()
with y.restore():
with z:
pass
with x.restore():
with z.restore():
pass
def test_find_outermost_mode(self):
self.assertIsNone(find_outermost_mode([None, None]))
x = LoggingTensorMode()
y = LoggingTensorMode()
with x:
with y:
pass
self.assertEqual(find_outermost_mode([x, y]), y)
z = LoggingTensorMode()
with y.restore():
with z:
pass
self.assertEqual(find_outermost_mode([z, x]), z)
i = LoggingTensorMode()
with self.assertRaisesRegex(RuntimeError, "doesn't have ancestors set so the ordering with other modes"):
find_outermost_mode([i, x, y, z])
k = LoggingTensorMode()
with k:
pass
with self.assertRaisesRegex(RuntimeError, "don't come from the same scope"):
find_outermost_mode([k, x, y, z])
def test_all_same_mode(self):
x = LoggingTensorMode()
y = LoggingTensorMode()
self.assertTrue(all_same_mode([x, x, x]))
self.assertFalse(all_same_mode([x, None]))
self.assertFalse(all_same_mode([x, y]))
def test_all_same_mode_scope(self):
x = LoggingTensorMode()
y = LoggingTensorMode()
z = LoggingTensorMode()
with x:
with y:
pass
with x.restore():
with z:
pass
i = LoggingTensorMode()
self.assertTrue(all_same_mode_scope([x, y], y))
self.assertTrue(all_same_mode_scope([x, z], z))
self.assertFalse(all_same_mode_scope([x, y, z], y))
self.assertFalse(all_same_mode_scope([x, y, z], z))
self.assertFalse(all_same_mode_scope([x, y, i], y))
no_ancestor = LoggingTensorMode()
self.assertFalse(all_same_mode_scope([x, y, z], no_ancestor))
def test_tolist_numpy_with_torch_dispatch_mode(self) -> None:
x = LoggingTensor(torch.tensor([2.0, 3.0]))
with self.assertRaisesRegex(RuntimeError, "is not supported for tensor subclasses."):
x.tolist()
with self.assertRaisesRegex(RuntimeError, "is not supported for tensor subclasses."):
x.numpy()
with self.assertRaises(AssertionError):
self.assertEqual(x, None)
def test_enable_torch_dispatch_mode_subclass_autograd_device_check(self) -> None:
class NonWrapperSubclass(torch.Tensor):
elem: torch.Tensor
__slots__ = ['elem']
@staticmethod
def __new__(cls, elem, *args, **kwargs):
# Wrong device here!
r = torch.Tensor._make_subclass(cls, elem.to("meta"), elem.requires_grad)
# ...the real tensor is held as an element on the tensor.
r.elem = elem
return r
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
def unwrap(e):
return e.elem if isinstance(e, NonWrapperSubclass) else e
def wrap(e):
return NonWrapperSubclass(e) if isinstance(e, torch.Tensor) else e
rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)))
logging.getLogger("NonWrapperSubclass").info(f"{func.__module__}.{func.__name__}", args, kwargs, rs)
return rs
x = NonWrapperSubclass(torch.tensor([3.0, 4.0], requires_grad=True))
y = torch.randn(2, requires_grad=True)
z = x * y
self.assertIsInstance(z, NonWrapperSubclass)
z.sum().backward(torch.tensor(1))
self.assertEqual(x.grad, y)
self.assertEqual(y.grad, x)
def test_none_wrapping(self):
# A Tensor subclass that returns None when doing add
# See LoggingTensor above for more details on the subclass
class SubclassWithNone(torch.Tensor):
@staticmethod
def __new__(cls, elem, *args, **kwargs):
r = torch.Tensor._make_wrapper_subclass(
cls, elem.size(),
dtype=elem.dtype, layout=elem.layout,
device=elem.device, requires_grad=elem.requires_grad
)
r.elem = elem
return r
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
def unwrap(e):
return e.elem if isinstance(e, SubclassWithNone) else e
def wrap(e):
return SubclassWithNone(e) if isinstance(e, torch.Tensor) else e
rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)))
if func.overloadpacket.__name__ == "add":
return None
else:
return rs
x = SubclassWithNone(torch.rand(2))
# Make sure both run without error
self.assertIsInstance(x * 2, SubclassWithNone)
self.assertIsNone(x + 2)
x.requires_grad_()
out = x.acos().sum()
# The backward of acos does add then rsqrt so here we make sure that the
# undefined Tensor generated by the user code is nicely handled.
# If acos formula changes in the future, this can be replaced by any other
# function that does add then something in the backward in a composite way
with self.assertRaisesRegex(RuntimeError, "but got None"):
out.backward()
def test_storage_can_be_converted_to_python_object(self):
s = torch.Storage()
z = LoggingTensor(torch.empty([]))
z.set_(s)
def test_autograd_in_attr(self):
# We want the wrapped Tensor to require gradients!
true_t = torch.rand(2, requires_grad=True)
t = LoggingTensorReentrant(true_t)
out = t + 2
self.assertFalse(out.requires_grad)
self.assertIsNone(out.grad_fn)
self.assertTrue(out.elem.requires_grad)
self.assertIsNotNone(out.elem.grad_fn)
with self.assertRaisesRegex(RuntimeError, "does not require grad"):
out.sum().backward()
out.elem.sum().backward()
self.assertIsNone(t.grad)
self.assertIsNotNone(t.elem.grad)
def test_dispatch_super_call(self):
called = []
class SubTensor(torch.Tensor):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem)
__torch_function__ = torch._C._disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
called.append(func)
return super().__torch_dispatch__(func, types, args, kwargs)
x = torch.randn(2)
y = torch.randn(2)
self.assertEqual(SubTensor(x) + SubTensor(y), x + y)
self.assertEqual(called, [torch.ops.aten.add.Tensor])
def test_dispatch_super_call_list_arg(self):
called = []
class SubTensorWithListArg(torch.Tensor):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem)
__torch_function__ = torch._C._disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
called.append(func)
return super().__torch_dispatch__(func, types, list(args), kwargs)
x = torch.randn(2)
self.assertEqual(SubTensorWithListArg(x).neg(), x.neg())
self.assertEqual(called, [torch.ops.aten.neg.default])
def test_dispatch_super_dont_autograd(self):
called = []
class SubTensor(torch.Tensor):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
__torch_function__ = torch._C._disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
called.append(func)
# This argument still requires grad because it was passed
# through directly...
self.assertTrue(args[0].requires_grad)
r = super().__torch_dispatch__(func, types, args, kwargs)
# But the output better not require grad, because that means
# you did autograd again in torch dispatch (oops)
self.assertFalse(r.requires_grad)
return r
x = SubTensor(torch.randn(2, requires_grad=True))
x.neg()
self.assertEqual(called, [torch.ops.aten.neg.default])
def test_set_data(self):
called = 0
class SubTensor(torch.Tensor):
__torch_function__ = torch._C._disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
nonlocal called
called += 1
return super().__torch_dispatch__(func, types, args, kwargs)
x = SubTensor(torch.empty(2))
x.data
self.assertEqual(called, 1)
x.data = torch.empty(2)
self.assertEqual(called, 1)
x.data
self.assertEqual(called, 2)
self.assertIs(type(x), SubTensor)
x.set_(torch.empty(2))
self.assertEqual(called, 3)
x.data
self.assertEqual(called, 4)
self.assertIs(type(x), SubTensor)
def test_construct_int_tensor(self):
class SubTensor(torch.Tensor):
pass
# should not fail
SubTensor(torch.zeros(2, dtype=torch.int))
def test_multiple_ops_subclass(self):
# This is a Direct Subclass, don't do that!
class MySubclass(torch.Tensor):
@staticmethod
def __new__(cls, elem):
r = torch.Tensor._make_subclass(cls, elem)
return r
__torch_function__ = torch._C._disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
with no_dispatch():
return func(*args, **kwargs)
x = MySubclass(torch.rand(2, 2, dtype=torch.complex64))
y = x.conj()
# Details of the bug that this tests for:
# Here, y dispatch keys are: {PythonTLSSnapshot, AutogradCPU, Conjugate, Python, CPU}
# There are a few calls to the dispatcher that are going to happen here:
# - call_exp: User calling exp on y
# - PythonTLSSnapshot: records the TLS on entry and redispatch
# - AutogradCPU: no input requires grad, so does nothing and redispatch
# - Conjugate: no special implementation for exp: use the fallback that
# first clone the Tensor (to materialize the conj) then redispatch
# - call_clone: conjugate fallback calling clone on y
# - PythonTLSSnapshot: records the TLS on entry and redispatch
# - (AutogradCPU: skipped as autograd added itself to the exclude set above)
# - Conjugate: special implementation for clone: just skip this key
# - Python: Reset the TLS based on the snapshot above and call the user implementation (this
# actually calls into the dispatcher again but since we disable both our keys
# before, not detailed here)
# - exit Python: restore the TLS and exit
# - exit Conjugate: nothing was inplace so just exit
# - exit PythonTLSSnapshot: done with this call, reset the saved TLS to empty
# - Python: Reset the TLS again based on the snapshot. <- this used to fail
# - More steps....
y.exp()
@staticmethod
def subclass_helper(cls, data, use_wrapper_subclass, **kwargs):
if use_wrapper_subclass:
kwargs["device"] = data.device
kwargs["dtype"] = data.dtype
kwargs["layout"] = data.layout
kwargs["requires_grad"] = True
return torch.Tensor._make_wrapper_subclass(cls, data.size(), **kwargs) # type: ignore[attr-defined]
else:
return torch.Tensor._make_subclass(cls, data, True, **kwargs)
def test_is_contiguous_slow_path(self):
data = torch.randn(3, 3)
contiguous_data = data.clone()
not_contiguous_data = torch.as_strided(data.clone(), (2, 2), (1, 2))
for use_wrapper_subclass in [True, False]:
class ExampleTensor1(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides")
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
return NotImplemented
class ExampleTensor2(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides")
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
if func.overloadpacket == torch.ops.aten.is_contiguous:
return contiguous_data.is_contiguous()
return NotImplemented
class ExampleTensor3(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides")
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
if func.overloadpacket == torch.ops.aten.is_contiguous:
return not_contiguous_data.is_contiguous()
return NotImplemented
err_msg = "no implementation found for 'torch.ops.aten.is_contiguous'"
e = ExampleTensor1(torch.randn(3, 3), use_wrapper_subclass)
with self.assertRaisesRegex(TypeError, err_msg):
e.is_contiguous()
with self.assertRaisesRegex(TypeError, err_msg):
e.contiguous()
e = ExampleTensor2(torch.randn(3, 3), use_wrapper_subclass)
self.assertEqual(e.is_contiguous(), True)
e.contiguous() # this will just return the original TensorImpl since is_contiguous = True
err_msg = "no implementation found for"
e = ExampleTensor3(torch.randn(3, 3), use_wrapper_subclass)
self.assertEqual(e.is_contiguous(), False)
with self.assertRaisesRegex(TypeError, err_msg):
e.contiguous()
def test_device_slowpath(self):
for use_wrapper_subclass in [True]:
class ExampleTensor1(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_device=True)
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
return NotImplemented
class ExampleTensor2(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_device=True)
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
if func.overloadpacket == torch.ops.prim.device:
return torch.device('meta')
return NotImplemented
class ExampleTensor3(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_device=True)
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
if func.overloadpacket == torch.ops.prim.device:
return torch.device('meta')
return NotImplemented
err_msg = "no implementation found for 'torch.ops.prim.device'"
with self.assertRaisesRegex(TypeError, err_msg):
e = ExampleTensor1(torch.randn(3, 3), use_wrapper_subclass)
e.device()
ten = torch.rand([1])
e = ExampleTensor2(torch.randn(3, 3, device='cpu'), use_wrapper_subclass)
self.assertEqual(e.device.type, 'meta')
self.assertEqual(ten.type_as(e).device.type, 'meta')
e = ExampleTensor3(torch.randn(3, 3, device='cpu'), use_wrapper_subclass)
self.assertEqual(e.device.type, 'meta')
self.assertEqual(ten.type_as(e).device.type, 'meta')
def test_dim_slowpath(self):
data = torch.randn(3, 3)
for use_wrapper_subclass in [True, False]:
class DimNotImplementedTensor(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes")
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
return NotImplemented
class DimImplementedTensor(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes")
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
if func.overloadpacket == torch.ops.aten.dim:
return data.dim()
return NotImplemented
err_msg = "no implementation found for 'torch.ops.aten.dim'"
e = DimNotImplementedTensor(torch.randn(3, 3), use_wrapper_subclass)
with self.assertRaisesRegex(TypeError, err_msg):
e.dim()
t = DimImplementedTensor(torch.randn(3, 3), use_wrapper_subclass)
self.assertEqual(t.dim(), 2)
def test_maybe_tuple_bug(self):
class T(torch.Tensor):
@classmethod
def __torch_function__(cls, *args, **kwargs):
pass
a = torch.rand(3)
a[[T(), T()]]
def test_standard_is_not_subclass(self):
# https://github.com/pytorch/pytorch/issues/79079
self.assertFalse(torch._C._dispatch_isTensorSubclassLike(torch.empty(0)))
def test_strides_slow_path(self):
for use_wrapper_subclass in [True, False]:
class StridesNotImplemented(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides")
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
return NotImplemented
class StridesCustomReturn(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides")
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
if func == torch.ops.aten.stride:
return (4, 2)
return NotImplemented
class StridesDefaultReturn(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides")
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
if func == torch.ops.aten.stride:
return None
return NotImplemented
err_msg = "no implementation found for 'torch.ops.aten.stride'"
e = StridesNotImplemented(torch.randn(3, 3), use_wrapper_subclass)
with self.assertRaisesRegex(TypeError, err_msg):
e.stride()
e = StridesCustomReturn(torch.randn(3, 3), use_wrapper_subclass)
self.assertEqual(e.stride(), (4, 2))
e = StridesDefaultReturn(torch.randn(6, 2), use_wrapper_subclass)
self.assertEqual(e.stride(), (2, 1))
def test_sizes_slow_path(self):
for use_wrapper_subclass in [True, False]:
data = torch.randn(6, 2)
class SizesNotImplemented(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes")
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
if func.overloadpacket == torch.ops.aten.dim:
return data.dim()
return NotImplemented
class SizesCustomReturn(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes")
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
if func.overloadpacket == torch.ops.aten.dim:
return data.dim()
if func.overloadpacket == torch.ops.aten.sym_size:
return (5, 3)
return NotImplemented
class SizesDefaultReturn(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes")
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
if func.overloadpacket == torch.ops.aten.dim:
return data.dim()
if func.overloadpacket == torch.ops.aten.sym_size:
return None
return NotImplemented
err_msg = "no implementation found for 'torch.ops.aten.sym_size'"
e = SizesNotImplemented(torch.randn(3, 3), use_wrapper_subclass)
with self.assertRaisesRegex(RuntimeError, err_msg):
e.size()
e = SizesCustomReturn(torch.randn(3, 3), use_wrapper_subclass)
self.assertEqual(e.size(), (5, 3))
e = SizesDefaultReturn(torch.randn(4, 2), use_wrapper_subclass)
self.assertEqual(e.size(), (4, 2))
def test_layout_slow_path(self):
for use_wrapper_subclass in [True, False]:
data = torch.randn(6, 2)
class LayoutNotImplemented(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_layout=True)
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
return NotImplemented
class LayoutCustomReturn(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_layout=True)
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
if func.overloadpacket == torch.ops.prim.layout:
return torch.sparse_csr
return NotImplemented
class LayoutDefaultReturn(torch.Tensor):
@staticmethod
def __new__(cls, data, wrapper):
return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_layout=True)
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
if func.overloadpacket == torch.ops.prim.layout:
return data.layout
return NotImplemented
err_msg = "no implementation found for 'torch.ops.prim.layout'"
e = LayoutNotImplemented(torch.randn(3, 3), use_wrapper_subclass)
with self.assertRaisesRegex(TypeError, err_msg):
e.layout
e = LayoutCustomReturn(torch.randn(3, 3), use_wrapper_subclass)
self.assertEqual(e.layout, torch.sparse_csr)
e = LayoutDefaultReturn(torch.randn(4, 2), use_wrapper_subclass)
self.assertEqual(e.layout, torch.strided)
if __name__ == '__main__':
run_tests()