Commit Graph

235 Commits

Author SHA1 Message Date
Animesh Jain
a140e65e0f [dynamo] Support method with different __self__ on user defined objects (#139953)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139953
Approved by: https://github.com/jansel
2024-11-08 18:44:08 +00:00
Animesh Jain
86792a5a8d [invoke_subgraph] User facing API to support arbitrary args and kwargs (#139162)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139162
Approved by: https://github.com/zou3519
2024-11-08 03:31:19 +00:00
Animesh Jain
ac5fa26e07 [dynamo][weakref] Support weakref.ref call (#139914)
Should fix - https://github.com/pytorch/pytorch/pull/135001

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139914
Approved by: https://github.com/jansel
ghstack dependencies: #139856
2024-11-06 23:16:41 +00:00
Animesh Jain
738bfff5f9 [dynamo][user-defined] Fix bugs with method descriptors (#139856)
Should fix some problems in https://github.com/pytorch/pytorch/pull/138080

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139856
Approved by: https://github.com/jansel
2024-11-06 23:16:40 +00:00
Ryan Guo
693a0a1bd4 [dynamo][NFC] Rename mutable_local and add documentation (#139339)
This patch addresses the renaming part of #133027, specifically, it
renames the following and adds documentation for relevant classes.
1. `VariableTracker.mutable_local` to `mutation_type`
2. `MatableLocal `to `ValueMutationNew`
3. `MutableSideEffects `to `ValueMutationExisting`
4. `MutableLocalSource` to `SourceType`
5. `MutableLocalSource.Local` to `New`

Note that (2), (3) and (5) are mainly to bring consistency between them
and `AttributeMutationNew`, `AttributeMutationExisting`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139339
Approved by: https://github.com/jansel, https://github.com/mlazos, https://github.com/anijain2305
2024-11-05 19:11:41 +00:00
PyTorch MergeBot
b6b9596607 Revert "[dynamo] Fix constant propagation in builtins and UserClasses (#131354)"
This reverts commit 44257c063e.

Reverted https://github.com/pytorch/pytorch/pull/131354 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but it seems to break some internal tests ([comment](https://github.com/pytorch/pytorch/pull/131354#issuecomment-2451050605))
2024-11-01 00:13:20 +00:00
Tom Ritchford
44257c063e [dynamo] Fix constant propagation in builtins and UserClasses (#131354)
* Fixes https://github.com/pytorch/pytorch/issues/118675
* Replaces https://github.com/pytorch/pytorch/pull/118994

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131354
Approved by: https://github.com/jansel, https://github.com/anijain2305
2024-10-30 12:47:20 +00:00
Xuehai Pan
9bbe4a67ad [dynamo] support maxlen for collections.deque (#138194)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138194
Approved by: https://github.com/jansel, https://github.com/malfet
2024-10-30 10:08:02 +00:00
Tom Ritchford
8ad191ae21 [dynamo] Replace __str__ with __repr__ in some places (#136316)
## The problem

In a typical debugger, `repr()` is used to display variables and not `str()`.

Several classes in Dynamo have a `__str__()` method that returns useful information and a  `__repr__()` that does not. Having to call `str(x)` or `[str(i) for i in x]` in the debugger all the time is a chore.

`str()` should be ["informal, nicely printable"](https://docs.python.org/3/library/stdtypes.html#str) and `repr()` should ["attempt to return a string that would yield an object with the same value when passed to eval()](https://docs.python.org/3/library/functions.html#repr)".

## The solution

In the Python object model, if there is no `__str__` method, `__repr__`  is used instead (but not the other way around).

So renaming `__str__` to `__repr__` in a few cases where no `__repr__` method exists now should not change observable behavior, and should make debugging easier.

The specific classes changed were all in `torch._dynamo.variables`:

* `builtin.BuiltinVariable`
* `constant.ConstantVariable`
* `constant.EnumVariable`
* `functions.UserMethodVariable`
* `lazy.LazyVariableTracker`
* `lazy.LazySymNodeFormatString`
* `misc.GetAttrVariable`
* `misc.NullVariable`
* `user_defined.UserDefinedObjectVariable`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136316
Approved by: https://github.com/XuehaiPan, https://github.com/jansel
2024-10-21 19:50:38 +00:00
Animesh Jain
0a2407b93c [dynamo] Support omegaconf DictConfig (#138378)
Fixes https://github.com/pytorch/pytorch/issues/138224

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138378
Approved by: https://github.com/jansel
ghstack dependencies: #138359
2024-10-20 02:43:17 +00:00
Animesh Jain
f892543c1f [dynamo] Support TypedDict (#138359)
Seen in vLLM.

Fixes https://github.com/pytorch/pytorch/issues/132629
Fixes https://github.com/pytorch/pytorch/issues/133613

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138359
Approved by: https://github.com/jansel

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
2024-10-20 02:43:17 +00:00
Tom Ritchford
e1c4548441 [dynamo] Simplify creation of VariableTrackers (#135714)
## `VariableTracker::build()` hides the Builders

### The problem

In the current code, creating a `VariableTracker` involves choosing one of two `Builder` classes and either calling a method, or calling a constructor that creates an object that you immediately call, [like this](083c9149b7/torch/_dynamo/variables/functions.py (L761-L768)).

Variations on this code are repeated in many places.

More, the `Builder` classes have a lot of dependencies, so they have to be loaded late in the whole import process to avoid circular imports, so they end up being repeatedly imported at local scope.

### The solution

In this commit, the import from `builder` and the logic of choosing and calling the Builder class are hidden in a single static factory method, `VariableTracker.build()`, easier to reason about and to import.

This commit net lowers the total lines of code by over 150 lines by removing repetitive logic and unnecessary local imports.

**CHANGES:** Originally the name of the static method was `VariableTracker.create()` but a static method on a derived class, `LazyVariableTracker.create()` now exists with a different signature that's irreconcilable, so the new static method was renamed to `VariableTracker.build()`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135714
Approved by: https://github.com/jansel
2024-10-18 09:36:46 +00:00
Xuehai Pan
1d6932937e [dynamo] fix NamedTupleVariable for PyStructSequence (torch.return_types.*) support (#137776)
PyStructSequence is the C API equivalent for `collections.namedtuple` in Python. But they have different constructors:

```python
tuple = NamedTupleType(*args)
tuple = NamedTupleType._make(args)
tuple = StructSequenceType(args)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137776
Approved by: https://github.com/jansel
2024-10-13 06:46:41 +00:00
Animesh Jain
3050f2e5dd [dynamo] Check nn modules parameters are not overwritten before taking tracing shortcut (#137824)
Fixes https://github.com/pytorch/pytorch/issues/136257

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137824
Approved by: https://github.com/jansel
2024-10-13 05:04:28 +00:00
Michael Lazos
e41dffbedd [Dynamo] Trace enter/exit of TorchFunctionModes (#135422) (#137114)
This PR implements tracing of with contexts with TorchFunction modes which have the default enter/exit behavior (ie pushing/popping the mode)

Typically the bytecode for a context manager looks like this during a graph break:
1. graph call
2. enter context
3. unsupported code
4. exit context
5. resume call

resume fn structure:
1. enter context
2. jump
...
3. exit context

The issue with torch function modes is that side effects will replay any mutations to the torch function stack performed during tracing. So, we do not need to enter and exit around the unsupported code in the original function (doing so would result in a duplicate torch function mode entry during execution of the unsupported code), and we don't need to enter again in the resume function (the mode that was pushed from the side effects bytecode would still be on the stack).

So for torch function modes the structure of our output code is this:

1. graph call
2. mutate tf mode stack to replay mutations
4. unsupported code
5. on exception restore stack
6. resume function

Then our resume fn looks like this:

1. no-op enter torch function mode
2. jump
3.  exit tf mode

To implement the no-op enter of the torch function mode I added torch function mode in polyfill which no-op enters, but normally exits. This is needed because we still want to trace the with context in the resume function, and exit properly (the exit instructions will still be in the function, so we need to generate instructions to set up the context).

Separately from the bytecode, dynamo also tracks contexts on the block stack, which is how the SETUP_* instructions are implemented. Naturally at a graph break, we exit these block stacks to properly reset the contexts entirely, so that we can re-enter around the unsupported code soundly. However once again, in the torch function mode case, in the event of a graph we do not want to perform any exit side effects because we want to preserve the state of the mode stack as is so that we will properly update the stack with bytecode mentioned in the first section. If we exited here, dynamo would pop the mode off of the symbolic stack, and not update the true python torch function mode stack with the suffix bytecode. All in all, for torch function modes we enter exactly once, update the global torch function mode stack with side effects bytecode, re-read this stack when compiling the resume function, and exit exactly once in the resume function. This matches the semantics of eager exactly.
Approved by: https://github.com/williamwen42
ghstack dependencies: #134732, #133137, #135443, #135444

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137114
Approved by: https://github.com/yanboliang
2024-10-09 02:29:40 +00:00
PyTorch MergeBot
d34b617bb9 Revert "[Dynamo] Trace enter/exit of TorchFunctionModes (#135422) (#137114)"
This reverts commit 51bc839b94.

Reverted https://github.com/pytorch/pytorch/pull/137114 on behalf of https://github.com/huydhn due to The top of the stack has been reverted but it leaves trunk in a broken state, so I try to revert the rest of the stack ([comment](https://github.com/pytorch/pytorch/pull/137114#issuecomment-2400765603))
2024-10-08 20:33:17 +00:00
Michael Lazos
51bc839b94 [Dynamo] Trace enter/exit of TorchFunctionModes (#135422) (#137114)
This PR implements tracing of with contexts with TorchFunction modes which have the default enter/exit behavior (ie pushing/popping the mode)

Typically the bytecode for a context manager looks like this during a graph break:
1. graph call
2. enter context
3. unsupported code
4. exit context
5. resume call

resume fn structure:
1. enter context
2. jump
...
3. exit context

The issue with torch function modes is that side effects will replay any mutations to the torch function stack performed during tracing. So, we do not need to enter and exit around the unsupported code in the original function (doing so would result in a duplicate torch function mode entry during execution of the unsupported code), and we don't need to enter again in the resume function (the mode that was pushed from the side effects bytecode would still be on the stack).

So for torch function modes the structure of our output code is this:

1. graph call
2. mutate tf mode stack to replay mutations
4. unsupported code
5. on exception restore stack
6. resume function

Then our resume fn looks like this:

1. no-op enter torch function mode
2. jump
3.  exit tf mode

To implement the no-op enter of the torch function mode I added torch function mode in polyfill which no-op enters, but normally exits. This is needed because we still want to trace the with context in the resume function, and exit properly (the exit instructions will still be in the function, so we need to generate instructions to set up the context).

Separately from the bytecode, dynamo also tracks contexts on the block stack, which is how the SETUP_* instructions are implemented. Naturally at a graph break, we exit these block stacks to properly reset the contexts entirely, so that we can re-enter around the unsupported code soundly. However once again, in the torch function mode case, in the event of a graph we do not want to perform any exit side effects because we want to preserve the state of the mode stack as is so that we will properly update the stack with bytecode mentioned in the first section. If we exited here, dynamo would pop the mode off of the symbolic stack, and not update the true python torch function mode stack with the suffix bytecode. All in all, for torch function modes we enter exactly once, update the global torch function mode stack with side effects bytecode, re-read this stack when compiling the resume function, and exit exactly once in the resume function. This matches the semantics of eager exactly.
Approved by: https://github.com/williamwen42
ghstack dependencies: #134732, #133137, #135443, #135444

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137114
Approved by: https://github.com/yanboliang
2024-10-07 18:55:26 +00:00
PyTorch MergeBot
9223c16208 Revert "Fix constant propagation in builtins and UserClasses (#131354)"
This reverts commit dd4a51b39a.

Reverted https://github.com/pytorch/pytorch/pull/131354 on behalf of https://github.com/atalman due to Breaks torchrec tests ([comment](https://github.com/pytorch/pytorch/pull/131354#issuecomment-2375417145))
2024-09-25 23:01:03 +00:00
Animesh Jain
289df45cee Revert "[Dynamo] Trace enter/exit of TorchFunctionModes (#135422)" (#136590)
This reverts commit 7743149b2b.

Reverts
* https://github.com/pytorch/pytorch/pull/135503
* https://github.com/pytorch/pytorch/pull/135502
* https://github.com/pytorch/pytorch/pull/135422

This passes this test. Earlier, the getitem would stay like a getitem in the Fx graph. But now the fake tensor propagations fails saying that .item is called. It seems that torch function is not getting triggered while fake tensor propagation.

```
import torch
from torch.nn.attention.flex_attention import BlockMask, _mask_mod_signature, _score_mod_signature, flex_attention
from torch._inductor.lowering import make_pointwise, register_lowering
from torch._inductor.virtualized import ops
from torch.nn.attention.flex_attention import create_block_mask

torch.set_default_device('cuda')

flex_attention = torch.compile(flex_attention, dynamic=False)

prefix_lengths = torch.arange(8)
def prefix_lm(b, h, q, kv):
    return prefix_lengths[b] >= kv

mask = create_block_mask(prefix_lm, 8, None, 512, 512, _compile=True)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136590
Approved by: https://github.com/Chillee
2024-09-25 21:10:43 +00:00
Tom Ritchford
dd4a51b39a Fix constant propagation in builtins and UserClasses (#131354)
* Fixes https://github.com/pytorch/pytorch/issues/118675
* Replaces https://github.com/pytorch/pytorch/pull/118994

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131354
Approved by: https://github.com/jansel, https://github.com/anijain2305
2024-09-25 13:03:40 +00:00
Guilherme Leobas
e09c5b6046 Remove vt argument in raise_observed_exception (#136037)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136037
Approved by: https://github.com/zou3519
2024-09-24 02:36:57 +00:00
Jason Ansel
a0207c8471 [dynamo] Fix support for classmethod(property(...)) (#134968)
Fixes #134451

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134968
Approved by: https://github.com/yanboliang
2024-09-18 04:47:51 +00:00
PyTorch MergeBot
bfbcdf4967 Revert "[dynamo] Fix support for classmethod(property(...)) (#134968)"
This reverts commit c64ae601ba.

Reverted https://github.com/pytorch/pytorch/pull/134968 on behalf of https://github.com/jeanschmidt due to Breaking internal signals, we need to skip the new tests on py3.10 ([comment](https://github.com/pytorch/pytorch/pull/134968#issuecomment-2353909010))
2024-09-16 20:26:35 +00:00
Jason Ansel
c64ae601ba [dynamo] Fix support for classmethod(property(...)) (#134968)
Fixes #134451

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134968
Approved by: https://github.com/yanboliang
2024-09-14 21:00:41 +00:00
Michael Lazos
1b9daeb240 [Dynamo] Trace enter/exit of TorchFunctionModes (#135422)
This PR implements tracing of with contexts with TorchFunction modes which have the default enter/exit behavior (ie pushing/popping the mode)

Typically the bytecode for a context manager looks like this during a graph break:
1. graph call
2. enter context
3. unsupported code
4. exit context
5. resume call

resume fn structure:
1. enter context
2. jump
...
3. exit context

The issue with torch function modes is that side effects will replay any mutations to the torch function stack performed during tracing. So, we do not need to enter and exit around the unsupported code in the original function (doing so would result in a duplicate torch function mode entry during execution of the unsupported code), and we don't need to enter again in the resume function (the mode that was pushed from the side effects bytecode would still be on the stack).

So for torch function modes the structure of our output code is this:

1. graph call
2. mutate tf mode stack to replay mutations
4. unsupported code
5. on exception restore stack
6. resume function

Then our resume fn looks like this:

1. no-op enter torch function mode
2. jump
3.  exit tf mode

To implement the no-op enter of the torch function mode I added torch function mode in polyfill which no-op enters, but normally exits. This is needed because we still want to trace the with context in the resume function, and exit properly (the exit instructions will still be in the function, so we need to generate instructions to set up the context).

Separately from the bytecode, dynamo also tracks contexts on the block stack, which is how the SETUP_* instructions are implemented. Naturally at a graph break, we exit these block stacks to properly reset the contexts entirely, so that we can re-enter around the unsupported code soundly. However once again, in the torch function mode case, in the event of a graph we do not want to perform any exit side effects because we want to preserve the state of the mode stack as is so that we will properly update the stack with bytecode mentioned in the first section. If we exited here, dynamo would pop the mode off of the symbolic stack, and not update the true python torch function mode stack with the suffix bytecode. All in all, for torch function modes we enter exactly once, update the global torch function mode stack with side effects bytecode, re-read this stack when compiling the resume function, and exit exactly once in the resume function. This matches the semantics of eager exactly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135422
Approved by: https://github.com/williamwen42
ghstack dependencies: #134732, #133137, #135443, #135444
2024-09-14 18:52:22 +00:00
Michael Lazos
14cabdf626 [Dynamo] Support thread local setattr (#135443)
In preparation for tracing through DeviceContext (defb515306/torch/utils/_device.py (L66))
This PR adds support for calling the setattr of thread local objects. These objects have a slots impl, and since this doesn't appear to have any side effects, we call this setattr impl when replaying mutations, since calling `object.__setattr__` on these objects results in a type error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135443
Approved by: https://github.com/anijain2305
ghstack dependencies: #134732, #133137
2024-09-14 18:52:22 +00:00
Michael Lazos
5c5c33ac32 [Dynamo] Trace torch function modes entered outside of torch.compile (#133137)
This PR adds initial tracing for torch function modes.

Details:
In essence, this adds tracing into the torch function of modes entered outside of the torch.compile call.
This does not yet support tracing enter/exit of a torch function mode/ tracing set_default_device properly using the new mode infra (this will be a very good stress test for modes). I am adding more PRs to this stack to support these. The overall plan is to support tracing enter/exit and handling graph breaks like we do other torch.* context managers.

Previously landed:
https://github.com/pytorch/pytorch/pull/133135
https://github.com/pytorch/pytorch/pull/133136
https://github.com/pytorch/pytorch/pull/133134
https://github.com/pytorch/pytorch/pull/133133
https://github.com/pytorch/pytorch/pull/133132
https://github.com/pytorch/pytorch/pull/133131
https://github.com/pytorch/pytorch/pull/133729
https://github.com/pytorch/pytorch/pull/133130

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133137
Approved by: https://github.com/jansel, https://github.com/zou3519
ghstack dependencies: #134732
2024-09-14 18:52:22 +00:00
PyTorch MergeBot
8c8a3086a7 Revert "[Dynamo] Trace torch function modes entered outside of torch.compile (#133137)"
This reverts commit 4528777e03.

Reverted https://github.com/pytorch/pytorch/pull/133137 on behalf of https://github.com/mlazos due to broke python test/quantization/pt2e/test_numeric_debugger.py TestNumericDebugger.test_re_export_preserve_handle modified yesterday ([comment](https://github.com/pytorch/pytorch/pull/134732#issuecomment-2350937008))
2024-09-14 10:02:55 +00:00
PyTorch MergeBot
46f5037007 Revert "[Dynamo] Support thread local setattr (#135443)"
This reverts commit 149d0b7161.

Reverted https://github.com/pytorch/pytorch/pull/135443 on behalf of https://github.com/mlazos due to broke python test/quantization/pt2e/test_numeric_debugger.py TestNumericDebugger.test_re_export_preserve_handle modified yesterday ([comment](https://github.com/pytorch/pytorch/pull/134732#issuecomment-2350937008))
2024-09-14 10:02:55 +00:00
PyTorch MergeBot
f3180f0088 Revert "[Dynamo] Trace enter/exit of TorchFunctionModes (#135422)"
This reverts commit 7743149b2b.

Reverted https://github.com/pytorch/pytorch/pull/135422 on behalf of https://github.com/mlazos due to broke python test/quantization/pt2e/test_numeric_debugger.py TestNumericDebugger.test_re_export_preserve_handle modified yesterday ([comment](https://github.com/pytorch/pytorch/pull/134732#issuecomment-2350937008))
2024-09-14 10:02:55 +00:00
Michael Lazos
7743149b2b [Dynamo] Trace enter/exit of TorchFunctionModes (#135422)
This PR implements tracing of with contexts with TorchFunction modes which have the default enter/exit behavior (ie pushing/popping the mode)

Typically the bytecode for a context manager looks like this during a graph break:
1. graph call
2. enter context
3. unsupported code
4. exit context
5. resume call

resume fn structure:
1. enter context
2. jump
...
3. exit context

The issue with torch function modes is that side effects will replay any mutations to the torch function stack performed during tracing. So, we do not need to enter and exit around the unsupported code in the original function (doing so would result in a duplicate torch function mode entry during execution of the unsupported code), and we don't need to enter again in the resume function (the mode that was pushed from the side effects bytecode would still be on the stack).

So for torch function modes the structure of our output code is this:

1. graph call
2. mutate tf mode stack to replay mutations
4. unsupported code
5. on exception restore stack
6. resume function

Then our resume fn looks like this:

1. no-op enter torch function mode
2. jump
3.  exit tf mode

To implement the no-op enter of the torch function mode I added torch function mode in polyfill which no-op enters, but normally exits. This is needed because we still want to trace the with context in the resume function, and exit properly (the exit instructions will still be in the function, so we need to generate instructions to set up the context).

Separately from the bytecode, dynamo also tracks contexts on the block stack, which is how the SETUP_* instructions are implemented. Naturally at a graph break, we exit these block stacks to properly reset the contexts entirely, so that we can re-enter around the unsupported code soundly. However once again, in the torch function mode case, in the event of a graph we do not want to perform any exit side effects because we want to preserve the state of the mode stack as is so that we will properly update the stack with bytecode mentioned in the first section. If we exited here, dynamo would pop the mode off of the symbolic stack, and not update the true python torch function mode stack with the suffix bytecode. All in all, for torch function modes we enter exactly once, update the global torch function mode stack with side effects bytecode, re-read this stack when compiling the resume function, and exit exactly once in the resume function. This matches the semantics of eager exactly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135422
Approved by: https://github.com/williamwen42
ghstack dependencies: #134732, #133137, #135443, #135444
2024-09-14 02:41:08 +00:00
Michael Lazos
149d0b7161 [Dynamo] Support thread local setattr (#135443)
In preparation for tracing through DeviceContext (defb515306/torch/utils/_device.py (L66))
This PR adds support for calling the setattr of thread local objects. These objects have a slots impl, and since this doesn't appear to have any side effects, we call this setattr impl when replaying mutations, since calling `object.__setattr__` on these objects results in a type error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135443
Approved by: https://github.com/anijain2305
ghstack dependencies: #134732, #133137
2024-09-14 02:40:52 +00:00
Michael Lazos
4528777e03 [Dynamo] Trace torch function modes entered outside of torch.compile (#133137)
This PR adds initial tracing for torch function modes.

Details:
In essence, this adds tracing into the torch function of modes entered outside of the torch.compile call.
This does not yet support tracing enter/exit of a torch function mode/ tracing set_default_device properly using the new mode infra (this will be a very good stress test for modes). I am adding more PRs to this stack to support these. The overall plan is to support tracing enter/exit and handling graph breaks like we do other torch.* context managers.

Previously landed:
https://github.com/pytorch/pytorch/pull/133135
https://github.com/pytorch/pytorch/pull/133136
https://github.com/pytorch/pytorch/pull/133134
https://github.com/pytorch/pytorch/pull/133133
https://github.com/pytorch/pytorch/pull/133132
https://github.com/pytorch/pytorch/pull/133131
https://github.com/pytorch/pytorch/pull/133729
https://github.com/pytorch/pytorch/pull/133130

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133137
Approved by: https://github.com/jansel, https://github.com/zou3519
ghstack dependencies: #134732
2024-09-14 02:40:43 +00:00
PyTorch MergeBot
eb7dd91dd1 Revert "[Dynamo] Trace torch function modes entered outside of torch.compile (#133137)"
This reverts commit fafdd588f2.

Reverted https://github.com/pytorch/pytorch/pull/133137 on behalf of https://github.com/albanD due to Broke tests on main ([comment](https://github.com/pytorch/pytorch/pull/134732#issuecomment-2348886378))
2024-09-13 12:52:58 +00:00
PyTorch MergeBot
3f30360d05 Revert "[Dynamo] Support thread local setattr (#135443)"
This reverts commit 30b007bea3.

Reverted https://github.com/pytorch/pytorch/pull/135443 on behalf of https://github.com/albanD due to Broke tests on main ([comment](https://github.com/pytorch/pytorch/pull/134732#issuecomment-2348886378))
2024-09-13 12:52:58 +00:00
PyTorch MergeBot
ac169795a9 Revert "[Dynamo] Trace enter/exit of TorchFunctionModes (#135422)"
This reverts commit 2af3b8ffd8.

Reverted https://github.com/pytorch/pytorch/pull/135422 on behalf of https://github.com/albanD due to Broke tests on main ([comment](https://github.com/pytorch/pytorch/pull/134732#issuecomment-2348886378))
2024-09-13 12:52:57 +00:00
PyTorch MergeBot
b5c52e96e8 Revert "[dynamo] Fix support for classmethod(property(...)) (#134968)"
This reverts commit bf68e16e94.

Reverted https://github.com/pytorch/pytorch/pull/134968 on behalf of https://github.com/jithunnair-amd due to Broke ROCm CI: eg. https://github.com/pytorch/pytorch/actions/runs/10845542664/job/30097956613 ([comment](https://github.com/pytorch/pytorch/pull/134968#issuecomment-2348837553))
2024-09-13 12:29:03 +00:00
Michael Lazos
2af3b8ffd8 [Dynamo] Trace enter/exit of TorchFunctionModes (#135422)
This PR implements tracing of with contexts with TorchFunction modes which have the default enter/exit behavior (ie pushing/popping the mode)

Typically the bytecode for a context manager looks like this during a graph break:
1. graph call
2. enter context
3. unsupported code
4. exit context
5. resume call

resume fn structure:
1. enter context
2. jump
...
3. exit context

The issue with torch function modes is that side effects will replay any mutations to the torch function stack performed during tracing. So, we do not need to enter and exit around the unsupported code in the original function (doing so would result in a duplicate torch function mode entry during execution of the unsupported code), and we don't need to enter again in the resume function (the mode that was pushed from the side effects bytecode would still be on the stack).

So for torch function modes the structure of our output code is this:

1. graph call
2. mutate tf mode stack to replay mutations
4. unsupported code
5. on exception restore stack
6. resume function

Then our resume fn looks like this:

1. no-op enter torch function mode
2. jump
3.  exit tf mode

To implement the no-op enter of the torch function mode I added torch function mode in polyfill which no-op enters, but normally exits. This is needed because we still want to trace the with context in the resume function, and exit properly (the exit instructions will still be in the function, so we need to generate instructions to set up the context).

Separately from the bytecode, dynamo also tracks contexts on the block stack, which is how the SETUP_* instructions are implemented. Naturally at a graph break, we exit these block stacks to properly reset the contexts entirely, so that we can re-enter around the unsupported code soundly. However once again, in the torch function mode case, in the event of a graph we do not want to perform any exit side effects because we want to preserve the state of the mode stack as is so that we will properly update the stack with bytecode mentioned in the first section. If we exited here, dynamo would pop the mode off of the symbolic stack, and not update the true python torch function mode stack with the suffix bytecode. All in all, for torch function modes we enter exactly once, update the global torch function mode stack with side effects bytecode, re-read this stack when compiling the resume function, and exit exactly once in the resume function. This matches the semantics of eager exactly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135422
Approved by: https://github.com/williamwen42
ghstack dependencies: #134732, #133137, #135443, #135444
2024-09-13 08:41:24 +00:00
Michael Lazos
30b007bea3 [Dynamo] Support thread local setattr (#135443)
In preparation for tracing through DeviceContext (defb515306/torch/utils/_device.py (L66))
This PR adds support for calling the setattr of thread local objects. These objects have a slots impl, and since this doesn't appear to have any side effects, we call this setattr impl when replaying mutations, since calling `object.__setattr__` on these objects results in a type error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135443
Approved by: https://github.com/anijain2305
ghstack dependencies: #134732, #133137
2024-09-13 08:41:07 +00:00
Michael Lazos
fafdd588f2 [Dynamo] Trace torch function modes entered outside of torch.compile (#133137)
This PR adds initial tracing for torch function modes.

Details:
In essence, this adds tracing into the torch function of modes entered outside of the torch.compile call.
This does not yet support tracing enter/exit of a torch function mode/ tracing set_default_device properly using the new mode infra (this will be a very good stress test for modes). I am adding more PRs to this stack to support these. The overall plan is to support tracing enter/exit and handling graph breaks like we do other torch.* context managers.

Previously landed:
https://github.com/pytorch/pytorch/pull/133135
https://github.com/pytorch/pytorch/pull/133136
https://github.com/pytorch/pytorch/pull/133134
https://github.com/pytorch/pytorch/pull/133133
https://github.com/pytorch/pytorch/pull/133132
https://github.com/pytorch/pytorch/pull/133131
https://github.com/pytorch/pytorch/pull/133729
https://github.com/pytorch/pytorch/pull/133130

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133137
Approved by: https://github.com/jansel, https://github.com/zou3519
ghstack dependencies: #134732
2024-09-13 08:41:00 +00:00
Jason Ansel
bf68e16e94 [dynamo] Fix support for classmethod(property(...)) (#134968)
Fixes #134451

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134968
Approved by: https://github.com/yanboliang
2024-09-13 01:14:18 +00:00
PyTorch MergeBot
183c32fd3b Revert "[Dynamo] Trace torch function modes entered outside of torch.compile (#133137)"
This reverts commit 0d15122092.

Reverted https://github.com/pytorch/pytorch/pull/133137 on behalf of https://github.com/clee2000 due to something in this stack broke functorch/test_control_flow.py::TestControlFlow::test_scan_simple_graph [GH job link](https://github.com/pytorch/pytorch/actions/runs/10804912306/job/29980571390) [HUD commit link](444b52ff40), newly added test yesterday ([comment](https://github.com/pytorch/pytorch/pull/133137#issuecomment-2344054339))
2024-09-11 15:57:00 +00:00
PyTorch MergeBot
3ab12e2596 Revert "[Dynamo] Support thread local setattr (#135443)"
This reverts commit 160c228a4b.

Reverted https://github.com/pytorch/pytorch/pull/135443 on behalf of https://github.com/clee2000 due to something in this stack broke functorch/test_control_flow.py::TestControlFlow::test_scan_simple_graph [GH job link](https://github.com/pytorch/pytorch/actions/runs/10804912306/job/29980571390) [HUD commit link](444b52ff40), newly added test yesterday ([comment](https://github.com/pytorch/pytorch/pull/135443#issuecomment-2344042800))
2024-09-11 15:53:55 +00:00
Michael Lazos
160c228a4b [Dynamo] Support thread local setattr (#135443)
In preparation for tracing through DeviceContext (defb515306/torch/utils/_device.py (L66))
This PR adds support for calling the setattr of thread local objects. These objects have a slots impl, and since this doesn't appear to have any side effects, we call this setattr impl when replaying mutations, since calling `object.__setattr__` on these objects results in a type error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135443
Approved by: https://github.com/anijain2305
ghstack dependencies: #134732, #133137
2024-09-11 04:18:22 +00:00
Michael Lazos
0d15122092 [Dynamo] Trace torch function modes entered outside of torch.compile (#133137)
This PR adds initial tracing for torch function modes.

Details:
In essence, this adds tracing into the torch function of modes entered outside of the torch.compile call.
This does not yet support tracing enter/exit of a torch function mode/ tracing set_default_device properly using the new mode infra (this will be a very good stress test for modes). I am adding more PRs to this stack to support these. The overall plan is to support tracing enter/exit and handling graph breaks like we do other torch.* context managers.

Previously landed:
https://github.com/pytorch/pytorch/pull/133135
https://github.com/pytorch/pytorch/pull/133136
https://github.com/pytorch/pytorch/pull/133134
https://github.com/pytorch/pytorch/pull/133133
https://github.com/pytorch/pytorch/pull/133132
https://github.com/pytorch/pytorch/pull/133131
https://github.com/pytorch/pytorch/pull/133729
https://github.com/pytorch/pytorch/pull/133130

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133137
Approved by: https://github.com/jansel, https://github.com/zou3519
ghstack dependencies: #134732
2024-09-11 04:18:22 +00:00
William Wen
a4030e37be [dynamo] reland map/zip iterator related changes (#135074)
Differential Revision: [D62211019](https://our.internmc.facebook.com/intern/diff/D62211019)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135074
Approved by: https://github.com/jansel, https://github.com/anijain2305, https://github.com/mlazos
2024-09-06 20:38:02 +00:00
Michael Lazos
041960a1ce [Dynamo] Automatically in-graph traceable tensor subclass ctors (#135151)
Fixes https://github.com/pytorch/pytorch/issues/114389

Previously, dynamo would attempt to trace through the `__init__` of traceable tensor subclasses, since their constructors are AOT dispatcher traceable by definition, dynamo should automatically put these in the graph like we do for any other tensors. Not doing this is difficult because dynamo would need to apply mutations post tensor subclass creation in the graph.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135151
Approved by: https://github.com/bdhirsh
2024-09-06 12:23:38 +00:00
Tom Ritchford
2c99f17a32 Implement VariableTracker.python_type() (#134215)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134215
Approved by: https://github.com/amjames, https://github.com/jansel
2024-09-05 16:35:47 +00:00
Michael Lazos
d9ae92cd6e [Dynamo] Support for proxying frozen dataclasses (#134846)
Fixes https://github.com/pytorch/pytorch/issues/133858

Details: Previously Dynamo would treat dataclasses as UserDefinedVariables. This was non-desirable if we would like to proxy the value into the graph, which is needed for TensorSubclassMetadata. To rectify this, frozen dataclasses are now able to be proxied similarly to NamedTuples. We require the object to be frozen, because if arbitrary mutation were allowed, we would need to replay those mutations in the graph after construction of the object.

For tracing construction of the variable, the generated `__init__` for the dataclass uses `object.__setattr__` because frozen dataclasses throw errors on the usual `__setattr__` invocation. With this treatment, no special handling is needed in dynamo for frozen dataclass construction.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134846
Approved by: https://github.com/bdhirsh, https://github.com/anijain2305
2024-09-04 22:17:00 +00:00
Animesh Jain
594162f7ab [dynamo] Support reading attributes from pybind objects (#134630)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134630
Approved by: https://github.com/jansel
2024-08-29 15:06:52 +00:00