mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This PR implements tracing of with contexts with TorchFunction modes which have the default enter/exit behavior (ie pushing/popping the mode) Typically the bytecode for a context manager looks like this during a graph break: 1. graph call 2. enter context 3. unsupported code 4. exit context 5. resume call resume fn structure: 1. enter context 2. jump ... 3. exit context The issue with torch function modes is that side effects will replay any mutations to the torch function stack performed during tracing. So, we do not need to enter and exit around the unsupported code in the original function (doing so would result in a duplicate torch function mode entry during execution of the unsupported code), and we don't need to enter again in the resume function (the mode that was pushed from the side effects bytecode would still be on the stack). So for torch function modes the structure of our output code is this: 1. graph call 2. mutate tf mode stack to replay mutations 4. unsupported code 5. on exception restore stack 6. resume function Then our resume fn looks like this: 1. no-op enter torch function mode 2. jump 3. exit tf mode To implement the no-op enter of the torch function mode I added torch function mode in polyfill which no-op enters, but normally exits. This is needed because we still want to trace the with context in the resume function, and exit properly (the exit instructions will still be in the function, so we need to generate instructions to set up the context). Separately from the bytecode, dynamo also tracks contexts on the block stack, which is how the SETUP_* instructions are implemented. Naturally at a graph break, we exit these block stacks to properly reset the contexts entirely, so that we can re-enter around the unsupported code soundly. However once again, in the torch function mode case, in the event of a graph we do not want to perform any exit side effects because we want to preserve the state of the mode stack as is so that we will properly update the stack with bytecode mentioned in the first section. If we exited here, dynamo would pop the mode off of the symbolic stack, and not update the true python torch function mode stack with the suffix bytecode. All in all, for torch function modes we enter exactly once, update the global torch function mode stack with side effects bytecode, re-read this stack when compiling the resume function, and exit exactly once in the resume function. This matches the semantics of eager exactly. Pull Request resolved: https://github.com/pytorch/pytorch/pull/135422 Approved by: https://github.com/williamwen42 ghstack dependencies: #134732, #133137, #135443, #135444
1402 lines
53 KiB
Python
1402 lines
53 KiB
Python
# mypy: ignore-errors
|
|
|
|
import collections
|
|
import contextlib
|
|
import dataclasses
|
|
import enum
|
|
import functools
|
|
import inspect
|
|
import itertools
|
|
import random
|
|
import sys
|
|
import threading
|
|
import types
|
|
import warnings
|
|
from typing import Dict, Generic, List, TYPE_CHECKING
|
|
|
|
import torch._dynamo.config
|
|
import torch.nn
|
|
from torch._guards import TracingContext
|
|
from torch.utils._python_dispatch import is_traceable_wrapper_subclass_type
|
|
|
|
from .. import polyfills, variables
|
|
from ..bytecode_transformation import create_call_function
|
|
from ..create_parameter_op import do_not_convert_to_tracable_parameter
|
|
from ..exc import (
|
|
handle_observed_exception,
|
|
ObservedAttributeError,
|
|
raise_observed_exception,
|
|
unimplemented,
|
|
)
|
|
from ..guards import GuardBuilder, install_guard
|
|
from ..source import (
|
|
AttrSource,
|
|
GetItemSource,
|
|
ODictGetItemSource,
|
|
RandomValueSource,
|
|
UnspecializedParamBufferSource,
|
|
WeakRefCallSource,
|
|
)
|
|
from ..utils import (
|
|
build_checkpoint_variable,
|
|
check_constant_args,
|
|
get_custom_getattr,
|
|
has_torch_function,
|
|
is_frozen_dataclass,
|
|
is_namedtuple_cls,
|
|
is_utils_checkpoint,
|
|
is_wrapper_or_member_descriptor,
|
|
istype,
|
|
namedtuple_fields,
|
|
object_has_getattribute,
|
|
proxy_args_kwargs,
|
|
tensortype_to_dtype,
|
|
unpatched_nn_module_getattr,
|
|
)
|
|
from .base import MutableLocal, VariableTracker
|
|
from .dicts import DefaultDictVariable
|
|
|
|
|
|
try:
|
|
import numpy as np
|
|
except ModuleNotFoundError:
|
|
np = None
|
|
|
|
try:
|
|
from torch.utils._cxx_pytree import PyTreeSpec
|
|
except ImportError:
|
|
PyTreeSpec = type(None)
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from torch._dynamo.symbolic_convert import InstructionTranslator
|
|
|
|
|
|
def is_standard_setattr(val):
|
|
return val in (object.__setattr__,)
|
|
|
|
|
|
def is_forbidden_context_manager(ctx):
|
|
f_ctxs = []
|
|
|
|
try:
|
|
from _pytest.python_api import RaisesContext
|
|
from _pytest.recwarn import WarningsChecker
|
|
|
|
f_ctxs.append(RaisesContext)
|
|
f_ctxs.append(WarningsChecker)
|
|
except ImportError:
|
|
pass
|
|
|
|
try:
|
|
from torch.testing._internal.jit_utils import (
|
|
_AssertRaisesRegexWithHighlightContext,
|
|
)
|
|
|
|
f_ctxs.append(_AssertRaisesRegexWithHighlightContext)
|
|
except ImportError:
|
|
pass
|
|
|
|
return ctx in f_ctxs
|
|
|
|
|
|
class UserDefinedVariable(VariableTracker):
|
|
pass
|
|
|
|
|
|
class UserDefinedClassVariable(UserDefinedVariable):
|
|
def __init__(self, value, **kwargs) -> None:
|
|
super().__init__(**kwargs)
|
|
self.value = value
|
|
|
|
def as_python_constant(self):
|
|
return self.value
|
|
|
|
def as_proxy(self):
|
|
return self.value
|
|
|
|
def __str__(self) -> str:
|
|
return f"UserDefinedClassVariable({self.value})"
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _constant_fold_classes():
|
|
return {
|
|
torch.device,
|
|
torch.finfo,
|
|
torch.iinfo,
|
|
torch.Size,
|
|
}
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _in_graph_classes():
|
|
_in_graph_class_list = {
|
|
torch.Tensor,
|
|
torch.cuda.Stream,
|
|
torch.cuda.Event,
|
|
}
|
|
if hasattr(torch, "hpu"):
|
|
_in_graph_class_list.update(
|
|
{
|
|
torch.hpu.Stream,
|
|
torch.hpu.Event,
|
|
}
|
|
)
|
|
|
|
return set(tensortype_to_dtype.keys()) | _in_graph_class_list
|
|
|
|
def can_constant_fold_through(self):
|
|
return self.value in self._constant_fold_classes()
|
|
|
|
def has_key_in_generic_dict(self, tx: "InstructionTranslator", key):
|
|
if tx.output.side_effects.has_pending_mutation_of_attr(self, key):
|
|
mutated_attr = tx.output.side_effects.load_attr(self, key, deleted_ok=True)
|
|
return not isinstance(mutated_attr, variables.DeletedVariable)
|
|
|
|
return key in self.value.__dict__
|
|
|
|
def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
|
|
from . import ConstantVariable, EnumVariable
|
|
from .builder import SourcelessBuilder, VariableBuilder
|
|
|
|
source = AttrSource(self.source, name) if self.source is not None else None
|
|
|
|
if name == "__name__":
|
|
return ConstantVariable.create(self.value.__name__)
|
|
elif name == "__qualname__":
|
|
return ConstantVariable.create(self.value.__qualname__)
|
|
elif name == "__dict__":
|
|
options = {"source": source}
|
|
return variables.GetAttrVariable(self, name, **options)
|
|
|
|
# Special handling of collections.OrderedDict.fromkeys()
|
|
# Wrap it as GetAttrVariable(collections.OrderedDict, "fromkeys") to make it consistent with
|
|
# collections.defaultdict, and both will be handled at UserDefinedClassVariable.call_method().
|
|
# Otherwise, it would be wrapped as UserDefinedObjectVariable(collections.OrderedDict.fromkeys),
|
|
# and we need duplicate code to handle both cases.
|
|
if (
|
|
self.value in {collections.OrderedDict, collections.defaultdict}
|
|
and name == "fromkeys"
|
|
):
|
|
return super().var_getattr(tx, name)
|
|
|
|
try:
|
|
obj = inspect.getattr_static(self.value, name)
|
|
except AttributeError:
|
|
obj = None
|
|
|
|
if isinstance(obj, staticmethod):
|
|
func = obj.__get__(self.value)
|
|
if source is not None:
|
|
return VariableBuilder(tx, source)(func)
|
|
else:
|
|
return SourcelessBuilder.create(tx, func)
|
|
elif isinstance(obj, classmethod):
|
|
return variables.UserMethodVariable(obj.__func__, self, source=source)
|
|
elif isinstance(obj, types.ClassMethodDescriptorType):
|
|
# e.g.: inspect.getattr_static(dict, "fromkeys")
|
|
# inspect.getattr_static(itertools.chain, "from_iterable")
|
|
func = obj.__get__(None, self.value)
|
|
if source is not None:
|
|
return VariableBuilder(tx, source)(func)
|
|
else:
|
|
return SourcelessBuilder.create(tx, func)
|
|
elif source:
|
|
# __mro__ is a member in < 3.12, an attribute in >= 3.12
|
|
if inspect.ismemberdescriptor(obj) or (
|
|
sys.version_info >= (3, 12) and name == "__mro__"
|
|
):
|
|
return VariableBuilder(tx, source)(obj.__get__(self.value))
|
|
|
|
if ConstantVariable.is_literal(obj):
|
|
return ConstantVariable.create(obj)
|
|
elif isinstance(obj, enum.Enum):
|
|
return EnumVariable(obj)
|
|
elif name in getattr(self.value, "__dict__", {}) or (
|
|
self.value.__module__.startswith("torch.")
|
|
or self.value.__module__ == "torch"
|
|
):
|
|
if source:
|
|
return VariableBuilder(tx, source)(obj)
|
|
|
|
if (
|
|
source
|
|
and not inspect.ismethoddescriptor(obj)
|
|
and not is_wrapper_or_member_descriptor(obj)
|
|
):
|
|
return VariableBuilder(tx, source)(obj)
|
|
return super().var_getattr(tx, name)
|
|
|
|
def _call_cross_entropy_loss(self, tx: "InstructionTranslator", args, kwargs):
|
|
"""
|
|
functional: input, target, weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean',
|
|
label_smoothing=0.0
|
|
|
|
non functional ctor: weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean',
|
|
label_smoothing=0.0
|
|
|
|
non functional loss call: input, target, optional_output
|
|
"""
|
|
from . import ConstantVariable
|
|
|
|
def normalize_args(
|
|
weight=ConstantVariable.create(None),
|
|
size_average=ConstantVariable.create(None),
|
|
ignore_index=ConstantVariable.create(-100),
|
|
reduce=ConstantVariable.create(None),
|
|
reduction=ConstantVariable.create("mean"),
|
|
label_smoothing=ConstantVariable.create(0.0),
|
|
):
|
|
return (
|
|
weight,
|
|
size_average,
|
|
ignore_index,
|
|
reduce,
|
|
reduction,
|
|
label_smoothing,
|
|
)
|
|
|
|
(
|
|
weight,
|
|
size_average,
|
|
ignore_index,
|
|
reduce_arg,
|
|
reduction,
|
|
label_smoothing,
|
|
) = normalize_args(*args, **kwargs)
|
|
|
|
def fake_cross_entropy_loss(input, target):
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
torch.nn.functional.cross_entropy,
|
|
*proxy_args_kwargs(
|
|
[
|
|
input,
|
|
target,
|
|
weight,
|
|
size_average,
|
|
ignore_index,
|
|
reduce_arg,
|
|
reduction,
|
|
label_smoothing,
|
|
],
|
|
{},
|
|
),
|
|
),
|
|
)
|
|
|
|
return variables.LambdaVariable(fake_cross_entropy_loss)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
if (
|
|
name == "__subclasses__"
|
|
and len(args) == 0
|
|
and not kwargs
|
|
and "__subclasses__" not in self.value.__dict__
|
|
):
|
|
options = {"mutable_local": MutableLocal()}
|
|
subs_as_vars: List[VariableTracker] = []
|
|
for sub in self.value.__subclasses__():
|
|
source = AttrSource(tx.import_source(sub.__module__), sub.__name__)
|
|
subs_as_vars.append(
|
|
variables.UserDefinedClassVariable(sub, source=source)
|
|
)
|
|
|
|
return variables.ListVariable(subs_as_vars, **options)
|
|
elif (
|
|
self.value in {collections.OrderedDict, collections.defaultdict}
|
|
and name == "fromkeys"
|
|
):
|
|
from .builtin import BuiltinVariable
|
|
|
|
return BuiltinVariable.call_custom_dict_fromkeys(
|
|
tx, self.value, *args, **kwargs
|
|
)
|
|
elif name == "__eq__" and len(args) == 1 and hasattr(args[0], "value"):
|
|
return variables.ConstantVariable(self.value == args[0].value)
|
|
elif name == "__ne__" and len(args) == 1 and hasattr(args[0], "value"):
|
|
return variables.ConstantVariable(self.value != args[0].value)
|
|
|
|
return super().call_method(tx, name, args, kwargs)
|
|
|
|
def call_function(
|
|
self,
|
|
tx: "InstructionTranslator",
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from ..side_effects import SideEffects
|
|
from .builder import SourcelessBuilder, wrap_fx_proxy
|
|
from .builtin import BuiltinVariable
|
|
|
|
constant_args = check_constant_args(args, kwargs)
|
|
|
|
if self.can_constant_fold_through() and constant_args:
|
|
# constant fold
|
|
return variables.ConstantVariable.create(
|
|
self.as_python_constant()(
|
|
*[x.as_python_constant() for x in args],
|
|
**{k: v.as_python_constant() for k, v in kwargs.items()},
|
|
),
|
|
)
|
|
elif self.value is torch.nn.CrossEntropyLoss:
|
|
return self._call_cross_entropy_loss(tx, args, kwargs)
|
|
elif self.value is contextlib.nullcontext:
|
|
# import here to avoid circular dependency
|
|
from .ctx_manager import NullContextVariable
|
|
|
|
return NullContextVariable()
|
|
elif self.value is collections.OrderedDict:
|
|
return BuiltinVariable.call_custom_dict(
|
|
tx, collections.OrderedDict, *args, **kwargs
|
|
)
|
|
elif (
|
|
self.value is collections.defaultdict
|
|
and len(args) <= 1
|
|
and DefaultDictVariable.is_supported_arg(args[0])
|
|
):
|
|
return DefaultDictVariable(
|
|
{},
|
|
collections.defaultdict,
|
|
args[0],
|
|
mutable_local=MutableLocal(),
|
|
)
|
|
elif self.value is collections.deque and not kwargs:
|
|
if len(args) == 0:
|
|
items = []
|
|
elif len(args) == 1 and args[0].has_force_unpack_var_sequence(tx):
|
|
items = args[0].force_unpack_var_sequence(tx)
|
|
else:
|
|
unimplemented("deque() with more than 1 arg not supported")
|
|
return variables.lists.DequeVariable(items, mutable_local=MutableLocal())
|
|
elif self.value is functools.partial:
|
|
if not args:
|
|
unimplemented("functools.partial malformed")
|
|
# The first arg, a callable (the ctor below will assert on types)
|
|
fn = args[0]
|
|
rest_args = args[1:]
|
|
# guards for the produced FunctoolsPartialVariable are installed in FunctoolsPartialVariable ctor from the
|
|
# args and keywords
|
|
return variables.functions.FunctoolsPartialVariable(
|
|
fn, args=rest_args, keywords=kwargs
|
|
)
|
|
elif self.value is warnings.catch_warnings and not args:
|
|
return variables.CatchWarningsCtxManagerVariable.create(tx, kwargs)
|
|
elif self.value is torch.cuda.device and not kwargs and len(args) == 1:
|
|
assert args[0].is_python_constant()
|
|
return variables.CUDADeviceVariable.create(tx, args[0].as_python_constant())
|
|
elif (
|
|
issubclass(type(self.value), type)
|
|
and hasattr(
|
|
self.value, "__enter__"
|
|
) # TODO(voz): These can invoke user code!
|
|
and hasattr(
|
|
self.value, "__exit__"
|
|
) # TODO(voz): These can invoke user code!
|
|
and self.is_standard_new()
|
|
and SideEffects.cls_supports_mutation_side_effects(self.value)
|
|
and self.source
|
|
and not is_forbidden_context_manager(self.value)
|
|
):
|
|
from torch.overrides import TorchFunctionMode
|
|
|
|
from .ctx_manager import GenericContextWrappingVariable
|
|
from .torch_function import TorchFunctionModeVariable
|
|
|
|
if issubclass(
|
|
self.value, TorchFunctionMode
|
|
) and TorchFunctionModeVariable.is_supported_torch_function_mode(
|
|
self.value
|
|
):
|
|
var_cls = TorchFunctionModeVariable
|
|
else:
|
|
var_cls = GenericContextWrappingVariable
|
|
|
|
cm_obj = tx.output.side_effects.track_object_new(
|
|
self.source, self.value, var_cls, {}
|
|
)
|
|
cm_obj.call_method(tx, "__init__", args, kwargs)
|
|
return cm_obj
|
|
elif is_namedtuple_cls(self.value):
|
|
fields = namedtuple_fields(self.value)
|
|
# check if this a quasi-namedtuple or a real one
|
|
if self.value.__module__ == "torch.return_types":
|
|
# create pseudo-defaults from values of the quasi-namedtuple
|
|
field_defaults = dict(zip(fields, args[0].items))
|
|
else:
|
|
field_defaults = self.value._field_defaults
|
|
|
|
items = list(args)
|
|
items.extend([None] * (len(fields) - len(items)))
|
|
|
|
var_tracker_kwargs = {}
|
|
for field_name, var_tracker in zip(fields, items):
|
|
if var_tracker is None:
|
|
if field_name in kwargs:
|
|
field_var = kwargs[field_name]
|
|
else:
|
|
assert field_name in field_defaults
|
|
field_var = SourcelessBuilder.create(
|
|
tx, field_defaults[field_name]
|
|
)
|
|
var_tracker_kwargs[field_name] = field_var
|
|
|
|
for name, value in var_tracker_kwargs.items():
|
|
assert name in fields
|
|
items[fields.index(name)] = value
|
|
|
|
assert all(x is not None for x in items)
|
|
return variables.NamedTupleVariable(items, self.value)
|
|
elif is_frozen_dataclass(self.value) and self.is_standard_new():
|
|
from .builder import SourcelessBuilder
|
|
|
|
fields = dataclasses.fields(self.value)
|
|
items = list(args)
|
|
items.extend([None] * (len(fields) - len(items)))
|
|
|
|
default_kwargs = {}
|
|
for field, var_tracker in zip(fields, items):
|
|
if var_tracker is None:
|
|
if field.name in kwargs:
|
|
var_tracker = kwargs[field.name]
|
|
else:
|
|
if not field.init:
|
|
continue
|
|
|
|
if field.default is not dataclasses.MISSING:
|
|
var_tracker = SourcelessBuilder.create(tx, field.default)
|
|
elif field.default_factory is not dataclasses.MISSING:
|
|
factory_fn = SourcelessBuilder.create(
|
|
tx, field.default_factory
|
|
)
|
|
var_tracker = factory_fn.call_function(tx, [], {})
|
|
else:
|
|
# if we are subclass, the constructor could possibly
|
|
# be missing args
|
|
continue
|
|
|
|
default_kwargs[field.name] = var_tracker
|
|
kwargs.update(default_kwargs)
|
|
|
|
var = tx.output.side_effects.track_object_new_from_user_defined_class(self)
|
|
var.call_method(tx, "__init__", args, kwargs)
|
|
return var
|
|
elif (
|
|
self.is_standard_new()
|
|
and SideEffects.cls_supports_mutation_side_effects(self.value)
|
|
and self.source
|
|
):
|
|
var = tx.output.side_effects.track_object_new_from_user_defined_class(self)
|
|
with do_not_convert_to_tracable_parameter():
|
|
var.call_method(tx, "__init__", args, kwargs)
|
|
return var
|
|
elif variables.CustomizedDictVariable.is_matching_cls(self.value):
|
|
options = {"mutable_local": MutableLocal()}
|
|
return variables.CustomizedDictVariable.create(
|
|
self.value, args, kwargs, options
|
|
)
|
|
elif (
|
|
variables.RestrictedListSubclassVariable.is_matching_cls(self.value)
|
|
and self.source
|
|
):
|
|
return variables.RestrictedListSubclassVariable(
|
|
variables.BuiltinVariable(list).call_function(tx, args, kwargs).items,
|
|
user_cls=self.value,
|
|
user_cls_source=self.source,
|
|
mutable_local=MutableLocal(),
|
|
)
|
|
elif (
|
|
self.value in self._in_graph_classes()
|
|
or is_traceable_wrapper_subclass_type(self.value)
|
|
):
|
|
# torch.LongTensor cannot accept a list of FakeTensors.
|
|
# So we stack the list of FakeTensors instead.
|
|
if (
|
|
np
|
|
and self.value in tensortype_to_dtype
|
|
and len(args) == 1
|
|
and isinstance(args[0], variables.ListVariable)
|
|
and len(args[0].items) > 1
|
|
and all(isinstance(x, variables.TensorVariable) for x in args[0].items)
|
|
):
|
|
# Stack FakeTensor
|
|
stacked = wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
torch.stack,
|
|
*proxy_args_kwargs(args, kwargs),
|
|
),
|
|
)
|
|
args = [stacked]
|
|
|
|
tensor_variable = wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
self.value,
|
|
*proxy_args_kwargs(args, kwargs),
|
|
),
|
|
)
|
|
|
|
return tensor_variable
|
|
elif issubclass(self.value, enum.Enum) and len(args) == 1 and not kwargs:
|
|
options = {"mutable_local": MutableLocal()}
|
|
return variables.EnumVariable.create(self.value, args[0], options)
|
|
elif self.value is random.Random:
|
|
if len(args) == 1 and isinstance(args[0], variables.ConstantVariable):
|
|
seed = args[0].value
|
|
else:
|
|
seed = None
|
|
random_object = random.Random(seed)
|
|
return RandomVariable(random_object)
|
|
elif (
|
|
not self.is_standard_new()
|
|
and SideEffects.cls_supports_mutation_side_effects(self.value)
|
|
and self.source
|
|
):
|
|
return tx.inline_user_function_return(
|
|
SourcelessBuilder.create(
|
|
tx, polyfills.instantiate_user_defined_class_object
|
|
),
|
|
[self, *args],
|
|
kwargs,
|
|
)
|
|
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
def is_standard_new(self):
|
|
"""Check for __new__ being overridden"""
|
|
new_fn = inspect.getattr_static(self.value, "__new__", None)
|
|
if isinstance(new_fn, staticmethod):
|
|
new_fn = new_fn.__func__
|
|
return new_fn in (object.__new__, Generic.__new__)
|
|
|
|
def call_hasattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
|
|
if self.source:
|
|
source = AttrSource(self.source, name)
|
|
install_guard(source.make_guard(GuardBuilder.HASATTR))
|
|
return variables.ConstantVariable(hasattr(self.value, name))
|
|
return super().call_hasattr(tx, name)
|
|
|
|
def const_getattr(self, tx: "InstructionTranslator", name):
|
|
if name == "__name__":
|
|
return self.value.__name__
|
|
return super().const_getattr(tx, name)
|
|
|
|
|
|
class NO_SUCH_SUBOBJ:
|
|
pass
|
|
|
|
|
|
def call_random_fn(tx, fn, args, kwargs):
|
|
from .builder import VariableBuilder
|
|
|
|
args = [x.as_python_constant() for x in args]
|
|
kwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
|
|
random_call_index = len(tx.output.random_calls)
|
|
example_value = fn(*args, **kwargs)
|
|
source = RandomValueSource(random_call_index)
|
|
tx.output.random_calls.append((fn, args, kwargs))
|
|
# TODO: arguably, this should route to wrap_symint/wrap_symfloat
|
|
# (currently hypothetical), but I'm not going to poke my hand in
|
|
# this nest for now
|
|
return VariableBuilder(tx, source).wrap_unspecialized_primitive(example_value)
|
|
|
|
|
|
class UserDefinedObjectVariable(UserDefinedVariable):
|
|
"""
|
|
Mostly objects of defined type. Catch-all for something where we only know the type.
|
|
"""
|
|
|
|
_nonvar_fields = {"value", "value_type", *UserDefinedVariable._nonvar_fields}
|
|
|
|
def __init__(self, value, value_type=None, cls_source=None, **kwargs) -> None:
|
|
super().__init__(**kwargs)
|
|
self.value = value
|
|
self.value_type = value_type or type(value)
|
|
assert type(value) is self.value_type
|
|
# This is used with __new__, when the new object is sourceless but the user class can be sourceful.
|
|
self.cls_source = cls_source
|
|
|
|
def __str__(self) -> str:
|
|
inner = self.value_type.__name__
|
|
if inner in [
|
|
"builtin_function_or_method",
|
|
"getset_descriptor",
|
|
"method_descriptor",
|
|
"method",
|
|
]:
|
|
inner = str(getattr(self.value, "__name__", None))
|
|
return f"{self.__class__.__name__}({inner})"
|
|
|
|
def __repr__(self) -> str:
|
|
return f"{self.__class__.__name__}({self.value_type.__name__})"
|
|
|
|
def python_type(self):
|
|
return self.value_type
|
|
|
|
def guard_as_python_constant(self):
|
|
if self.source:
|
|
install_guard(self.source.make_guard(GuardBuilder.ID_MATCH))
|
|
return self.value
|
|
return super().guard_as_python_constant()
|
|
|
|
def torch_function_check(self):
|
|
assert has_torch_function(
|
|
self
|
|
), f"calling torch function on object without __torch_function__ {self}"
|
|
|
|
def get_torch_fn(self, tx):
|
|
self.torch_function_check()
|
|
from .torch_function import build_torch_function_fn
|
|
|
|
return build_torch_function_fn(tx, self.value, self.source)
|
|
|
|
def call_torch_function(self, tx: "InstructionTranslator", fn, types, args, kwargs):
|
|
self.torch_function_check()
|
|
|
|
from .torch_function import _get_subclass_type_var, call_torch_function
|
|
|
|
return call_torch_function(
|
|
tx,
|
|
_get_subclass_type_var(tx, self),
|
|
self.get_torch_fn(tx),
|
|
fn,
|
|
types,
|
|
args,
|
|
kwargs,
|
|
)
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _supported_random_functions():
|
|
fns = {
|
|
random.random,
|
|
random.randint,
|
|
random.randrange,
|
|
random.uniform,
|
|
}
|
|
return fns
|
|
|
|
def _maybe_get_baseclass_method(self, name):
|
|
if name not in getattr(self.value, "__dict__", {}):
|
|
try:
|
|
return inspect.getattr_static(type(self.value), name)
|
|
except AttributeError:
|
|
pass
|
|
return None
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from . import (
|
|
BuiltinVariable,
|
|
ConstantVariable,
|
|
TupleVariable,
|
|
UserMethodVariable,
|
|
)
|
|
|
|
method = self._maybe_get_baseclass_method(name)
|
|
if method is not None:
|
|
if method is object.__init__:
|
|
return ConstantVariable.create(None)
|
|
|
|
if is_standard_setattr(method) or isinstance(self.value, threading.local):
|
|
return self.method_setattr_standard(tx, *args, **kwargs)
|
|
|
|
# [NOTE] OrderedDict, dict subtypes must always have source
|
|
# We cannot instantiate such subtypes in-graph due to builtin __new__
|
|
if method is collections.OrderedDict.keys:
|
|
# subclass of OrderedDict
|
|
assert not (args or kwargs)
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
keys = list(self.value.keys())
|
|
assert all(map(ConstantVariable.is_literal, keys))
|
|
install_guard(self.source.make_guard(GuardBuilder.DICT_CONST_KEYS))
|
|
tx.output.guard_on_key_order.add(self.source.name())
|
|
return TupleVariable([ConstantVariable.create(k) for k in keys])
|
|
|
|
if (
|
|
method in (collections.OrderedDict.__contains__, dict.__contains__)
|
|
and len(args) == 1
|
|
and isinstance(args[0], (ConstantVariable, BuiltinVariable))
|
|
and inspect.getattr_static(type(self.value), "keys")
|
|
in (collections.OrderedDict.keys, dict.keys)
|
|
):
|
|
assert not kwargs
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
|
|
# TODO(anijain2305) - Why do we need to guard on all keys?
|
|
install_guard(self.source.make_guard(GuardBuilder.DICT_CONST_KEYS))
|
|
return ConstantVariable.create(
|
|
args[0].as_python_constant() in self.value
|
|
)
|
|
|
|
if method is collections.OrderedDict.items and isinstance(
|
|
self.value, collections.OrderedDict
|
|
):
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
assert not (args or kwargs)
|
|
items = []
|
|
keys = self.call_method(tx, "keys", [], {})
|
|
for key in keys.force_unpack_var_sequence(tx):
|
|
items.append(
|
|
TupleVariable(
|
|
[key, self.odict_getitem(tx, key)],
|
|
)
|
|
)
|
|
tx.output.guard_on_key_order.add(self.source.name())
|
|
return TupleVariable(items)
|
|
|
|
if method is collections.OrderedDict.__getitem__ and len(args) == 1:
|
|
assert not kwargs
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
return self.odict_getitem(tx, args[0])
|
|
|
|
if (
|
|
method in (object.__ne__, object.__eq__)
|
|
and len(args) == 1
|
|
and not kwargs
|
|
and hasattr(args[0], "value")
|
|
):
|
|
return ConstantVariable(
|
|
(self.value is args[0].value) is (method is object.__eq__)
|
|
)
|
|
|
|
# check for methods implemented in C++
|
|
if isinstance(method, types.FunctionType):
|
|
source = (
|
|
None
|
|
if self.source is None
|
|
else AttrSource(AttrSource(self.source, "__class__"), name)
|
|
)
|
|
# TODO(jansel): add a guard to check for monkey patching?
|
|
from ..mutation_guard import unpatched_nn_module_init
|
|
|
|
if method is torch.nn.Module.__init__:
|
|
method = unpatched_nn_module_init
|
|
return UserMethodVariable(method, self, source=source).call_function(
|
|
tx, args, kwargs
|
|
)
|
|
|
|
if method is list.__len__ and self.source and not (args or kwargs):
|
|
install_guard(self.source.make_guard(GuardBuilder.SEQUENCE_LENGTH))
|
|
return ConstantVariable(len(self.value))
|
|
|
|
return super().call_method(tx, name, args, kwargs)
|
|
|
|
def method_setattr_standard(self, tx: "InstructionTranslator", name, value):
|
|
try:
|
|
name = name.as_python_constant()
|
|
except NotImplementedError:
|
|
unimplemented(f"non-const setattr name: {name}")
|
|
if not tx.output.side_effects.is_attribute_mutation(self):
|
|
unimplemented(f"setattr({self}, {name}, ...)")
|
|
|
|
tx.output.side_effects.store_attr(self, name, value)
|
|
return variables.ConstantVariable(None)
|
|
|
|
def needs_slow_setattr(self):
|
|
return not is_standard_setattr(
|
|
inspect.getattr_static(self.value, "__setattr__", None)
|
|
) and not isinstance(self.value, threading.local)
|
|
|
|
def unpack_var_sequence(self, tx):
|
|
if (
|
|
self.source
|
|
and self._maybe_get_baseclass_method("__iter__") is list.__iter__
|
|
and self._maybe_get_baseclass_method("__len__") is list.__len__
|
|
and self._maybe_get_baseclass_method("__getitem__") is list.__getitem__
|
|
):
|
|
install_guard(self.source.make_guard(GuardBuilder.SEQUENCE_LENGTH))
|
|
return [
|
|
variables.LazyVariableTracker.create(
|
|
self.value[k],
|
|
source=GetItemSource(self.source, k),
|
|
)
|
|
for k in range(len(self.value))
|
|
]
|
|
return super().unpack_var_sequence(tx)
|
|
|
|
def next_variable(self, tx):
|
|
return self.call_method(tx, "__next__", [], {})
|
|
|
|
def is_supported_random(self):
|
|
try:
|
|
return self.value in self._supported_random_functions()
|
|
except TypeError:
|
|
# TypeError: unhashable type
|
|
return False
|
|
|
|
def call_function(
|
|
self,
|
|
tx: "InstructionTranslator",
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from .. import trace_rules
|
|
from .builder import VariableBuilder
|
|
|
|
if (
|
|
self.is_supported_random()
|
|
and all(k.is_python_constant() for k in args)
|
|
and all(v.is_python_constant() for v in kwargs.values())
|
|
):
|
|
return call_random_fn(tx, self.value, args, kwargs)
|
|
elif istype(self.value, types.MethodType):
|
|
func = self.value.__func__
|
|
obj = self.value.__self__
|
|
if (
|
|
func is torch.utils._contextlib._DecoratorContextManager.clone
|
|
and variables.TorchCtxManagerClassVariable.is_matching_cls(
|
|
obj.__class__
|
|
)
|
|
and not (args or kwargs)
|
|
):
|
|
return variables.TorchCtxManagerClassVariable(
|
|
obj.__class__
|
|
).call_function(tx, args, kwargs)
|
|
|
|
if (
|
|
func is torch.autograd.grad_mode.inference_mode.clone
|
|
and obj.__class__ is torch.autograd.grad_mode.inference_mode
|
|
):
|
|
# simulate the inference_mode.clone implementation
|
|
var = variables.ConstantVariable(obj.mode)
|
|
return variables.TorchCtxManagerClassVariable(
|
|
obj.__class__
|
|
).call_function(tx, [var], kwargs)
|
|
|
|
if self.source is None:
|
|
unimplemented(
|
|
"Sourceless UserDefinedObjectVariable method not supported"
|
|
)
|
|
func_src = AttrSource(self.source, "__func__")
|
|
func_var = VariableBuilder(tx, func_src)(func)
|
|
obj_src = AttrSource(self.source, "__self__")
|
|
obj_var = VariableBuilder(tx, obj_src)(obj)
|
|
return func_var.call_function(tx, [obj_var] + args, kwargs)
|
|
elif (
|
|
istype(self.value, functools.partial)
|
|
and trace_rules.lookup(self.value.func)
|
|
== variables.TorchInGraphFunctionVariable
|
|
and all(
|
|
variables.ConstantVariable.is_literal(v)
|
|
for v in itertools.chain(self.value.args, self.value.keywords.values())
|
|
)
|
|
):
|
|
if self.source:
|
|
install_guard(
|
|
AttrSource(self.source, "func").make_guard(GuardBuilder.ID_MATCH),
|
|
AttrSource(self.source, "args").make_guard(
|
|
GuardBuilder.CONSTANT_MATCH
|
|
),
|
|
AttrSource(self.source, "keywords").make_guard(
|
|
GuardBuilder.CONSTANT_MATCH
|
|
),
|
|
)
|
|
|
|
partial_args = [
|
|
variables.ConstantVariable.create(v) for v in self.value.args
|
|
]
|
|
partial_args.extend(args)
|
|
partial_kwargs = {
|
|
k: variables.ConstantVariable.create(v)
|
|
for k, v in self.value.keywords.items()
|
|
}
|
|
partial_kwargs.update(kwargs)
|
|
if is_utils_checkpoint(self.value.func):
|
|
return build_checkpoint_variable().call_function(
|
|
tx, partial_args, partial_kwargs
|
|
)
|
|
return variables.TorchInGraphFunctionVariable(
|
|
self.value.func
|
|
).call_function(tx, partial_args, partial_kwargs)
|
|
elif callable(self.value):
|
|
if self.source:
|
|
install_guard(self.source.make_guard(GuardBuilder.FUNCTION_MATCH))
|
|
return self.call_method(tx, "__call__", args, kwargs)
|
|
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
def _check_for_getattribute(self):
|
|
if object_has_getattribute(self.value):
|
|
unimplemented("UserDefinedObjectVariable with custom __getattribute__")
|
|
|
|
def _check_for_getattr(self):
|
|
return get_custom_getattr(self.value)
|
|
|
|
def _is_c_defined_property(self, subobj):
|
|
if not isinstance(subobj, property):
|
|
return False
|
|
|
|
# pybind def_readwrite is implemented via PyCFunction. At the python level, it is visible as a property whose
|
|
# fget is an instancemethod wrapper - https://docs.python.org/3/c-api/method.html#c.PyInstanceMethod_Check
|
|
|
|
# If we have a PyCFunction, we make an assumption that there is no side effect.
|
|
return isinstance(
|
|
subobj.fget, types.BuiltinFunctionType
|
|
) or torch._C._dynamo.utils.is_instancemethod(subobj.fget)
|
|
|
|
def _getattr_static(self, name):
|
|
subobj = inspect.getattr_static(self.value, name, NO_SUCH_SUBOBJ)
|
|
import _collections
|
|
|
|
# In some cases, we have to do dynamic lookup because getattr_static is not enough. For example, threading.local
|
|
# has side-effect free __getattribute__ and the attribute is not visible without a dynamic lookup.
|
|
if (
|
|
subobj is NO_SUCH_SUBOBJ # e.g., threading.local
|
|
or isinstance(
|
|
subobj, _collections._tuplegetter
|
|
) # namedtuple fields are represented by _tuplegetter
|
|
or (
|
|
inspect.ismemberdescriptor(subobj) and name in self.value.__slots__
|
|
) # handle memberdecriptor and slots
|
|
or self._is_c_defined_property(subobj)
|
|
):
|
|
# Call __getattribute__, we have already checked that this is not overridden and side-effect free. We don't
|
|
# want to call getattr because it can be user-overridden.
|
|
subobj = self.value.__getattribute__(name)
|
|
|
|
return subobj
|
|
|
|
def has_key_in_generic_dict(self, tx: "InstructionTranslator", key):
|
|
self._check_for_getattribute()
|
|
if tx.output.side_effects.has_pending_mutation_of_attr(self, key):
|
|
mutated_attr = tx.output.side_effects.load_attr(self, key, deleted_ok=True)
|
|
return not isinstance(mutated_attr, variables.DeletedVariable)
|
|
|
|
return key in self.value.__dict__
|
|
|
|
def is_supported_nn_module_method(self, method):
|
|
return torch._dynamo.config.inline_inbuilt_nn_modules and method in (
|
|
torch.nn.Module.parameters,
|
|
)
|
|
|
|
def var_getattr(self, tx: "InstructionTranslator", name):
|
|
from .. import trace_rules
|
|
from . import ConstantVariable
|
|
from .builder import SourcelessBuilder, VariableBuilder
|
|
|
|
source = AttrSource(self.source, name) if self.source else None
|
|
self._check_for_getattribute()
|
|
|
|
if tx.output.side_effects.has_pending_mutation_of_attr(self, name):
|
|
result = tx.output.side_effects.load_attr(self, name, deleted_ok=True)
|
|
if isinstance(result, variables.DeletedVariable):
|
|
raise_observed_exception(AttributeError, tx, self)
|
|
return result
|
|
|
|
if name == "__dict__":
|
|
options = {"source": source}
|
|
return variables.GetAttrVariable(self, name, **options)
|
|
|
|
# TODO(anijain2305) - Investigate if we need specialization for more
|
|
# dunder attrs. inspect.getattr_static does not return correct value for
|
|
# them.
|
|
if name == "__class__":
|
|
cls_source = source
|
|
if cls_source is None:
|
|
cls_source = self.cls_source
|
|
options = {"source": cls_source}
|
|
return UserDefinedClassVariable(type(self.value), **options)
|
|
|
|
try:
|
|
subobj = self._getattr_static(name)
|
|
except AttributeError:
|
|
subobj = NO_SUCH_SUBOBJ
|
|
getattr_fn = self._check_for_getattr()
|
|
if isinstance(getattr_fn, types.FunctionType):
|
|
# Dynamo is going to trace the __getattr__ function with
|
|
# args=name. Set the source accordingly.
|
|
if getattr_fn is unpatched_nn_module_getattr and isinstance(
|
|
self, variables.UnspecializedNNModuleVariable
|
|
):
|
|
# Manually trace out the nn module __getattr__ to avoid large compilation latency.
|
|
out = self.manually_trace_nn_module_getattr(tx, name)
|
|
else:
|
|
new_source = None
|
|
if self.source:
|
|
new_source = AttrSource(self.source, "__getattr__")
|
|
out = variables.UserMethodVariable(
|
|
getattr_fn, self, source=new_source
|
|
).call_function(tx, [ConstantVariable.create(name)], {})
|
|
|
|
if self.source and getattr_fn is torch.nn.Module.__getattr__:
|
|
if isinstance(
|
|
out,
|
|
(
|
|
variables.UnspecializedNNModuleVariable,
|
|
variables.NNModuleVariable,
|
|
),
|
|
):
|
|
# nn_module_stack source is BC surface area. Ensure that
|
|
# mod._modules["linear"] is reflected as mod.linear for
|
|
# nn_module_stack.
|
|
out.set_nn_module_stack_source(
|
|
AttrSource(self.get_nn_module_stack_source(), name)
|
|
)
|
|
return out
|
|
|
|
elif getattr_fn is not None:
|
|
unimplemented("UserDefined with non-function __getattr__")
|
|
|
|
if isinstance(subobj, property):
|
|
if self.source:
|
|
# Read the class attribute to reach the property
|
|
source = AttrSource(AttrSource(self.source, "__class__"), name)
|
|
# Get the getter function
|
|
source = AttrSource(source, "fget")
|
|
return variables.UserMethodVariable(
|
|
subobj.fget, self, source=source
|
|
).call_function(tx, [], {})
|
|
elif isinstance(subobj, staticmethod):
|
|
func = subobj.__get__(self.value)
|
|
if source is not None:
|
|
return trace_rules.lookup(func).create_with_source(func, source=source)
|
|
else:
|
|
return trace_rules.lookup(func)(func)
|
|
elif isinstance(subobj, classmethod):
|
|
return variables.UserMethodVariable(
|
|
subobj.__func__, self.var_getattr(tx, "__class__"), source=source
|
|
)
|
|
elif isinstance(subobj, types.ClassMethodDescriptorType):
|
|
# e.g.: inspect.getattr_static({}, "fromkeys")
|
|
func = subobj.__get__(self.value, None)
|
|
if source is not None:
|
|
return VariableBuilder(tx, source)(func)
|
|
else:
|
|
return SourcelessBuilder.create(tx, func)
|
|
elif inspect.ismethoddescriptor(subobj) and not is_wrapper_or_member_descriptor(
|
|
subobj.__get__
|
|
):
|
|
# Attribute has a __get__ method. Create a user defined object vt
|
|
# for the subobj, and then trace the __get__ method.
|
|
descriptor_var = UserDefinedObjectVariable(subobj, source=source)
|
|
|
|
get_source = self.source
|
|
if self.source:
|
|
get_source = AttrSource(self.source, "__get__")
|
|
|
|
# The arguments of the __get__ function are (self, instance, owner)
|
|
# self - descriptor_var
|
|
# instance - instance of the class, represented by self here
|
|
# owner - class object
|
|
owner_var = UserDefinedClassVariable(type(self.value))
|
|
return variables.UserMethodVariable(
|
|
subobj.__get__.__func__, descriptor_var, source=get_source
|
|
).call_function(tx, [descriptor_var, self, owner_var], {})
|
|
elif isinstance(subobj, types.FunctionType) or (
|
|
isinstance(subobj, types.MethodType)
|
|
and isinstance(self.value, torch.nn.Module)
|
|
):
|
|
if self.is_supported_nn_module_method(subobj):
|
|
return variables.GetAttrVariable(self, name, source=source)
|
|
|
|
# Since we get subobj via self._getattr_static, which may not trigger dynamic lookup.
|
|
# Static lookup can't tell us it's a method or function correctly,
|
|
# so we trigger dynamic lookup here to get the correct type.
|
|
dynamic_subobj = getattr(self.value, name)
|
|
|
|
while dynamic_subobj is subobj and hasattr(subobj, "_torchdynamo_inline"):
|
|
subobj = subobj._torchdynamo_inline
|
|
dynamic_subobj = subobj
|
|
source = AttrSource(source, "_torchdynamo_inline") if source else None
|
|
|
|
if isinstance(subobj, types.MethodType):
|
|
if dynamic_subobj.__self__ is not self.value:
|
|
unimplemented("__self__ mismatch for bound method")
|
|
func = subobj.__func__
|
|
else:
|
|
assert isinstance(subobj, types.FunctionType)
|
|
func = subobj
|
|
|
|
if inspect.ismethod(dynamic_subobj):
|
|
return variables.UserMethodVariable(func, self, source=source)
|
|
elif inspect.isfunction(dynamic_subobj):
|
|
if is_utils_checkpoint(func):
|
|
return build_checkpoint_variable(source=source)
|
|
elif source is not None:
|
|
return trace_rules.lookup(func).create_with_source(
|
|
func, source=source
|
|
)
|
|
else:
|
|
return trace_rules.lookup(func)(func)
|
|
|
|
if (
|
|
# wrap the source only if inline_inbuilt_nn_modules is set or fsdp modules. This is a temporary solution to
|
|
# keep Dynamo behavior compatible with no inlining, as there will be some delay to turn on the flag in
|
|
# fbcode.
|
|
(
|
|
torch._dynamo.config.inline_inbuilt_nn_modules
|
|
or isinstance(self, variables.FSDPManagedNNModuleVariable)
|
|
)
|
|
and source
|
|
and isinstance(self, variables.UnspecializedNNModuleVariable)
|
|
# export has some awkwardness around specialized and unspecialized modules. Skip wrapping source for export
|
|
# usecase for now.
|
|
and not tx.output.export
|
|
):
|
|
# Recalculate source for params/buffers
|
|
if name in ("_buffers", "_parameters"):
|
|
source = UnspecializedParamBufferSource(self.source, name)
|
|
source = self._wrap_source(source)
|
|
|
|
if subobj is not NO_SUCH_SUBOBJ:
|
|
if is_wrapper_or_member_descriptor(subobj):
|
|
options = {"source": source}
|
|
return variables.GetAttrVariable(self, name, **options)
|
|
if source:
|
|
return variables.LazyVariableTracker.create(subobj, source)
|
|
else:
|
|
# Check if the subobj is accessible from the class itself. If the class source is known, we can create a
|
|
# sourceful variable tracker.
|
|
if self.cls_source is not None:
|
|
subobj_from_class = inspect.getattr_static(
|
|
self.value.__class__, name, NO_SUCH_SUBOBJ
|
|
)
|
|
if subobj_from_class is subobj:
|
|
src_from_class = AttrSource(self.cls_source, name)
|
|
return variables.LazyVariableTracker.create(
|
|
subobj_from_class, src_from_class
|
|
)
|
|
|
|
return SourcelessBuilder.create(tx, subobj)
|
|
|
|
# Earlier we were returning GetAttrVariable but its incorrect. In absence of attr, Python raises AttributeError.
|
|
raise_observed_exception(AttributeError, tx, self)
|
|
|
|
def call_hasattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
|
|
if self._check_for_getattribute():
|
|
unimplemented("hasattr with custom __getattribute__")
|
|
|
|
if self.source:
|
|
install_guard(
|
|
AttrSource(self.source, name).make_guard(GuardBuilder.HASATTR)
|
|
)
|
|
|
|
try:
|
|
var_vt = self.var_getattr(tx, name)
|
|
return variables.ConstantVariable.create(
|
|
not isinstance(var_vt, variables.DeletedVariable)
|
|
)
|
|
except ObservedAttributeError:
|
|
handle_observed_exception(tx)
|
|
return variables.ConstantVariable.create(False)
|
|
|
|
def odict_getitem(self, tx: "InstructionTranslator", key):
|
|
from .builder import VariableBuilder
|
|
from .dicts import is_hashable
|
|
|
|
# TODO this should probably be merged with the dict handling
|
|
|
|
index = (
|
|
key.source
|
|
if is_hashable(key) and key.source is not None
|
|
else key.as_python_constant()
|
|
)
|
|
|
|
return VariableBuilder(
|
|
tx,
|
|
ODictGetItemSource(self.source, index),
|
|
)(collections.OrderedDict.__getitem__(self.value, key.as_python_constant()))
|
|
|
|
|
|
class FrozenDataClassVariable(UserDefinedObjectVariable):
|
|
@staticmethod
|
|
def create(tx, value, source):
|
|
from dataclasses import fields
|
|
|
|
assert is_frozen_dataclass(value)
|
|
|
|
from .builder import VariableBuilder
|
|
|
|
field_map = {}
|
|
for field in fields(value):
|
|
if hasattr(value, field.name):
|
|
field_map[field.name] = VariableBuilder(
|
|
tx, AttrSource(source, field.name)
|
|
)(getattr(value, field.name))
|
|
|
|
return FrozenDataClassVariable(value, fields=field_map, source=source)
|
|
|
|
def __init__(self, value, fields=None, **kwargs) -> None:
|
|
super().__init__(value, **kwargs)
|
|
if fields is None:
|
|
fields = {}
|
|
self.fields = fields
|
|
|
|
def as_proxy(self):
|
|
from dataclasses import fields
|
|
|
|
args = []
|
|
kwargs = {}
|
|
for field in fields(self.value):
|
|
proxy = self.fields[field.name].as_proxy()
|
|
if hasattr(field, "kw_only") and field.kw_only:
|
|
kwargs[field.name] = proxy
|
|
else:
|
|
args.append(proxy)
|
|
|
|
return self.python_type()(*args, **kwargs)
|
|
|
|
# NB: This is called during __init__ for a frozen dataclass
|
|
# use this to accumulate the most up-to-date field values
|
|
def method_setattr_standard(self, tx: "InstructionTranslator", name, value):
|
|
self.fields[name.as_python_constant()] = value
|
|
return super().method_setattr_standard(tx, name, value)
|
|
|
|
def __repr__(self) -> str:
|
|
return f"{self.__class__.__name__}({self.value_type.__name__})"
|
|
|
|
|
|
class SourcelessGraphModuleVariable(UserDefinedObjectVariable):
|
|
def __init__(
|
|
self,
|
|
value,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(value, **kwargs)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
fn_variable = variables.UserFunctionVariable(self.value.forward.__func__)
|
|
args = [self] + args
|
|
return tx.inline_user_function_return(
|
|
fn_variable,
|
|
args,
|
|
kwargs,
|
|
)
|
|
|
|
|
|
class WeakRefVariable(UserDefinedObjectVariable):
|
|
_nonvar_fields = UserDefinedObjectVariable._nonvar_fields
|
|
|
|
def __init__(self, value, **kwargs) -> None:
|
|
super().__init__(value, **kwargs)
|
|
|
|
def call_function(
|
|
self,
|
|
tx: "InstructionTranslator",
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
call_source = None
|
|
referent = self.value()
|
|
|
|
if self.source:
|
|
from .builder import VariableBuilder
|
|
|
|
call_source = WeakRefCallSource(self.source)
|
|
return VariableBuilder(tx, call_source)(referent)
|
|
else:
|
|
from .builder import SourcelessBuilder
|
|
|
|
return SourcelessBuilder.create(tx, referent)
|
|
|
|
|
|
class KeyedJaggedTensorVariable(UserDefinedObjectVariable):
|
|
@staticmethod
|
|
def is_matching_object(obj):
|
|
mod = sys.modules.get("torchrec.sparse.jagged_tensor")
|
|
return mod is not None and type(obj) is mod.KeyedJaggedTensor
|
|
|
|
def __init__(self, value, **kwargs) -> None:
|
|
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor
|
|
|
|
assert type(value) is KeyedJaggedTensor
|
|
super().__init__(value, **kwargs)
|
|
|
|
def var_getattr(self, tx: "InstructionTranslator", name):
|
|
if (
|
|
torch._dynamo.config.force_unspec_int_unbacked_size_like_on_torchrec_kjt
|
|
and self.source is not None
|
|
and name in ("_length_per_key", "_offset_per_key")
|
|
):
|
|
with TracingContext.patch(force_unspec_int_unbacked_size_like=True):
|
|
return super().var_getattr(tx, name)
|
|
return super().var_getattr(tx, name)
|
|
|
|
|
|
class RemovableHandleClass:
|
|
# Dummy class to pass to python_type of RemovableHandleVariable
|
|
# Useful for isinstance check on hooks
|
|
pass
|
|
|
|
|
|
class RemovableHandleVariable(VariableTracker):
|
|
REMOVED = -1
|
|
|
|
def __init__(
|
|
self,
|
|
mutable_local=None,
|
|
# index of the registration in the side_effects owned register_hook/handle list, used during removal.
|
|
idx=None,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(**kwargs)
|
|
self.mutable_local = mutable_local
|
|
self.idx = idx
|
|
|
|
def call_method(self, tx: "InstructionTranslator", method_name, args, kwargs):
|
|
if method_name == "remove":
|
|
if self.idx != self.REMOVED:
|
|
tx.output.side_effects.remove_hook(self.idx)
|
|
self.idx = self.REMOVED
|
|
return variables.ConstantVariable.create(None)
|
|
super().call_method(tx, method_name, args, kwargs)
|
|
|
|
def reconstruct(self, codegen):
|
|
if self.idx == self.REMOVED:
|
|
# Hook has already been removed, return a dummy handle
|
|
codegen.add_push_null(
|
|
lambda: codegen.load_import_from(
|
|
"torch._dynamo.utils", "invalid_removeable_handle"
|
|
)
|
|
)
|
|
codegen.extend_output(create_call_function(0, False))
|
|
return
|
|
# unreachable due to codegen.add_cache() when the hook is installed
|
|
super().reconstruct(codegen)
|
|
|
|
def python_type(self):
|
|
return RemovableHandleClass
|
|
|
|
|
|
class MutableMappingVariable(UserDefinedObjectVariable):
|
|
_nonvar_fields = UserDefinedObjectVariable._nonvar_fields
|
|
|
|
def __init__(self, value, **kwargs):
|
|
super().__init__(value, **kwargs)
|
|
|
|
def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
|
|
if name == "get" and type(self.value).get is collections.abc.Mapping.get:
|
|
return variables.UserMethodVariable(polyfills.mapping_get, self)
|
|
else:
|
|
return super().var_getattr(tx, name)
|
|
|
|
|
|
class RandomVariable(UserDefinedObjectVariable):
|
|
pass
|