* Back out "Back out "Add support for generating ATen files during fbcode build""
Original commit changeset: 7b8de22d1613
I'm re-sending this diff exactly as it was approved and
committed. Fixes to support @mode/opt will be sent separately for ease
of review.
* Enable building //caffe2:torch with @mode/opt
In @mode/opt, python runs out of a PAR, which breaks a lot of
assumptions in the code about where templates/ folders live relative
to __file__. Rather than introduce hacks with parutil, I simply turn
template_path into a parameter for all the relevant functions and
thread it through from the top level.
Improve script builtin checking using schema
* This add aten_schema.h which provides a barebones amount of type and
argument information about each builtin operator
* emitBuiltinCall is updated to use this information rather than
aten_dispatch to ensure the operator is correct.
* handling of keyword and position arguments now matches python behavior
* There is no longer a requirement that kwargs be constant or that the
attributes of an op must be entirely constant or non-constant
* compiler now constructs a non-attributed version of the op first and
then turns it into the constant-attribute version if all attributes
are constants.
* default arguments for builtins now work
* SugaredValue::call and similar functions now have SourceRange information
for their arguments so that error reporting is more accurate
Notes:
* This does not try to merge the builtin checking with python arg parser.
Given that we will eventually have C10 schema which will replace aten_schema,
we will eventually have a C++ description of the schema and working of that
description directly will be the easiest form to understand.
* python function calls and script method calls do not support keyword arguments yet.
When we add this support we should refactor the handling in tryEmitSchema
that resolves keywords into a common function.
* default arguments work
* keyword arguments to builtins work (still need to extend to calling python and other script methods)
* much better error reporting for incorrect builtins
Lift any constants to attributes on nodes when possible
* Schema is usable internally in the compiler as
the function signatures of script functions as well as for builtin
operators.
* Adds a List[T] class to better represent the arguments to cat/stack
as a type rather than with custom checking.
* Support kwargs for calls of script methods
A future commit will be needed to add support for:
* calls to script _functions_ which are currently are GraphExecutors without schema info.
* kwargs to python functions, which will require refactoring python op
* Generate code without setup.py for C++ build
* Move code generation to CMake
* Set DEPENDS files correctly
* Fix some errors in codegen
* Fix blank line lint
This deletes most of the dead Tensor code paths, including the TensorMethods cwrap and generic/Tensor.cpp.
This also moves the THNN.cwrap/.cpp generation to generate_code which can use ninja if installed.
* Use restat to reduce ninja rebuilding when running codegen.
Usually, you're only working on one codegen file at a time, but
in our old behavior, editing one would induce a rebuild of everything
that depended on ANY generated file. We fix this in two steps:
- Don't write the file (updating the timestamp) when the contents
are unchanged. (I had to update three seperate places; shared
Python library for build tools when?!)
- Use the 'restat' ninja feature to avoid rebuilding when the timestamp
doesn't change.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* lintfix
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* lintfix2
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
The gen_variable_type.py script now is only responsible for generating
VariableType.h/cpp. The parent script, "gen_autograd.py", delegates to
gen_autograd_functions.py, gen_variable_type.py, and
gen_python_functions.py.
I've removed "fallthrough" functions. It's replaced by
DONT_RECORD_TRACE, DONT_PROFILE, and DONT_REQUIRE_DERIVATIVE.
In preparation for binding the _out variants, I changed some static
types to Tensor (from Variable) and we now unpack and name tuple return
values.
sys.path is searched from first to last, which means that if there is already
a 'tools' directory in the existing python path, we will fail to find the root
directory of PyTorch. Better to put it first.
* Comprehensive rewrite of Torch CuDNN bindings / a bit of ATen infra
The executive summary is that this moves the torch/csrc/cudnn
library into ATen, adding a number of new cudnn_ methods to ATen
for batchnorm, convolution, affine grid generator and grid sampler.
ATen infra changes:
- TensorGeometry was moved to ATen
- TensorGeometry was modified to make its interface resemble that of
Tensor; in particular, sizes is no longer a field, it's a method.
- AT_CUDA_ENABLED macro is set via ATen/Config.h header which is
generated at cmake configure time.
Fixes https://github.com/zdevito/ATen/issues/168
- Change AT_CUDA_ENABLED macro to be a function macro, so that we
error if it is not defined
- Introduce a new TensorArg class, which is a Tensor plus a little
metadata. This helps us give good error messages when checking
dimensions/shapes of tensors.
Fixes https://github.com/zdevito/ATen/issues/169
- Also introduce a TensorGeometryArg class, for when you don't
need the actual tensor data (which is most of the time.)
- Add ATen/Check.h, which contains a number of utility functions
for testing shapes, types and devices of input tensors. This
will be particulary useful for native methods, which don't get
code generated input testing code. These functions take a
'CheckedFrom' argument, at the moment just a string, which
specifies some extra information about what function was
doing the actual checking; this greatly improves error messages.
- Many check functions take initializer lists, which let you
test that all tensors have some property. This API is
peculiar, in that we IGNORE undefined tensors in this case.
This is handled by filterDefined.
- Add AT_CUDNN_ENABLED macro
- CuDNN linking from ATen was improved; for example, we now actually
add the CuDNN headers to our include path.
- Add some missing override specifiers to some methods
- We now actually build tests with CUDA functionality accessible
(previously, AT_CUDA_ENABLED was not defined, meaning that
the headers were missing all CUDA-only functionality.)
- Native functions now support giving explicit names to return
outputs in yaml. This makes it possible to hook into the NN
autogenerated derivatives codepath using native functions.
CuDNN rewrite changes:
- torch/csrc/cudnn now uses ATen (rather than passing around
THVoidTensor) and lives in ATen. This lets us remove tensorPointer
shenanigans. The functions are exposed to ATen as native functions
described in aten/src/ATen/cudnn/cuDNN.yaml
- ATen now builds and links against CuDNN when enabled. The cmake
package script was taken from Caffe2.
- Some header reorganization was done to help reduce dependencies
on headers (this reorg is no longer used but I've kept it)
- Rename CHECK to CUDNN_CHECK
- Rip out old shape/type testing code in favor of modern ATen/Check.h
interface using TensorArg. In many cases, increase the robustness of
the checking code.
- Change the inputs of the public facing functions, so that they can
be bound by ATen
- Delete THCState*; this is retrieved from the global ATen context
- Delete cudnnHandle_t, this is retrieved from the global Handles.h
- Delete cudnnDataType_t, this is retrieved from the Tensor type
- Delete Convolution class, instead its constituent arguments are
passed individually
- Change functions to return tensors, rather than take an appropriately
sized output tensor as an input.
- Redo how transposed convolution / backward convolution is implemented
(knock on effect of returning tensors). Previously it was assumed
that you would always pass an appropriately sized output tensor, but
we don't want to do this anymore. For backwards, we instead give
the desired output tensor (input, really) size, because that is
readily available. For *transposed* convolution, however, we take
output_padding, and otherwise do the shape calculation.
- Redo how legacy group convolution is implemented (knock on effect from
porting cudnn to ATen.) Previously, group convolution was implemented
by manually constructing sizes and strides and then outputting
appropriate, with macros switching between individual groups and
all-at-once based on CuDNN version. Now, the code looks exactly what
you'd expect: there's a top-level wrapping function that supports
group convolution no matter the version of CuDNN, and a low-level
wrapper which supports only what CuDNN supports. The top-level
function conditions on CuDNN version, and invokes the low-level
interface 1 or n times.
- There is now a debugging printer for tensor descriptors.
- Convolution struct is replaced with ConvolutionArgs, which is not
part of the public API but is used internally to conveniently
pass around all of the arguments needed for Convolution.
- Add some constexprs for well-known dimensions, reduce amount of
magic numbers in code.
- Put 'deterministic' in to ConvParams. Fixes#3659
- Lots more comments.
- Some pessimizations, in the name of code clarity:
- The descriptors are initialized on every invocation of convolution
forward/backward. Previously, the descriptors were cached, so that
you didn't have to initialize them again on backwards. This is
difficult to support in the ATen interface so I didn't support it.
- Legacy group convolution initializes its workspace for *every* group
it performs. I did not feel motivated to fix this because the
legacy codepath is already quite slow.
- Affine grid generator and grid sampler automatically call contiguous
on their arguments as necessary.
- Batchnorm input checking is greatly beefed up, it now checks for
the following input characteristics:
- Definedness
- GPU location
- Type
- Contiguity
- Size
PyTorch binding code changes
- batchnorm now uses consistent var/data naming
- batchnorm and convolution make use of new ATen bindings
- Affine grid generator and grid sampler make use of ATen CuDNN
bindings via derivatives.yaml. This means I had to restructure
the code a little, since the THNN bindings still go through
a legacy Python class.
- I fixed some warnings:
- s/friend class/friend struct/ on InterpreterStateImpl
- Removed pessimizing move 'detached' in torch/csrc/autograd/variable.cpp
- Removed unused pack_list on Scalar
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
GCC 4.8 buildfix
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Add TensorGeometry to ATen.h
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
CUDNN_CHECK
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Update TODO comment
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Delete return in cudnn_grid_sampler
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
s/cudnnSetStreamToCurrent/setCuDNNStreamToCurrent/g
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Don't allocate a new vector when filtering defined.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Remove Check overloads, convert to pass references.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Some more microbenchmarking.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
This commit adds code to setup.py to use ninja to manage
C++ and code generator dependencies rather than use raw setuptools.
This is based on similar code added to ONNX.
Enabled optionally when ninja is installed.
On my computer speed for a do-nothing build drops from 10s to 1.5 seconds.
Speed of other compilation steps is significantly improved as well.
Dependencies are tracked correctly so the need for ccache is reduced.