pytorch/tools/setup_helpers/generate_code.py
Zachary DeVito 0e54c3a989 Significantly speed up the incremental build.
This commit adds code to setup.py to use ninja to manage
C++ and code generator dependencies rather than use raw setuptools.
This is based on similar code added to ONNX.

Enabled optionally when ninja is installed.

On my computer speed for a do-nothing build drops from 10s to 1.5 seconds.
Speed of other compilation steps is significantly improved as well.
Dependencies are tracked correctly so the need for ccache is reduced.
2017-11-30 13:47:27 -05:00

102 lines
3.7 KiB
Python

import os
import sys
source_files = set(['.py', '.cpp', '.h'])
def all_generator_source():
r = []
for directory, _, filenames in os.walk('tools'):
for f in filenames:
if os.path.splitext(f)[1] in source_files:
full = os.path.join(directory, f)
r.append(full)
return sorted(r)
inputs = [
'torch/csrc/generic/TensorMethods.cwrap',
'torch/csrc/cudnn/cuDNN.cwrap',
'torch/lib/tmp_install/share/ATen/Declarations.yaml',
'torch/lib/tmp_install/share/ATen/Declarations.yaml'
]
outputs = [
'torch/csrc/autograd/generated/Functions.cpp',
'torch/csrc/autograd/generated/Functions.h',
'torch/csrc/autograd/generated/python_functions.cpp',
'torch/csrc/autograd/generated/python_functions.h',
'torch/csrc/autograd/generated/python_nn_functions.cpp',
'torch/csrc/autograd/generated/python_nn_functions.h',
'torch/csrc/autograd/generated/python_nn_functions_dispatch.h',
'torch/csrc/autograd/generated/python_variable_methods.cpp',
'torch/csrc/autograd/generated/python_variable_methods_dispatch.h',
'torch/csrc/autograd/generated/VariableType.cpp',
'torch/csrc/autograd/generated/VariableType.h',
'torch/csrc/jit/generated/aten_dispatch.cpp',
'torch/csrc/jit/generated/aten_dispatch.h',
]
def generate_code_ninja(w):
all_inputs = all_generator_source() + inputs
cmd = "{} {}".format(sys.executable, 'tools/setup_helpers/generate_code.py')
w.writer.build(
outputs, 'do_cmd', all_inputs,
variables={
'cmd': cmd,
})
def generate_code(ninja_global=None):
# if ninja is enabled, we just register this file as something
# ninja will need to call if needed
if ninja_global is not None:
return generate_code_ninja(ninja_global)
# cwrap depends on pyyaml, so we can't import it earlier
root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(root)
from tools.cwrap import cwrap
from tools.cwrap.plugins.THPPlugin import THPPlugin
from tools.cwrap.plugins.ArgcountSortPlugin import ArgcountSortPlugin
from tools.cwrap.plugins.AutoGPU import AutoGPU
from tools.cwrap.plugins.BoolOption import BoolOption
from tools.cwrap.plugins.KwargsPlugin import KwargsPlugin
from tools.cwrap.plugins.NullableArguments import NullableArguments
from tools.cwrap.plugins.CuDNNPlugin import CuDNNPlugin
from tools.cwrap.plugins.WrapDim import WrapDim
from tools.cwrap.plugins.AssertNDim import AssertNDim
from tools.cwrap.plugins.Broadcast import Broadcast
from tools.cwrap.plugins.ProcessorSpecificPlugin import ProcessorSpecificPlugin
from tools.autograd.gen_variable_type import gen_variable_type
from tools.jit.gen_jit_dispatch import gen_jit_dispatch
thp_plugin = THPPlugin()
cwrap('torch/csrc/generic/TensorMethods.cwrap', plugins=[
ProcessorSpecificPlugin(), BoolOption(), thp_plugin,
AutoGPU(condition='IS_CUDA'), ArgcountSortPlugin(), KwargsPlugin(),
AssertNDim(), WrapDim(), Broadcast()
])
cwrap('torch/csrc/cudnn/cuDNN.cwrap', plugins=[
CuDNNPlugin(), NullableArguments()
])
# Build ATen based Variable classes
autograd_gen_dir = 'torch/csrc/autograd/generated'
jit_gen_dir = 'torch/csrc/jit/generated'
for d in (autograd_gen_dir, jit_gen_dir):
if not os.path.exists(d):
os.mkdir(d)
gen_variable_type(
'torch/lib/tmp_install/share/ATen/Declarations.yaml',
autograd_gen_dir)
gen_jit_dispatch(
'torch/lib/tmp_install/share/ATen/Declarations.yaml',
jit_gen_dir)
# called from ninja
if __name__ == "__main__":
generate_code(None)