Commit Graph

189 Commits

Author SHA1 Message Date
Lillian Johnson
f83cf2dab3 [JIT] adding torch.jit.isinstance support (#46062)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46062

Adds support for torch.jit.isinstance in both eager and script mode

Example use:

```
import torch
from typing import Any, List

class TestModule(torch.nn.Module):
    def __init__(self):
        super(TestModule, self).__init__()

    def call(self, input1: str, input2: str) -> str:
        return input1

    def forward(self, input: Any) -> None:
        if torch.jit.isinstance(input, List[str]):
            for el in input:
                print(el)

TestModule().forward(["1","2"])
scripted_module = torch.jit.script(TestModule())
scripted_module(["1", "2"])
```

Test Plan: Imported from OSS

Reviewed By: bertmaher, zou3519

Differential Revision: D24264415

Pulled By: Lilyjjo

fbshipit-source-id: 039c95bddd854c414027ac8332832e6bc830b5b9
2020-10-20 16:47:49 -07:00
Meghan Lele
09b3e16b40 [JIT] Enable @unused syntax for ignoring properties (#45261)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45261

**Summary**
This commit enables `unused` syntax for ignoring
properties. Inoring properties is more intuitive with this feature enabled.
`ignore` is not supported because class type properties cannot be
executed in Python (because they exist only as TorchScript types) like
an `ignored` function and module properties that cannot be scripted
are not added to the `ScriptModule` wrapper so that they
may execute in Python.

**Test Plan**
This commit updates the existing unit tests for class type and module
properties to test properties ignored using `unused`.

Test Plan: Imported from OSS

Reviewed By: navahgar, Krovatkin, mannatsingh

Differential Revision: D23971881

Pulled By: SplitInfinity

fbshipit-source-id: 8d3cc1bbede7753d6b6f416619e4660c56311d33
2020-09-29 10:24:25 -07:00
Meghan Lele
43fe034514 [JIT] Disallow plain Optional type annotation without arg (#44586)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44586

**Summary**
This commit disallows plain `Optional` type annotations without
any contained types both in type comments and in-line as
Python3-style type annotations.

**Test Plan**
This commit adds a unit test for these two situations.

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D23721517

Pulled By: SplitInfinity

fbshipit-source-id: ead411e94aa0ccce227af74eb0341e2a5331370a
2020-09-16 16:07:26 -07:00
Meghan Lele
ffe127e4f1 [JIT] Disallow plain Tuple type annotation without arg (#44585)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44585

**Summary**
This commit disallows plain `Tuple` type annotations without any
contained types both in type comments and in-line as Python3-style
type annotations.

**Test Plan**
This commit adds a unit test for these two situations.

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D23721515

Pulled By: SplitInfinity

fbshipit-source-id: e11c77a4fac0b81cd535c37a31b9f4129c276592
2020-09-16 15:49:19 -07:00
Meghan Lele
78b806ab4a [JIT] Disallow plain List type annotation without arg (#44584)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44584

**Summary**
This commit extends the work done in #38130 and disallows plain
Python3-style `List` type annotations.

**Test Plan**
This commit extends `TestList.test_no_element_type_annotation` to the
Python3-style type annotation.

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D23721514

Pulled By: SplitInfinity

fbshipit-source-id: 48957868286f44ab6d5bf5e1bf97f0a4ebf955df
2020-09-16 15:08:04 -07:00
Meghan Lele
cb3b8a33f1 [JIT] Disallow plain Dict type annotation without arg (#44334)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44334

**Summary**
This commit detects and prohibits the case in which `typing.Dict` is
used as an annotation without type arguments (i.e. `typing.Dict[K, V]`).
At present, `typing.Dict` is always assumed to have two arguments, and
when it is used without them, `typing.Dict.__args__` is nonempty and
contains some `typing.TypeVar` instances, which have no JIT type equivalent.
Consequently, trying to convert `typing.Dict` to a JIT type results in
a `c10::DictType` with `nullptr` for its key and value types, which can cause
a segmentation fault.

This is fixed by returning a `DictType` from
`jit.annotations.try_ann_to_type` only if the key and value types are converted
successfully to a JIT type and returning `None` otherwise.

**Test Plan**
This commit adds a unit test to `TestDict` that tests the plain `Dict`
annotations throw an error.

**Fixes**
This commit closes #43530.

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D23610766

Pulled By: SplitInfinity

fbshipit-source-id: 036b10eff6e3206e0da3131cfb4997d8189c4fec
2020-09-16 14:38:28 -07:00
Nikita Shulga
0c01f136f3 [BE] Use f-string in various Python functions (#44161)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44161

Reviewed By: seemethere

Differential Revision: D23515874

Pulled By: malfet

fbshipit-source-id: 868cf65aedd58fce943c08f8e079e84e0a36df1f
2020-09-04 07:38:25 -07:00
Meghan Lele
87d7c362b1 [JIT] Add JIT support for torch.no_grad (#41371)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41371

**Summary**
This commit enables the use of `torch.no_grad()` in a with item of a
with statement within JIT. Note that the use of this context manager as
a decorator is not supported.

**Test Plan**
This commit adds a test case to the existing with statements tests for
`torch.no_grad()`.

**Fixes**
This commit fixes #40259.

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D22649519

Pulled By: SplitInfinity

fbshipit-source-id: 7fa675d04835377666dfd0ca4e6bc393dc541ab9
2020-08-27 15:32:57 -07:00
Gao, Xiang
916235284c [JIT] Fix typing.Final for python 3.8 (#39568)
Summary:
fixes https://github.com/pytorch/pytorch/issues/39566

`typing.Final` is a thing since python 3.8, and on python 3.8, `typing_extensions.Final` is an alias of `typing.Final`, therefore, `ann.__module__ == 'typing_extensions'` will become False when using 3.8 and `typing_extensions` is installed.

~~I don't know why the test is skipped, seems like due to historical reason when python 2.7 was still a thing?~~ Edit: I know now, the `Final` for `<3.7` don't have `__origin__`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/39568

Reviewed By: smessmer

Differential Revision: D23043388

Pulled By: malfet

fbshipit-source-id: cc87a9e4e38090d784e9cea630e1c543897a1697
2020-08-11 08:51:46 -07:00
Meghan Lele
eba35025e0 [JIT] Exclude staticmethods from TS class compilation (#42611)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42611

**Summary**
This commit modifies the Python frontend to ignore static functions on
Torchscript classes when compiling them. They are currently included
along with methods, which causes the first argument of the
staticfunction to be unconditionally inferred to be of the type of the
class it belongs to (regardless of how it is annotated or whether it is
annotated at all). This can lead to compilation errors depending on
how that argument is used in the body of the function.

Static functions are instead imported and scripted as if they were
standalone functions.

**Test Plan**
This commit augments the unit test for static methods in `test_class_types.py`
to test that static functions can call each other and the class
constructor.

**Fixes**
This commit fixes #39308.

Test Plan: Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D22958163

Pulled By: SplitInfinity

fbshipit-source-id: 45c3c372792299e6e5288e1dbb727291e977a2af
2020-08-07 11:22:04 -07:00
Nikita Shulga
0cf71eb547 Unconditinally use typing extensions in jit_internal (#42538)
Summary:
Since https://github.com/pytorch/pytorch/issues/38221 is closed now, `typing_extensions` module should always be available

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42538

Reviewed By: ezyang

Differential Revision: D22942153

Pulled By: malfet

fbshipit-source-id: edabbadde13800a3412d14c19ca55ef206ada5e1
2020-08-05 08:22:59 -07:00
Guilherme Leobas
0c48aa1e07 Add typing annotations to hub.py and _jit_internal.py (#42252)
Summary:
xref: https://github.com/pytorch/pytorch/wiki/Guide-for-adding-type-annotations-to-PyTorch

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42252

Reviewed By: malfet

Differential Revision: D22916480

Pulled By: ezyang

fbshipit-source-id: 392ab805b0023640a3b5cdf600f70638b375f84f
2020-08-04 08:20:44 -07:00
Yanan Cao
bdcf320bed Support custom exception message (#41907)
Summary:
Raise and assert used to have a hard-coded error message "Exception". User provided error message was ignored. This PR adds support to represent user's error message in TorchScript.

This breaks backward compatibility because now we actually need to script the user's error message, which can potentially contain unscriptable expressions. Such programs can break when scripting, but saved models can still continue to work.

Increased an op count in test_mobile_optimizer.py because now we need aten::format to form the actual exception message.

This is built upon an WIP PR:  https://github.com/pytorch/pytorch/pull/34112 by driazati

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41907

Reviewed By: ngimel

Differential Revision: D22778301

Pulled By: gmagogsfm

fbshipit-source-id: 2b94f0db4ae9fe70c4cd03f4048e519ea96323ad
2020-08-01 13:03:45 -07:00
Yanan Cao
4a3aad354a [1/N] Implement Enum JIT support (#41390)
Summary:
* Add EnumType and AnyEnumType as first-class jit type
* Add Enum-typed IValue
* Enhanced aten::eq to support Enum

Supported:
Enum-typed function targuments
using Enum type and comparing them

TODO:
Add PyThon sugared value for Enum
Support getting name/value attrs of enums
Support Enum-typed return values
Support enum values of different types in same Enum class
Support serialization and deserialization

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41390

Reviewed By: eellison

Differential Revision: D22524388

Pulled By: gmagogsfm

fbshipit-source-id: 1627154a64e752d8457cd53270f3d14aea4b1150
2020-07-18 22:15:06 -07:00
Michael Suo
ca1b8ebbcb move misc implementation out of jit/__init__.py (#41154)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/41154

Test Plan: Imported from OSS

Reviewed By: ailzhang

Differential Revision: D22445213

Pulled By: suo

fbshipit-source-id: 200545715c5ef13beb1437f49e01efb21498ddb7
2020-07-13 16:59:55 -07:00
Shihao Xu
0ecea2d64d [JIT x RPC] Consolidate Future type class and Future impl class (#40406)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40406

Same motivation for https://github.com/pytorch/pytorch/issues/35110.

`Future` and `RRef` are two important types for `rpc` module, should make users feel easy to use.

Reference, https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html#directive-autoclass

Follow https://github.com/pytorch/pytorch/pull/35694.
ghstack-source-id: 106484664

Test Plan:
```
buck test mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork

buck build mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork && \
buck-out/gen/caffe2/test/distributed/rpc/jit/rpc_fork\#binary.par \
-r test_rref_local_value
```

```
buck test mode/dev-nosan //caffe2/test/distributed/rpc/tensorpipe:rpc_fork_tensorpipe
```

pyre -l caffe2/torch/fb/training_toolkit
pyre -l caffe2/torch/fb/distributed
pyre -l aiplatform

Differential Revision: D7722176

fbshipit-source-id: f3b9ccd7bccb233b2b33ad59dd65e178ba34d67f
2020-06-24 01:44:49 -07:00
Lu Fang
8315bb2359 Back out "[pytorch][PR] [JIT] Infer NamedTuple type attributes of nn.Modules correctly" (#40270)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40270

Original commit changeset: 1227e243ab94

D22082806 (1e03d603c6) broke the model generation of pyper models. We trace the namedtuple as input. To unblock the development of PyPer project, let's revert the diff first.

Sorry about the inconvenience, SplitInfinity
ghstack-source-id: 106217609

Test Plan: buck run dper3/dper3_models/experimental/pytorch/feed:feed_generation_script -- --model_files_dir=/tmp/

Reviewed By: alyssawangqq

Differential Revision: D22132960

fbshipit-source-id: ce9278c8462602a341e231ea890e46f74e743ddf
2020-06-19 02:58:31 -07:00
Shihao Xu
f3f30d4354 [JIT x RPC] Consolidate RRef type class and RRef impl class (#35694)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35694

close https://github.com/pytorch/pytorch/issues/35110

Differential Revision: D7881729

fbshipit-source-id: eedda8f1b7510491886d469efeed4e002bb8b991
2020-06-18 07:46:38 -07:00
Meghan Lele
1e03d603c6 [JIT] Infer NamedTuple type attributes of nn.Modules correctly (#39116)
Summary:
**Summary**
This commit modifies type inference for `nn.Module` instance attributes
such that the type of a `NamedTuple` attribute is inferred correctly and
such that the field names of this `NamedTuple` instance can be used in
scripted methods. At present, the type of this attribute is inferred to be
`Tuple[T, U, ..., V]`, so the field must be referred to by index and
cannot be referred to by name.

**Test Plan**
This commit adds a unit test to test that a field of a `NamedTuple`
attribute can be referred to by name in a scripted method.

**Fixes**
This commit fixes https://github.com/pytorch/pytorch/issues/37668.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39116

Differential Revision: D22082806

Pulled By: SplitInfinity

fbshipit-source-id: 1227e243ab941376cd5e382fb093751e88dc8846
2020-06-17 13:58:15 -07:00
Will Constable
a1071e5d36 Fix parsing of subscript expressions using python resolver (#39269)
Summary:
- add call out to python resolver in parseArgsFromDecl, parserReturnFromDecl
- add support in python resolver for nested subexpressions
- wrap python resolver call in exception handling to fall back to c++ path
- add tests for newly resolvable types
- closes https://github.com/pytorch/pytorch/issues/38728

Fixes bug where SourceRange objects did not include the final closing ']' for a subscript expression.  E.g. range for 'List[int]' previously included only 'List[int'.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39269

Differential Revision: D21956402

Pulled By: wconstab

fbshipit-source-id: 5d783260322eb1e04e20bc931a8e9d9179765f13
2020-06-10 13:30:15 -07:00
James Reed
56289ba31f [JIT] Improve error message when type annotation Future without a contained type (#39751)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39751

Test Plan: Imported from OSS

Reviewed By: eellison

Differential Revision: D21960368

Pulled By: jamesr66a

fbshipit-source-id: 8650d31ff8070b12672c8d4b0224d4e69f619938
2020-06-09 16:55:13 -07:00
Michael Voznesensky
960f4b51e3 [JIT] Fix @staticmethod access from self on modules (#37702)
Summary:
Closes https://github.com/pytorch/pytorch/issues/30755
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37702

Differential Revision: D21389989

Pulled By: voznesenskym

fbshipit-source-id: f9b7e26a9eab7dc3d7762a5a28f85424dac5fbb3
2020-05-14 21:12:10 -07:00
James Reed
3228939f23 [JIT] Fix fake_range() (#36083)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36083

Test Plan: Imported from OSS

Differential Revision: D20874745

Pulled By: jamesr66a

fbshipit-source-id: fc57defefbc8e9840b8d5bac89b4146179e00b06
2020-04-06 14:12:35 -07:00
Wanchao Liang
238903b7be [jit] Delete polyfill typing (#27510)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27510

We could delete polyfill typing bc requirements.txt require user to
install typing as a dependency whether in py2 or py3, so those typing
actually not getting used either ways.

Test Plan: Imported from OSS

Differential Revision: D20673393

fbshipit-source-id: ea5276824c6e275c1f991f8c12329040b0058d2b
2020-03-27 18:20:53 -07:00
Wanchao Liang
4a84ac5f5d [jit] make Future type annotation available in Python (#27637)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27637

Fixes https://github.com/pytorch/pytorch/issues/26578

Test Plan: Imported from OSS

Differential Revision: D20626866

fbshipit-source-id: 20d6a3a719fddcb33e0e17a56d7123535fa20d65
2020-03-24 14:36:05 -07:00
James Reed
2de4fa702b [JIT] Preserve qualified names on traced modules (#34395)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34395

fixes: https://github.com/pytorch/pytorch/issues/33913

Test Plan: Imported from OSS

Differential Revision: D20347778

Pulled By: jamesr66a

fbshipit-source-id: 7b5a35b6f9678c34cb6127d531fa3bfe65703116
2020-03-09 19:23:53 -07:00
davidriazati
2f6ffe8c39 [jit] Resolve type annotation names to types (#29623)
Summary:
This adds some machinery so that we use Python to resolve types to a value and the corresponding resolution logic in `annotations.py` instead of using the string.

This PR also `slowTests` a random test since it was taking > 1 min whereas all the other tests take < 10 seconds.

Fixes #31864
Fixes #31950
](https://our.intern.facebook.com/intern/diff/20144407/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29623

Pulled By: driazati

Differential Revision: D20144407

fbshipit-source-id: ef3699f6b86039d8b4646ffc42c21bd1132d1681
2020-02-28 18:35:10 -08:00
Wanchao Liang
d494986171 [jit] make RRef type annotation available in Python (#33526)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33526

Test Plan: Imported from OSS

Differential Revision: D19988848

Pulled By: wanchaol

fbshipit-source-id: aeebc946d08b38dac0b656617bf395e86bcea558
2020-02-26 18:44:35 -08:00
davidriazati
503a4e9019 Cleanup after moving language reference (#31146)
Summary:
Stacked PRs
 * **#31146 - [jit] Cleanup after moving language reference**
 * #31138 - [jit] Move TorchScript language reference to its own page

Preview: https://driazati.github.io/pytorch_doc_previews/jit.html#torchscript-language

Pull Request resolved: https://github.com/pytorch/pytorch/pull/31146

Pulled By: driazati

Differential Revision: D19167390

fbshipit-source-id: f28daed36754a553264fc8ac142ed22c3e26d63e
2019-12-18 15:09:35 -08:00
Brian Wignall
e7fe64f6a6 Fix typos (#30606)
Summary:
Should be non-semantic.

Uses https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines to find likely typos.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30606

Differential Revision: D18763028

Pulled By: mrshenli

fbshipit-source-id: 896515a2156d062653408852e6c04b429fc5955c
2019-12-02 20:17:42 -08:00
Elias Ellison
681b610f35 use new overload mechanism for rnns (#29614)
Summary:
Uses new overload mechanism for rnns, making it so that python & torchscript go through the same path and using an API that is in line with the one specified
in https://docs.python.org/3/library/typing.html#typing.overload

This brings the TorchScriptable rnns closer to the base implementation; unifying them should be done in a follow up PR but there are still a few limitations that make it difficult to do so.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29614

Differential Revision: D18486982

Pulled By: eellison

fbshipit-source-id: aaaea66a4a7f12d2e46199ca254f9e8f7475500e
2019-11-13 15:44:25 -08:00
Edward Yang
715e951e3c Revert D18458751: use new overload mechanism for rnns
Test Plan: revert-hammer

Differential Revision:
D18458751

Original commit changeset: 07c71838f21c

fbshipit-source-id: 86acb02f3e022e93ea6c1ef23fe39c80ad43978f
2019-11-13 07:21:31 -08:00
Elias Ellison
8e7b406773 use new overload mechanism for rnns (#29614)
Summary:
Uses new overload mechanism for rnns, making it so that python & torchscript go through the same path and using an API that is in line with the one specified
in https://docs.python.org/3/library/typing.html#typing.overload

This brings the TorchScriptable rnns closer to the base implementation; unifying them should be done in a follow up PR but there are still a few limitations that make it difficult to do so.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29614

Differential Revision: D18458751

Pulled By: eellison

fbshipit-source-id: 07c71838f21cb5425e8d6dbd4a512f774c8c2970
2019-11-12 16:12:04 -08:00
Elias Ellison
fbe90b65fa Cleanup special handling of Containers, allowing custom forwards (#28988)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28988

Make ModuleList, Sequential, ModuleDict go through the same pathway as other modules, cleaning up a bunch of code and allowing them to define custom forwards and other methods.

EDIT: Previously, we would ignore an nn.Sequential attribute if it was not in `__constants__` ("did you forget to add it to Constants"). This PR scripts it even if it is not in `__constants__`. Is that what we want?

Test Plan: Imported from OSS

Differential Revision: D18402821

Pulled By: eellison

fbshipit-source-id: dd4f28fb0df0d1ba4ad1b3bc34ba141959a433f7
2019-11-12 14:10:38 -08:00
Michael Suo
2fb4059652 change drop_on_export warning category (#29610)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29610

`DeprecationWarning` is intended for developers (and so is ignored in
certain circumstances). `FutureWarning` is the user-facing deprecation
warning. This fixes fbcode failures.

Test Plan: Imported from OSS

Differential Revision: D18446393

Pulled By: suo

fbshipit-source-id: ded11a007f0a62132a9839b733157a97cf9006e9
2019-11-11 23:24:27 -08:00
Elias Ellison
a5aeb37493 Don't throw when type is used in TorchScript (#28053)
Summary:
Type objects in python have an attribute `__abstractmethods__` that throws when it is accessed, so we were failing with an AttributeError whenever a type was used in TorchScript.

This pr prevents that error from happening. We can't just throw when a type is used because it could be used to access a static method: https://github.com/pytorch/pytorch/pull/27163
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28053

Differential Revision: D18332347

Pulled By: eellison

fbshipit-source-id: 9c7f2220f92674ad4d903621d9762cecc566ab0d
2019-11-05 15:15:12 -08:00
davidriazati
618cb40e30 Add doc copy-edits from review (#26322)
Summary:
Add edits from doc review
](https://our.intern.facebook.com/intern/diff/17859654/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26322

Pulled By: driazati

Differential Revision: D17859654

fbshipit-source-id: f3a116cddb5393bdfbef670c56efb2ee62ccf252
2019-10-17 11:12:35 -07:00
Zachary DeVito
fb4517132f Allow 'Any' to appear as a type argument. (#26572)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26572

Combined with isinstance specialization this allows a degree of polymorphic
functions to work without needing to use our weirder overload hacks.

We do not define any operators on Any, so the only thing you can do with it
is to put it in containers or type refine it using an isinstance check.
Any is restricted from appearing in non-argument position because we
cannot restore type tags if it ends up as a field in a class.

Test Plan: Imported from OSS

Differential Revision: D17530643

Pulled By: zdevito

fbshipit-source-id: f06f78ce84819f7773953a492f3d4c49219ee94c
2019-10-16 11:07:08 -07:00
Michael Suo
341262754f module dedupe (#26666)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26666

Changes:
- Introduce a `ConcreteModuleType` concept. This acts both as the key into the type
  cache, and as the source of truth for `ModuleValue::attr` queries. It needs
  to do both jobs because that's how we ensure correctness (if the types are
  different, it's because `ModuleValue::attr` would return different things).
- Now `recursive_script` will first construct a `ConcreteModuleType` and search for a
  pre-existing type before starting compilation.
- All previous paths to creating a `ScriptModule` (including inheriting from
  `ScriptModule`) are now rewritten to go through `create_script_module`, so
  that we have only a single place where construction happens.

Behavioral changes:
- Big change to `torch.jit.ScriptModule` inheritance: all attributes are now
  recursively scripted if possible, matching recursive scripting semantics.
  This makes it hard to keep something from being scripted (for example, a
  Python submodule). Possibly we'll need an `ignore()` type thing for
  attributes. In particular, this adds `self.training` to *every* ScriptModule, since
  it's present on every `nn.Module`.
- I believe this change to be transparent to existing users of the inheritance API, since if you had an attribute that is unscriptable that you never used, there is no error. In some cases, we will create new attributes (even if they are unused), which will increase serialized model size from before.

Test Plan: Imported from OSS

Differential Revision: D17551196

Pulled By: suo

fbshipit-source-id: b476d1c9feb3ddfd63406d90989aaf9dfe890591
2019-10-12 09:51:57 -07:00
Michael Suo
ffa422a8b3 kill _parameter_list (#27399)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27399

This was devised in a time when we didn't have module attributes. They
are essentially just tensor lists, so represent them that way. This has
the additional benefit of making the RNN forward pass faster because we
effectively cache the flattened weights.

The only complication part is that someone may come along and do:
```
my_rnn_mod.w_ih_l0 = torch.nn.Parameter(...)
```

This means we need to override setattr to keep the flattened weights
cache up to date.

Test Plan: Imported from OSS

Differential Revision: D17785658

Pulled By: suo

fbshipit-source-id: 7789cd1d0d4922bfd5eba1716976442fbf150766
2019-10-12 09:51:53 -07:00
Michael Suo
971f773886 Revert D17750005: [jit] Add doc copy-edits from review
Test Plan: revert-hammer

Differential Revision:
D17750005

Original commit changeset: 230d1d33efb0

fbshipit-source-id: 12d22567b99286a8c4f719c3a384cb3665f7ba54
2019-10-09 19:12:58 -07:00
davidriazati
e7c9c8098a Add doc copy-edits from review (#26322)
Summary:
Add edits from doc review
](https://our.intern.facebook.com/intern/diff/17750005/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26322

Pulled By: driazati

Differential Revision: D17750005

fbshipit-source-id: 230d1d33efb015e40327373a05a1d3eced7c5c00
2019-10-09 14:16:48 -07:00
Zachary DeVito
eb9000be4e always use the closure to resolve variable names (#27515)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27515

Resoving variable names using the local activation frames does not work
when using recursive scripting, but our current code tries to do it
(incorrectly) anyway. The reason it works is only because the script
call is in the same local frame as the definition. This will not be
true in practice and makes it seem like the API works in more cases
than it really does. This forces us to always use closure-based annotations,
documents it, and it fixes the tests so that they still pass.

Test Plan: Imported from OSS

Differential Revision: D17803403

Pulled By: zdevito

fbshipit-source-id: e172559c655b05f0acf96c34f5bdc849f4e09ce2
2019-10-09 12:16:15 -07:00
albanD
5b5f398dd4 Make cpp-backed jit classes appear as being in torch.jit
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/27220

Test Plan: Imported from OSS

Differential Revision: D17715305

Pulled By: albanD

fbshipit-source-id: 574704ad23ece6da7aa2780b78867307bef523cc
2019-10-03 08:28:36 -07:00
albanD
17b1faa2bf Rename jit Function to ScriptFunction
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/27219

Test Plan: Imported from OSS

Differential Revision: D17715306

Pulled By: albanD

fbshipit-source-id: d11a7634dbee6a885c7177b240958e5aed2544f3
2019-10-03 08:28:32 -07:00
davidriazati
d0fff0ebc8 Make is_optional check more robust (#26312)
Summary:
If the `Union` contains a non-class type, `issubclass` would fail, this
adds a check for that case
](https://our.intern.facebook.com/intern/diff/17505206/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26312

Pulled By: driazati

Differential Revision: D17505206

fbshipit-source-id: 1331e412f938e2f08ecb079972147f11e3ec77cd
2019-09-24 10:44:40 -07:00
Edward Yang
b59e856517 Revert D17486465: [jit] Make is_optional check more robust
Test Plan: revert-hammer

Differential Revision:
D17486465

Original commit changeset: c513cef3bbc0

fbshipit-source-id: 567311c001d7dd0b7ab9ffe8bb894954bea583c9
2019-09-20 11:06:19 -07:00
davidriazati
9a5b784eac Make is_optional check more robust (#26312)
Summary:
If the `Union` contains a non-class type, `issubclass` would fail, this
adds a check for that case
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26312

Pulled By: driazati

Differential Revision: D17486465

fbshipit-source-id: c513cef3bbc038f15c021eb0c1bf36be0df1eb90
2019-09-20 10:50:00 -07:00
Dmytro Dzhulgakov
df338f80a6 Add a wrapper for inspect in JIT to produce better error message (#25415)
Summary:
If source code is not available due to packaging (e.g. sources are compiled to .pyc), TorchScript produces very obscure error message. This tries to make it nicer and allow to customize message by overriding _utils_internal.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25415

Test Plan: Really hard to unittest properly. Did one off testing by compiling to .pyc and checking the message.

Differential Revision: D17118238

Pulled By: dzhulgakov

fbshipit-source-id: 3cbfee0abddc8613000680548bfe0b8ed52a36b0
2019-09-14 21:27:51 -07:00
Elias Ellison
7ab4ad7b6d add torch.jit.is_scripting() api (#25263)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25263

This adds an api to return true in script and false in eager, which together with ignore allows guarding of not yet supported JIT features. Bikeshedding requested please.

cc zou3519

```
def foo():
   if not torch.jit.is_scripting():
      return torch.linear(...)
   else:
      return addmm(...)
```

Test Plan: Imported from OSS

Differential Revision: D17272443

Pulled By: eellison

fbshipit-source-id: de0f769c7eaae91de0007b98969183df93a91f42
2019-09-09 20:24:36 -07:00
Michael Suo
11eb8ac2a9 Revert D17199043: [JIT] preserve ignored function return value type
Test Plan: revert-hammer

Differential Revision:
D17199043

Original commit changeset: 1196fd94c207

fbshipit-source-id: 49789ae1f128262bc40a9d5b0d2b7bfbbf0b7e1e
2019-09-05 15:51:06 -07:00
Elias Ellison
df043cd49d preserve ignored function return value type (#25262)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25262

Preserve the type of ignore'd functions on serialization. Currently we first compile an ignore'd function with it's annotated type when first compiling, but do not preserve it. This is important for being able to compile models with not-yet-supported features in JIT.

```
torch.jit.ignore
def unsupported(x):
    return x

def foo():
   if not torch.jit._is_scripting():
      return torch.linear(...)
   else:
      return unsupported(...)
```

Test Plan: Imported from OSS

Reviewed By: driazati

Differential Revision: D17199043

Pulled By: eellison

fbshipit-source-id: 1196fd94c207b9fbee1087e4b2ef7d4656a6647f
2019-09-05 11:21:55 -07:00
davidriazati
1c4495d8ac Clean up after running doc tests (#25036)
Summary:
](https://our.intern.facebook.com/intern/diff/16965612/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25036

Pulled By: driazati

Differential Revision: D16965612

fbshipit-source-id: 494a734c27c1330ea0917397efbad6bc4f40be73
2019-08-23 12:52:48 -07:00
davidriazati
6dca147946 Misc doc updates #2 (#24445)
Summary:
Another pass over the docs, this covers most of the remaining stuff

* content updates for new API
* adds links to functions instead of just names
* removes some useless indentations
* some more code examples + `testcode`s
](https://our.intern.facebook.com/intern/diff/16847964/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24445

Pulled By: driazati

Differential Revision: D16847964

fbshipit-source-id: cd0b403fe4a89802ce79289f7cf54ee0cea45073
2019-08-21 16:45:19 -07:00
Elias Ellison
8e3c0210a5 extend torch.jit._overload to module methods (#24259)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24259

Follow up to https://github.com/pytorch/pytorch/pull/23886, add the same overload api specified in PEP 484 to module methods to reduce the friction of adding method overloads that was brought up in #23266.

The usage is:
```
torch.jit.overload
def add(self, y: int) -> int: ...
torch.jit.overload
def add(self, y: float) -> float: ...
def add():
   ...
```

Test Plan: Imported from OSS

Differential Revision: D16921304

Pulled By: eellison

fbshipit-source-id: 784e2f26f7ca9a330a434a603c86b53725c3dc71
2019-08-20 16:47:35 -07:00
Michael Suo
755f91b400 serializing function calls (#23799)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23799

Before, we inlined as part of the initial IR generation process, which
has a few disadvantages:

1. It loses information about what nodes came from which function/method
calls. Other parties who want to implement transformations on the
function/module level don't have a reliable way of doing so.
2. It duplicates a ton of code if we are inlining the same
function/method a tons of times.

After this PR: inline is deferred to the optimization stage, so
optimizations that rely on inlining will still work. But things get
serialized with the function/method calls in.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/23799

Differential Revision: D16652819

Test Plan: Imported from OSS

Reviewed By: jamesr66a

Pulled By: suo

fbshipit-source-id: a11af82aec796487586f81f5a9102fefb6c246db
2019-08-19 18:42:43 -07:00
davidriazati
aed306dcf7 Add @ignore for script classes (#23614)
Summary:
This lets you mark a class so that it won't be recursively compiled.

This also runs up against a weird thing on the UX side, that to ignore a
module you have to `ignore` its `forward()` method but to ignore a
class you use `ignore` on the class declaration. The `ignore` on the
class declaration matches the use of `script` for script classes but is
confusing to those that don't know the difference between script classes
/ modules.
](https://our.intern.facebook.com/intern/diff/16770068/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23614

Pulled By: driazati

Differential Revision: D16770068

fbshipit-source-id: bee9a9e88b6c798ce779f622c4f929adae4eaf45
2019-08-16 16:34:22 -07:00
James Reed
0619b57c4c Add the ability to compile exports on traced modules (#24298)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24298

This helps in situations like when you have `__{g,s}etstate__` on an `nn.Module` and you'd like to trace the module, but still preserve the serialization methods to make the module semantically correct

Test Plan: Imported from OSS

Differential Revision: D16799800

Pulled By: jamesr66a

fbshipit-source-id: 91c2957c94c9ec97a486ea376b2a3e3a821270af
2019-08-14 13:51:22 -07:00
Michael Suo
5ec1c293eb Revert D16552212: [jit] fix py-compat fbcode lint warnings
Differential Revision:
D16552212

Original commit changeset: 7c7de5a096ad

fbshipit-source-id: b5ea5f626883e2b213b9d02875e83e64ed206e58
2019-08-10 21:58:25 -07:00
Michael Suo
f45ec71c4e fix py-compat fbcode lint warnings
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23530

Test Plan: Imported from OSS

Reviewed By: jamesr66a

Differential Revision: D16552212

Pulled By: suo

fbshipit-source-id: 7c7de5a096ad9a125976e4710d3660294d3991c5
2019-08-09 12:06:21 -07:00
Elias Ellison
7d8dfd6f76 make _overloads importable in nn/functional (#24049)
Summary:
Move `_overload` to `_jit_internal.py` so that it can be imported in nn/functional.py for `conv`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24049

Differential Revision: D16723339

Pulled By: eellison

fbshipit-source-id: 527e6069dbfa81f8133c405be5350a8c76873a12
2019-08-08 16:57:50 -07:00
Horace He
f81db8afb8 Initial torchbind prototype (#21098)
Summary:
I have some test code in there as well, along with a script "test_libtorch" to run it. You'll need to modify `test_libtorch` to point to where you have `pytorch` built. I currently require that `pybind11` is included as a subdirectory of the test, but added it to the `.gitignore` to make this reviewable.

Currently, something like this works:
```cpp
struct Foo {
  int x, y;
  Foo(): x(2), y(5){}
  Foo(int x_, int y_) : x(x_), y(y_) {}
  void display() {
    cout<<"x: "<<x<<' '<<"y: "<<y<<endl;
  }
  int64_t add(int64_t z) {
    return (x+y)*z;
  }
};
static auto test = torch::jit::class_<Foo>("Foo")
                    .def(torch::jit::init<int64_t, int64_t>())
                    .def("display", &Foo::display)
                    .def("add", &Foo::add)
                    .def("combine", &Foo::combine);

```
with
```py
torch.jit.script
def f(x):
    val = torch._C.Foo(5, 3)
    val.display()
    print(val.add(3))
```
results in
```
x: 5 y: 3
24
```

Current issues:
- [x] The python class created by torchscript doesn't interactly properly with the surrounding code.
```
torch.jit.script
def f(x):
    val = torch._C.Foo(5, 3)
    return val
```
- [x] Doesn't properly take in non-pointer classes. Can't define this function signature in cpp (We don't want to support this I believe).
```cpp
  void combine(Foo x) {
```

- [x] Has some issues with memory for blobs when constructing multiple objects (fix constant propagation pass to not treat capsules as the same object).
```py
torch.jit.script
def f(x):
    val = torch._C.Foo(5, 3)
    val2 = torch._C.Foo(100, 0)
    val.display()
    print(val.add(3))
```
- [ ] Can't define multiple constructors (need to define overload string. Currently not possible since we don't support overloaded methods).
- [x] `init` is a little bit different syntax than `pybind`. `.init<...>()` instead of `.def(py::init<>())`
- [x] I couldn't figure out how to add some files into the build so they'd be copied to the `include/` directories, so I symlinked them manually.
- [ ] Currently, the conversion from Python into Torchscript doesn't work.
- [ ] Torchbind also currently requires Python/Pybind dependency. Fixing this would probably involve some kind of macro to bind into Python when possible.
- [ ] We pass back into Python by value, currently. There's no way of passing by reference.
- [x] Currently can only register one method with the same type signature. This is because we create a `static auto opRegistry`, and the function is templated on the type signature.

Somewhat blocked on https://github.com/pytorch/pytorch/pull/21177. We currently use some structures that will be refactored by his PR (namely `return_type_to_ivalue` and `ivalue_to_arg_type`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21098

Differential Revision: D16634872

Pulled By: Chillee

fbshipit-source-id: 1408bb89ea649c27d560df59e2cf9920467fe1de
2019-08-02 18:45:15 -07:00
Zachary DeVito
c09e92255c Add initial support for serializing classes
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/22953

Test Plan: Imported from OSS

Reviewed By: suo

Differential Revision: D16340214

Pulled By: zdevito

fbshipit-source-id: 70fb1968eca34e14492e0d2be52e28b27813f821
2019-07-19 14:51:59 -07:00
davidriazati
9897ec4701 Recursively compile class types (#22475)
Summary:
Try to compile for class types encountered in recursive script
](https://our.intern.facebook.com/intern/diff/16340717/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22475

Pulled By: driazati

Differential Revision: D16340717

fbshipit-source-id: 5e1a46db517be2412f57156efbc4eb3347b01a8a
2019-07-18 15:43:16 -07:00
David Riazati
10c4b98ade Remove weak script (#22212)
Summary:
* Deletes all weak script decorators / associated data structures / methods
   * In order to keep supporting the standard library in script, this enables recursive script on any function defined in `torch.nn`
   * Most changes in `torch/nn` are the result of `ag -Q "weak" torch/nn/ -l | xargs sed -i '/weak/d'`, only `rnn.py` needed manual editing to use the `ignore` and `export` to continue supporting the overloaded `forward` methods
* `Sequential`/`ModuleList` no longer need to be added to constants since they are compiled on demand

This should also fix https://github.com/pytorch/pytorch/issues/22212
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22212

Differential Revision: D15988346

Pulled By: driazati

fbshipit-source-id: af223e3ad0580be895377312949997a70e988e4f
2019-07-03 17:28:25 -07:00
davidriazati
0293cf5bb6 Add Final[T] annotated members to __constants__ (#21603)
Summary:
Class member annotations can be marked with `Final[T]` instead of adding them to `__constants__`. `Final` comes from the `typing_extensions` module (which will be used if it is present). If not, the polyfill from `_jit_internal` is exposed as `torch.jit.Final` for users that don't want to install `typing_extensions`.

This keeps around `__constants__` since a lot of code is still using it, but in documentation follow ups we should change the examples to all to use `Final`.

TODO: install typing_extensions on CI, move tests to a Python3 only file when #21489 lands
](https://our.intern.facebook.com/intern/diff/15746274/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21603

Pulled By: driazati

Differential Revision: D15746274

fbshipit-source-id: d2c9b5643b4abba069b130c26fd42714c906ffac
2019-06-12 16:40:40 -07:00
davidriazati
2f4824b2fb Add support for recursive compilation on Modules (#20708)
Summary:
Following on #19747, this implements most of the `torch.jit.script()` changes laid out in #20939.

Still to do:
* Accessing a method from Python does not add it as a `ScriptMethod` (so only `export`ed methods and `forward` are compiled)
* Calling a method other than `forward` on a submodule doesn't work

](https://our.intern.facebook.com/intern/diff/15560490/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20708

Pulled By: driazati

Differential Revision: D15560490

fbshipit-source-id: cc7ef3a1c2772eff9beba5f3e66546d2b7d7198a
2019-05-31 14:27:16 -07:00
Dmytro Dzhulgakov
52ded63128 Revert D15546045: [jit] Add support for recursive compilation on Modules
Differential Revision:
D15546045

Original commit changeset: c2c8fe179088

fbshipit-source-id: c921fb92cf9f5c6c94c77fa5070f9c5775c91b77
2019-05-29 23:42:50 -07:00
davidriazati
8d3388aef2 Add support for recursive compilation on Modules (#20708)
Summary:
Following on #19747, this implements most of the `torch.jit.script()` changes laid out in #20939.

Still to do:
* Accessing a method from Python does not add it as a `ScriptMethod` (so only `export`ed methods and `forward` are compiled)
* Calling a method other than `forward` on a submodule doesn't work
](https://our.intern.facebook.com/intern/diff/15546045/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20708

Pulled By: driazati

Differential Revision: D15546045

fbshipit-source-id: c2c8fe179088ffbdad47198e799a456560655b86
2019-05-29 18:52:36 -07:00
davidriazati
00d0ddb140 Add all list specializations to pickler (#20191)
Summary:
TensorList, DoubleList, and BoolList were missing from the pickler, so
this adds them.

As a follow up a lot of the code for these could be templated and cut
down

](https://our.intern.facebook.com/intern/diff/15299106/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20191

Pulled By: driazati

Differential Revision: D15299106

fbshipit-source-id: f10c0c9af9d60a6b7fb8d93cea9f550b1a7e2415
2019-05-10 17:14:42 -07:00
David Riazati
f5435634b4 Respect order of Parameters in rnn.py (#18198)
Summary:
Previously to get a list of parameters this code was just putting them in the reverse order in which they were defined, which is not always right. This PR allows parameter lists to define the order themselves. To do this parameter lists need to have a corresponding function that provides the names of the parameters.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18198

Differential Revision: D14966270

Pulled By: driazati

fbshipit-source-id: 59331aa59408660069785906304b2088c19534b2
2019-04-18 11:18:20 -07:00
Edward Yang
81e030d9a6 Upgrade flake8-bugbear to master, fix the new lints. (#18507)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18507
ghimport-source-id: 1c3642befad2da78a7e5f39d6d58732b85c76267

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18507 Upgrade flake8-bugbear to master, fix the new lints.**

It turns out Facebobok is internally using the unreleased master
flake8-bugbear, so upgrading it grabs a few more lints that Phabricator
was complaining about but we didn't get in open source.

A few of the getattr sites that I fixed look very suspicious (they're
written as if Python were a lazy language), but I didn't look more
closely into the matter.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14633682

fbshipit-source-id: fc3f97c87dca40bbda943a1d1061953490dbacf8
2019-03-27 08:07:41 -07:00
Elias Ellison
561037aef8 use flake8-mypy (#17721)
Summary:
Use flake8 installed with mypy checks so that our linter matches fbcode. Mypy type errors also provide valuable signal
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17721

Differential Revision: D14357778

Pulled By: eellison

fbshipit-source-id: d8c9ea3fe3b5f550c3b70fe259e0eabf95e4c92d
2019-03-07 09:15:54 -08:00
David Riazati
2370c989d8 Add LSTM to standard library (#15744)
Summary:
**WIP**

Attempt 2 at #14831

This adds `nn.LSTM` to the jit standard library. Necessary changes to the module itself are detailed in comments. The main limitation is the lack of a true `PackedSequence`, instead this PR uses an ordinary `tuple` to stand in for `PackedSequence`.

Most of the new code in `rnn.py` is copied to `nn.LSTM` from `nn.RNNBase` to specialize it for LSTM since `hx` is a `Tuple[Tensor, Tensor]` (rather than just a `Tensor` as in the other RNN modules) for LSTM.

As a hack it adds an internal annotation `@_parameter_list` to mark that a function returns all the parameters of a module. The weights for `RNN` modules are passed to the corresponding op as a `List[Tensor]`. In Python this has to be gathered dynamically since Parameters could be moved from CPU to GPU or be deleted and replaced (i.e. if someone calls `weight_norm` on their module, #15766), but in the JIT parameter lists are immutable, hence a builtin to handle this differently in Python/JIT.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15744

Differential Revision: D14173198

Pulled By: driazati

fbshipit-source-id: 4ee8113159b3a8f29a9f56fe661cfbb6b30dffcd
2019-02-21 16:24:19 -08:00
Theo
3618b52c74 Add module and name to func created with _jit_internal.boolean_dispatch (#16922)
Summary:
The use case for making this PR is the following bug :
(with F = torch.nn.functional)
`F.max_pool2d.__module__` is `torch._jit_internal`
`F.max_pool2d.__name__` is `fn`

With this PR you get:
`F.max_pool2d.__module__` is `torch.nn.functional`
`F.max_pool2d.__name__` is `max_pool2d`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16922

Differential Revision: D14020053

Pulled By: driazati

fbshipit-source-id: c109c1f04640f3b2b69bc4790b16fef7714025dd
2019-02-12 09:38:48 -08:00
David Riazati
d266453541 Allow calling a Python function with a dict
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16989

Differential Revision: D14037896

Pulled By: driazati

fbshipit-source-id: 5f26d2d8fabf0f267909a3383f19d984645f94d0
2019-02-11 21:52:44 -08:00
David Riazati
c865d46736 Add @ignore annotation (#16055)
Summary:
Adds a decorator `torch.jit.ignore` for Python functions that tells the compiler to skip over these Python values, putting a `prim::Error` in their place which always throws an exception when run.

This lets you have Python-only code in your model in an explicit way, which is useful for debugging, and still be able to save/load the model.

Fixes #15815
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16055

Differential Revision: D13797286

Pulled By: driazati

fbshipit-source-id: 29d36776608ec101649a702952fc6ff3c27655b1
2019-02-01 16:46:12 -08:00
David Riazati
962f3f4864 Refactor _jit_internal (#16058)
Summary:
Use qualified names in `jit/__init__.py` to avoid polluting that namespace
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16058

Differential Revision: D13718745

Pulled By: driazati

fbshipit-source-id: 19d150569c8374541250a961f24f70c3f523de03
2019-01-17 13:56:50 -08:00
David Riazati
76feb8c40f Allow List arguments to Python Ops (#15721)
Summary:
Adds `List` to eval environment for type lines and allows `List` to be used on PythonOps (follows the same style as the `Tuple` code), fixes #15661
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15721

Differential Revision: D13578540

Pulled By: driazati

fbshipit-source-id: fce54dc3c0931d8b017b2e3483f0ac53826dda94
2019-01-07 13:51:53 -08:00
David Riazati
70f0c4745b Allow int/float cast to bool (#13391)
Summary:
This PR adds explicit `bool()` casts to match Python semantics

`bool(1) = True`
`bool(0) = False`
`bool(0.0) = False`
`bool(0.1) = True`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13391

Differential Revision: D12871213

Pulled By: driazati

fbshipit-source-id: 773a48b2647973138efe854abe725d647f1d727d
2018-12-27 16:01:08 -08:00
David Riazati
df4c9471ec Don't enforce docstrings on bool dispatch (#15306)
Summary:
Allows 2 functions that are boolean dispatched to have no docstrings (the only case that will fail now is if both functions have docstrings)

Fixes #15281
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15306

Differential Revision: D13494884

Pulled By: driazati

fbshipit-source-id: 65fec39ae03a7d6a68ad617c9b270faeb1617930
2018-12-17 14:41:05 -08:00
Michael Suo
25144c8a09 s/Torch Script/TorchScript/g (#15011)
Summary:
pls
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15011

Differential Revision: D13404158

Pulled By: suo

fbshipit-source-id: e906281463d65c86e4e9073eb0c0a26f4f29e307
2018-12-10 13:48:24 -08:00
David Riazati
15e8bb379e Add List to annotations (#14482)
Summary:
This PR adds a polyfill for `typing.List` for Python versions that don't
support `typing` as a builtin. It also moves the type defintions from
`annotations.py` so that they can be used in `torch.nn`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14482

Differential Revision: D13237570

Pulled By: driazati

fbshipit-source-id: 6575b7025c2d98198aee3b170f9c4323ad5314bd
2018-11-29 17:23:29 -08:00
David Riazati
d75f751bec Add boolean dispatch for function overloading (#14425)
Summary:
This PR allows to overload functions based on the value of a parameter (so long as it is a constant). See max_pool1d for an example usage.

This is the first step in enabling the use of max_pool functions for the standard library that can return `Tensor` or `Tuple[Tensor, Tensor]` based on the `return_indices` flag. This will give the JIT identical results to the Python versions of the functions.

Fixes #14081
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14425

Differential Revision: D13222104

Pulled By: driazati

fbshipit-source-id: 8cb676b8b13ebcec3262234698edf4a7d7dcbbe1
2018-11-27 19:36:47 -08:00
David Riazati
1b80644b4d Revert D13192228: [pytorch][PR] [jit] Add boolean dispatch for function overloading
Differential Revision:
D13192228

Original commit changeset: fce33c400c1f

fbshipit-source-id: 75c9991dc7097f9513c6c89d16eff2de6e287c3b
2018-11-27 13:14:42 -08:00
David Riazati
66c8bbf021 Add boolean dispatch for function overloading (#14081)
Summary:
This PR allows to overload functions based on the value of a parameter (so long as it is a constant). See `max_pool1d` for an example usage.

This is the first step in enabling the use of `max_pool` functions for the standard library that can return `Tensor` or `Tuple[Tensor, Tensor]` based on the `return_indices` flag. This will give the JIT identical results to the Python versions of the functions.

Depends on #14232 for `Optional[BroadcastingList[T]]`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14081

Differential Revision: D13192228

Pulled By: driazati

fbshipit-source-id: fce33c400c1fd06e59747d98507c5fdcd8d4c113
2018-11-27 10:51:32 -08:00
David Riazati
4e0b6c8500 Speed up resolution callback creation (#12859)
Summary:
`inspect.stack()` calls are slow since they access a bunch of extra info about the frame. This PR instead uses `inspect.currentframe()` and goes up the stack until it reaches the correct frame. [Context](stackoverflow.com/questions/17407119/python-inspect-stack-is-slow)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12859

Differential Revision: D10509912

Pulled By: driazati

fbshipit-source-id: b85325adf1b3c85a1a3a82e96e567b8be498531b
2018-10-23 20:40:04 -07:00
David Riazati
af78d4cd49 Add weak script modules (#12682)
Summary:
Adds support for weak script modules created that get compiled to `ScriptModule`s once added as a submodule of a `ScriptModule`:

```python
weak_module
class Test(torch.nn.Module):
	...
	weak_script_method
	def forward(self, x):
		...
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12682

Differential Revision: D10458626

Pulled By: driazati

fbshipit-source-id: 10ae23cb83cdafc4646cee58f399e14b2e60acd4
2018-10-23 09:06:02 -07:00
David Riazati
1e8064dec0 Convert 2 nn.functional functions to weak script (#12723)
Summary:
* Moves `weak_script` annotation to `torch/_jit_internal.py` folder to resolve dependency issue between `torch.jit` and `torch.nn`
* Add `torch._jit.weak_script` to `tanhshrink` and `softsign`, their tests now pass instead of giving an `unknown builtin op` error
* Blacklist converted `torch.nn.functional` functions from appearing in the builtin op list if they don't actually have corresponding `aten` ops
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12723

Differential Revision: D10452986

Pulled By: driazati

fbshipit-source-id: c7842bc2d3ba0aaf7ca6e1e228523dbed3d63c36
2018-10-21 14:09:55 -07:00