mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Raise and assert used to have a hard-coded error message "Exception". User provided error message was ignored. This PR adds support to represent user's error message in TorchScript. This breaks backward compatibility because now we actually need to script the user's error message, which can potentially contain unscriptable expressions. Such programs can break when scripting, but saved models can still continue to work. Increased an op count in test_mobile_optimizer.py because now we need aten::format to form the actual exception message. This is built upon an WIP PR: https://github.com/pytorch/pytorch/pull/34112 by driazati Pull Request resolved: https://github.com/pytorch/pytorch/pull/41907 Reviewed By: ngimel Differential Revision: D22778301 Pulled By: gmagogsfm fbshipit-source-id: 2b94f0db4ae9fe70c4cd03f4048e519ea96323ad
836 lines
29 KiB
Python
836 lines
29 KiB
Python
"""
|
|
The weak_script annotation needs to be here instead of inside torch/jit/ so it
|
|
can be used in other places in torch/ (namely torch.nn) without running into
|
|
circular dependency problems
|
|
"""
|
|
|
|
import contextlib
|
|
import collections
|
|
import enum
|
|
import inspect
|
|
import weakref
|
|
import warnings
|
|
import torch
|
|
# This is needed. `torch._jit_internal` is imported before `torch.distributed.__init__`.
|
|
# Explicitly ask to import `torch.distributed.__init__` first.
|
|
# Otherwise, "AttributeError: module 'torch' has no attribute 'distributed'" is raised.
|
|
import torch.distributed.rpc
|
|
from torch._six import builtins
|
|
from torch._utils_internal import get_source_lines_and_file
|
|
from torch.futures import Future
|
|
from typing import Tuple, List, Dict, Optional, Union, Any, TypeVar, Generic # noqa: F401
|
|
|
|
# Wrapper functions that can call either of 2 functions depending on a boolean
|
|
# argument
|
|
boolean_dispatched = weakref.WeakKeyDictionary() # noqa: T484
|
|
|
|
|
|
def createResolutionCallbackFromEnv(lookup_base):
|
|
"""
|
|
Creates a resolution callback that will look up qualified names in an
|
|
environment, starting with `lookup_base` for the base of any qualified
|
|
names, then proceeding down the lookup chain with the resolved object.
|
|
|
|
You should not use this directly, it should only be used from the other
|
|
createResolutionCallbackFrom* functions.
|
|
"""
|
|
def lookupInModule(qualified_name, module):
|
|
if '.' in qualified_name:
|
|
parts = qualified_name.split('.')
|
|
base = parts[0]
|
|
remaining_pieces = '.'.join(parts[1:])
|
|
module_value = getattr(module, base)
|
|
return lookupInModule(remaining_pieces, module_value)
|
|
else:
|
|
return getattr(module, qualified_name)
|
|
|
|
def parseNestedExpr(expr, module) -> Tuple[Any, int]:
|
|
i = 0
|
|
while i < len(expr) and expr[i] not in (',', '[', ']'):
|
|
i += 1
|
|
|
|
base = lookupInModule(expr[:i].strip(), module)
|
|
assert base is not None, "Unresolvable type {}".format(expr[:i])
|
|
if i == len(expr) or expr[i] != '[':
|
|
return base, i
|
|
|
|
assert expr[i] == '['
|
|
parts = []
|
|
while expr[i] != ']':
|
|
part_len = 0
|
|
i += 1
|
|
part, part_len = parseNestedExpr(expr[i:], module)
|
|
parts.append(part)
|
|
i += part_len
|
|
if len(parts) > 1:
|
|
return base[tuple(parts)], i + 1
|
|
else:
|
|
return base[parts[0]], i + 1
|
|
|
|
def parseExpr(expr, module):
|
|
try:
|
|
value, len_parsed = parseNestedExpr(expr, module)
|
|
assert len_parsed == len(expr), "whole expression was not parsed, falling back to c++ parser"
|
|
return value
|
|
except Exception as e:
|
|
"""
|
|
The python resolver fails in several cases in known unit tests, and is intended
|
|
to fall back gracefully to the c++ resolver in general. For example, python 2 style
|
|
annotations which are frequent in our unit tests often fail with types e.g. int not
|
|
resolvable from the calling frame.
|
|
"""
|
|
return None
|
|
|
|
return lambda expr: parseExpr(expr, lookup_base)
|
|
|
|
|
|
def createResolutionCallbackFromFrame(frames_up=0):
|
|
"""
|
|
Creates a function which, given a string variable name,
|
|
returns the value of the variable in the scope of the caller of
|
|
the function which called createResolutionCallbackFromFrame (by default).
|
|
|
|
This is used to enable access in-scope Python variables inside
|
|
TorchScript fragments.
|
|
|
|
frames_up is number of additional frames to go up on the stack.
|
|
The default value is 0, which correspond to the frame of the caller
|
|
of createResolutionCallbackFromFrame. Also for example, if frames_up is set
|
|
to 1, then the frame of the caller's caller of createResolutionCallbackFromFrame
|
|
will be taken.
|
|
|
|
For example, the following program prints 2::
|
|
|
|
def bar():
|
|
cb = createResolutionCallbackFromFrame(1)
|
|
print(cb("foo"))
|
|
|
|
def baz():
|
|
foo = 2
|
|
bar()
|
|
|
|
baz()
|
|
"""
|
|
frame = inspect.currentframe()
|
|
i = 0
|
|
while i < frames_up + 1:
|
|
frame = frame.f_back
|
|
i += 1
|
|
|
|
f_locals = frame.f_locals
|
|
f_globals = frame.f_globals
|
|
|
|
class env(object):
|
|
def __getattr__(self, key):
|
|
if key in f_locals:
|
|
return f_locals[key]
|
|
elif key in f_globals:
|
|
return f_globals[key]
|
|
elif key in dir(builtins):
|
|
return getattr(builtins, key)
|
|
|
|
return createResolutionCallbackFromEnv(env())
|
|
|
|
|
|
def get_closure(fn):
|
|
"""
|
|
Get a dictionary of closed over variables from a function
|
|
"""
|
|
captures = {}
|
|
captures.update(fn.__globals__)
|
|
|
|
for index, captured_name in enumerate(fn.__code__.co_freevars):
|
|
captures[captured_name] = fn.__closure__[index].cell_contents
|
|
|
|
return captures
|
|
|
|
# [local resolution in python]
|
|
# Depending on where a variable is defined, and where it is used, we may
|
|
# or may not be able to recover its value when recursively compiling a
|
|
# script function. Remember in the general case, a module or function is
|
|
# first defined and then later scripted. This means we do not have a
|
|
# chance to capture the active frames when the function is defined. Hence any
|
|
# name resolution has to happen later on the created closure. The way
|
|
# python captures type annotations restricts what we can recover. The
|
|
# follow example illustrates the different cases:
|
|
#
|
|
# class MyGlobalClass:
|
|
# ...
|
|
# def my_local_scope():
|
|
# @torch.jit.script
|
|
# class MyClass:
|
|
# ...
|
|
# @torch.jit.script
|
|
# class MyClassUsedAsVar:
|
|
# ...
|
|
# def eg(x: MyClass, y: MyGlobalClass):
|
|
# a_local_capture : Foo
|
|
# return MyClassUsedAsVar(x)
|
|
#
|
|
# MyGlobalClass is defined in the __globals__ dictionary of function
|
|
# 'eg', so it is always recoverable. my_local_scope introduces a new local
|
|
# variable scope in the function. Classes defined here are only visible as
|
|
# local variables. For the case of MyClassUsedAsVar, it is captured
|
|
# because it is used as a variable inside the body of the function, and we
|
|
# can resolve it using the captures returned from `get_closure`. However,
|
|
# the type annotations are not captured by the closure. In Python
|
|
# 3.0--3.9, the _value_ of MyClass and MyGlobalClass will be available as
|
|
# annotations on `eg``, but starting in Python 4.0, they will represented as
|
|
# strings and no longer present. Furthermore, since the body of `eg` does
|
|
# not reference those names, they do not appear in the list of closed over
|
|
# variables. In Python 2.x, type annotations are in comments, leading to a
|
|
# similar situation where their definitions are not available. We anticipate
|
|
# that most users will not run into this issue because their modules and
|
|
# functions will be defined at a global scope like MyGlobalClass. In cases
|
|
# where they are not, it is possible to work around issues by declaring the
|
|
# values global in the function.
|
|
|
|
|
|
|
|
def createResolutionCallbackFromClosure(fn):
|
|
"""
|
|
Create a resolutionCallback by introspecting the function instead of
|
|
looking up the stack for the enclosing scope
|
|
"""
|
|
closure = get_closure(fn)
|
|
|
|
class closure_lookup(object):
|
|
# This is a class since `closure` is a dict and it's easier in
|
|
# `env_helper` if everything just works with `getattr` calls
|
|
def __getattr__(self, key):
|
|
if key in closure:
|
|
return closure[key]
|
|
elif hasattr(builtins, key):
|
|
return getattr(builtins, key)
|
|
return None
|
|
|
|
return createResolutionCallbackFromEnv(closure_lookup())
|
|
|
|
|
|
def can_compile_class(cls):
|
|
# If any of the functions on a type don't have a code object, this type can't
|
|
# be compiled and is probably a builtin / bound from C
|
|
if is_ignored_fn(cls):
|
|
return False
|
|
names = cls.__dict__
|
|
fns = [getattr(cls, name) for name in names if inspect.isroutine(getattr(cls, name, None))]
|
|
has_code = [hasattr(fn, '__code__') for fn in fns]
|
|
return all(has_code)
|
|
|
|
|
|
def createResolutionCallbackForClassMethods(cls):
|
|
"""
|
|
This looks at all the methods defined in a class and pulls their closed-over
|
|
variables into a dictionary and uses that to resolve variables.
|
|
"""
|
|
# cls is a type here, so `ismethod` is false since the methods on the type
|
|
# aren't bound to anything, so Python treats them as regular functions
|
|
fns = [getattr(cls, name) for name in cls.__dict__ if inspect.isroutine(getattr(cls, name))]
|
|
captures = {}
|
|
|
|
for fn in fns:
|
|
captures.update(get_closure(fn))
|
|
|
|
def lookup_in_class(key):
|
|
if key in captures:
|
|
return captures[key]
|
|
else:
|
|
return getattr(builtins, key, None)
|
|
|
|
return lookup_in_class
|
|
|
|
|
|
def boolean_dispatch(arg_name, arg_index, default, if_true, if_false, module_name, func_name):
|
|
"""
|
|
Dispatches to either of 2 script functions based on a boolean argument.
|
|
In TorchScript, the boolean argument must be constant so that the correct
|
|
function to use can be determined at compile time.
|
|
"""
|
|
def fn(*args, **kwargs):
|
|
dispatch_flag = False
|
|
if arg_name in kwargs:
|
|
dispatch_flag = kwargs[arg_name]
|
|
elif arg_index < len(args):
|
|
dispatch_flag = args[arg_index]
|
|
|
|
if dispatch_flag:
|
|
return if_true(*args, **kwargs)
|
|
else:
|
|
return if_false(*args, **kwargs)
|
|
|
|
if if_true.__doc__ is None and if_false.__doc__ is not None:
|
|
doc = if_false.__doc__
|
|
if_true.__doc__ = doc
|
|
elif if_false.__doc__ is None and if_true.__doc__ is not None:
|
|
doc = if_true.__doc__
|
|
if_false.__doc__ = doc
|
|
elif if_false.__doc__ is None and if_true.__doc__ is None:
|
|
# neither function has a docstring
|
|
doc = None
|
|
else:
|
|
raise RuntimeError("only one function can have a docstring")
|
|
fn.__doc__ = doc
|
|
|
|
if module_name is not None:
|
|
fn.__module__ = module_name
|
|
if func_name is not None:
|
|
fn.__name__ = func_name
|
|
|
|
boolean_dispatched[fn] = {
|
|
"if_true": if_true,
|
|
"if_false": if_false,
|
|
"index": arg_index,
|
|
"default": default,
|
|
"arg_name": arg_name
|
|
}
|
|
return fn
|
|
|
|
|
|
class FunctionModifiers(object):
|
|
"""
|
|
Used to denote the behavior of a function in TorchScript. See export() and
|
|
ignore() for details.
|
|
"""
|
|
UNUSED = "unused (ignored and replaced with raising of an exception)"
|
|
IGNORE = "ignore (leave as a call to Python, cannot be torch.jit.save'd)"
|
|
EXPORT = "export (compile this function even if nothing calls it)"
|
|
DEFAULT = "default (compile if called from a exported function / forward)"
|
|
COPY_TO_SCRIPT_WRAPPER = \
|
|
"if this method is not scripted, copy the python method onto the scripted model"
|
|
|
|
|
|
def export(fn):
|
|
"""
|
|
This decorator indicates that a method on an ``nn.Module`` is used as an entry point into a
|
|
:class:`ScriptModule` and should be compiled.
|
|
|
|
``forward`` implicitly is assumed to be an entry point, so it does not need this decorator.
|
|
Functions and methods called from ``forward`` are compiled as they are seen
|
|
by the compiler, so they do not need this decorator either.
|
|
|
|
Example (using ``@torch.jit.export`` on a method):
|
|
|
|
.. testcode::
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
class MyModule(nn.Module):
|
|
def implicitly_compiled_method(self, x):
|
|
return x + 99
|
|
|
|
# `forward` is implicitly decorated with `@torch.jit.export`,
|
|
# so adding it here would have no effect
|
|
def forward(self, x):
|
|
return x + 10
|
|
|
|
@torch.jit.export
|
|
def another_forward(self, x):
|
|
# When the compiler sees this call, it will compile
|
|
# `implicitly_compiled_method`
|
|
return self.implicitly_compiled_method(x)
|
|
|
|
def unused_method(self, x):
|
|
return x - 20
|
|
|
|
# `m` will contain compiled methods:
|
|
# `forward`
|
|
# `another_forward`
|
|
# `implicitly_compiled_method`
|
|
# `unused_method` will not be compiled since it was not called from
|
|
# any compiled methods and wasn't decorated with `@torch.jit.export`
|
|
m = torch.jit.script(MyModule())
|
|
"""
|
|
fn._torchscript_modifier = FunctionModifiers.EXPORT
|
|
return fn
|
|
|
|
|
|
def unused(fn):
|
|
"""
|
|
This decorator indicates to the compiler that a function or method should
|
|
be ignored and replaced with the raising of an exception. This allows you
|
|
to leave code in your model that is not yet TorchScript compatible and still
|
|
export your model.
|
|
|
|
Example (using ``@torch.jit.unused`` on a method)::
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
class MyModule(nn.Module):
|
|
def __init__(self, use_memory_efficent):
|
|
super(MyModule, self).__init__()
|
|
self.use_memory_efficent = use_memory_efficent
|
|
|
|
@torch.jit.unused
|
|
def memory_efficient(self, x):
|
|
import pdb
|
|
pdb.set_trace()
|
|
return x + 10
|
|
|
|
def forward(self, x):
|
|
# Use not-yet-scriptable memory efficient mode
|
|
if self.use_memory_efficient:
|
|
return self.memory_efficient(x)
|
|
else:
|
|
return x + 10
|
|
|
|
m = torch.jit.script(MyModule(use_memory_efficent=False))
|
|
m.save("m.pt")
|
|
|
|
m = torch.jit.script(MyModule(use_memory_efficient=True))
|
|
# exception raised
|
|
m(torch.rand(100))
|
|
"""
|
|
fn._torchscript_modifier = FunctionModifiers.UNUSED
|
|
return fn
|
|
|
|
def ignore(drop=False, **kwargs):
|
|
"""
|
|
This decorator indicates to the compiler that a function or method should
|
|
be ignored and left as a Python function. This allows you to leave code in
|
|
your model that is not yet TorchScript compatible. If called from TorchScript,
|
|
ignored functions will dispatch the call to the Python interpreter. Models with ignored
|
|
functions cannot be exported; use :func:`@torch.jit.unused <torch.jit.unused>` instead.
|
|
|
|
Example (using ``@torch.jit.ignore`` on a method)::
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
class MyModule(nn.Module):
|
|
@torch.jit.ignore
|
|
def debugger(self, x):
|
|
import pdb
|
|
pdb.set_trace()
|
|
|
|
def forward(self, x):
|
|
x += 10
|
|
# The compiler would normally try to compile `debugger`,
|
|
# but since it is `@ignore`d, it will be left as a call
|
|
# to Python
|
|
self.debugger(x)
|
|
return x
|
|
|
|
m = torch.jit.script(MyModule())
|
|
|
|
# Error! The call `debugger` cannot be saved since it calls into Python
|
|
m.save("m.pt")
|
|
|
|
Example (using ``@torch.jit.ignore(drop=True)`` on a method):
|
|
|
|
.. testcode::
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
class MyModule(nn.Module):
|
|
@torch.jit.ignore(drop=True)
|
|
def training_method(self, x):
|
|
import pdb
|
|
pdb.set_trace()
|
|
|
|
def forward(self, x):
|
|
if self.training:
|
|
self.training_method(x)
|
|
return x
|
|
|
|
m = torch.jit.script(MyModule())
|
|
|
|
# This is OK since `training_method` is not saved, the call is replaced
|
|
# with a `raise`.
|
|
m.save("m.pt")
|
|
|
|
.. testcleanup::
|
|
|
|
import os
|
|
os.remove('m.pt')
|
|
"""
|
|
|
|
if callable(drop):
|
|
# used without any args, so drop is actually a function
|
|
# @torch.jit.ignore
|
|
# def fn(...):
|
|
fn = drop
|
|
fn._torchscript_modifier = FunctionModifiers.IGNORE
|
|
return fn
|
|
|
|
if not isinstance(drop, bool):
|
|
raise RuntimeError("Argument to @torch.jit.ignore must be a bool or "
|
|
"a function but got {}".format(drop))
|
|
|
|
# for backwards compat
|
|
drop_on_export = kwargs.pop("drop_on_export", None)
|
|
if drop_on_export:
|
|
warnings.warn("ignore(drop_on_export=True) has been deprecated. TorchScript will now drop the function "
|
|
"call on compilation. Use torch.jit.unused now. {}", category=FutureWarning)
|
|
|
|
drop = drop_on_export
|
|
elif drop:
|
|
warnings.warn("ignore(True) has been deprecated. TorchScript will now drop the function "
|
|
"call on compilation. Use torch.jit.unused now. {}", category=FutureWarning)
|
|
|
|
def decorator(fn):
|
|
if drop:
|
|
fn._torchscript_modifier = FunctionModifiers.UNUSED
|
|
else:
|
|
fn._torchscript_modifier = FunctionModifiers.IGNORE
|
|
return fn
|
|
return decorator
|
|
|
|
|
|
def _copy_to_script_wrapper(fn):
|
|
fn._torchscript_modifier = FunctionModifiers.COPY_TO_SCRIPT_WRAPPER
|
|
return fn
|
|
|
|
def module_has_exports(mod):
|
|
for name in dir(mod):
|
|
item = getattr(mod, name)
|
|
if callable(item):
|
|
if get_torchscript_modifier(item) is FunctionModifiers.EXPORT:
|
|
return True
|
|
return False
|
|
|
|
def should_drop(fn):
|
|
attr = get_torchscript_modifier(fn)
|
|
if attr is None:
|
|
return False
|
|
return attr is FunctionModifiers.UNUSED
|
|
|
|
|
|
def is_ignored_fn(fn):
|
|
mod = get_torchscript_modifier(fn)
|
|
return mod is FunctionModifiers.UNUSED or mod is FunctionModifiers.IGNORE
|
|
|
|
|
|
def is_static_fn(cls, fn):
|
|
return isinstance(inspect.getattr_static(cls, fn), staticmethod)
|
|
|
|
def get_static_fn(cls, fn):
|
|
return inspect.getattr_static(cls, fn).__func__
|
|
|
|
|
|
def get_torchscript_modifier(fn):
|
|
if not callable(fn):
|
|
return None
|
|
if hasattr(fn, '__func__'):
|
|
fn = fn.__func__
|
|
return getattr(fn, '_torchscript_modifier', FunctionModifiers.DEFAULT)
|
|
|
|
def copy_torchscript_modifier(orig, new):
|
|
attr = get_torchscript_modifier(orig)
|
|
if attr is None:
|
|
return
|
|
new._torchscript_modifier = attr
|
|
|
|
# overloading registration
|
|
# overloads get registered in this file, and compiled in torch/jit/__init__.py
|
|
# so that they can be imported in nn/functional.py without an import cycle
|
|
|
|
# qualified_name => list[overload_functions]
|
|
_overloaded_fns = {} # noqa: T484
|
|
|
|
def _overload(func):
|
|
qual_name = _qualified_name(func)
|
|
global _overloaded_fns
|
|
fn_overload_list = _overloaded_fns.get(qual_name)
|
|
if fn_overload_list is None:
|
|
fn_overload_list = []
|
|
_overloaded_fns[qual_name] = fn_overload_list
|
|
fn_overload_list.append(func)
|
|
return func
|
|
|
|
def _get_fn_overloads(qual_name):
|
|
return _overloaded_fns.get(qual_name)
|
|
|
|
def _clear_fn_overloads(qual_name):
|
|
del _overloaded_fns[qual_name]
|
|
|
|
def get_class_name_lineno(method):
|
|
current_frame = inspect.currentframe()
|
|
|
|
# one for the get_class_name call, one for _overload_method call
|
|
for i in range(2):
|
|
current_frame = current_frame.f_back
|
|
class_name = current_frame.f_code.co_name
|
|
line_no = current_frame.f_code.co_firstlineno
|
|
return class_name, line_no
|
|
|
|
# At the the point the decorator is applied to class methods the method
|
|
# has no reference to its owning class. _qualified_name would not include
|
|
# the class it is defined in, so any methods with the same name in the same file
|
|
# would have the same _qualified_name, even if they were defined in different
|
|
# classes. This problem only exists in python 2.
|
|
# We get around this problem by looking at the stack frame and identifying
|
|
# the class name, and throwing an error whenever overloads are used
|
|
# when modules of the same name are in the same file
|
|
|
|
# qualified_name => class name => list[overload_functions]
|
|
_overloaded_methods = {} # noqa: T484
|
|
|
|
|
|
# (qualified_name, class name) => class_fileno
|
|
_overloaded_method_class_fileno = {}
|
|
|
|
def _overload_method(func):
|
|
qual_name = _qualified_name(func)
|
|
global _overloaded_methods
|
|
class_name_map = _overloaded_methods.get(qual_name, None)
|
|
if class_name_map is None:
|
|
class_name_map = {}
|
|
_overloaded_methods[qual_name] = class_name_map
|
|
|
|
class_name, line_no = get_class_name_lineno(func)
|
|
method_overloads = class_name_map.get(class_name, None)
|
|
if method_overloads is None:
|
|
method_overloads = []
|
|
class_name_map[class_name] = method_overloads
|
|
_overloaded_method_class_fileno[(qual_name, class_name)] = line_no
|
|
else:
|
|
existing_lineno = _overloaded_method_class_fileno[(qual_name, class_name)]
|
|
if existing_lineno != line_no:
|
|
raise RuntimeError("Cannot currently overload the same method name in two different"
|
|
" classes with the same name in the same module")
|
|
|
|
method_overloads.append(func)
|
|
return func
|
|
|
|
def _get_overloaded_methods(method, mod_class):
|
|
# TODO: __name__ not set for submodules in recursive script
|
|
if not hasattr(method, "__name__"):
|
|
return None
|
|
qual_name = _qualified_name(method)
|
|
class_name_map = _overloaded_methods.get(qual_name, None)
|
|
if class_name_map is None:
|
|
return None
|
|
overloads = class_name_map.get(mod_class.__name__, None)
|
|
if overloads is None:
|
|
return None
|
|
|
|
method_line_no = get_source_lines_and_file(method)[1]
|
|
mod_class_fileno = get_source_lines_and_file(mod_class)[1]
|
|
mod_end_fileno = mod_class_fileno + len(get_source_lines_and_file(mod_class)[0])
|
|
if not (method_line_no >= mod_class_fileno and method_line_no <= mod_end_fileno):
|
|
raise Exception("Overloads are not useable when a module is redeclared within the same file: " + str(method))
|
|
return overloads
|
|
|
|
|
|
def is_tuple(ann):
|
|
# For some reason Python 3.7 violates the Type[A, B].__origin__ == Type rule
|
|
if not hasattr(ann, '__module__'):
|
|
return False
|
|
return ann.__module__ == 'typing' and \
|
|
(getattr(ann, '__origin__', None) is Tuple or
|
|
getattr(ann, '__origin__', None) is tuple)
|
|
|
|
def is_list(ann):
|
|
if not hasattr(ann, '__module__'):
|
|
return False
|
|
return ann.__module__ == 'typing' and \
|
|
(getattr(ann, '__origin__', None) is List or
|
|
getattr(ann, '__origin__', None) is list)
|
|
|
|
def is_dict(ann):
|
|
if not hasattr(ann, '__module__'):
|
|
return False
|
|
return ann.__module__ == 'typing' and \
|
|
(getattr(ann, '__origin__', None) is Dict or
|
|
getattr(ann, '__origin__', None) is dict)
|
|
|
|
def is_optional(ann):
|
|
# Optional[T] is just shorthand for Union[T, None], so check for both
|
|
def safe_is_subclass(the_type, super_type):
|
|
# Don't throw if `the_type` isn't a class type (e.g. if it is
|
|
# another type annotation instance)
|
|
if not inspect.isclass(the_type):
|
|
return False
|
|
return issubclass(the_type, super_type)
|
|
|
|
if not hasattr(ann, '__module__'):
|
|
return False
|
|
|
|
union_optional = False
|
|
if ann.__module__ == 'typing' and \
|
|
(getattr(ann, '__origin__', None) is Union):
|
|
args = getattr(ann, '__args__', ())
|
|
if len(args) == 2:
|
|
union_optional = (safe_is_subclass(args[1], type(None)) and not safe_is_subclass(args[0], type(None))) \
|
|
or (safe_is_subclass(args[0], type(None)) and not safe_is_subclass(args[1], type(None)))
|
|
|
|
optional = ann.__module__ == 'typing' and \
|
|
(getattr(ann, '__origin__', None) is Optional)
|
|
|
|
return optional or union_optional
|
|
|
|
def is_future(ann):
|
|
if ann is Future:
|
|
raise RuntimeError(
|
|
"Attempted to use Future without a "
|
|
"contained type. Please add a contained type, e.g. "
|
|
"Future[int]"
|
|
)
|
|
return getattr(ann, "__origin__", None) is Future
|
|
|
|
if torch.distributed.rpc.is_available():
|
|
from torch.distributed.rpc import RRef
|
|
|
|
def is_rref(ann):
|
|
if ann is RRef:
|
|
raise RuntimeError(
|
|
"Attempted to use RRef without a "
|
|
"contained type. Please add a contained type, e.g. "
|
|
"RRef[int]"
|
|
)
|
|
return getattr(ann, "__origin__", None) is RRef
|
|
|
|
try:
|
|
import typing_extensions
|
|
from typing_extensions import Final
|
|
|
|
def is_final(ann):
|
|
return ann.__module__ == 'typing_extensions' and \
|
|
(getattr(ann, '__origin__', None) is typing_extensions.Final)
|
|
except ImportError:
|
|
# Same as above, this polyfill is only for `typing_extensions`
|
|
class FinalInstance(object):
|
|
__slots__ = ['__args__']
|
|
|
|
def __init__(self, types):
|
|
self.__args__ = types
|
|
|
|
class FinalCls(object):
|
|
def __getitem__(self, types):
|
|
return FinalInstance(types)
|
|
|
|
Final = FinalCls() # noqa: T484
|
|
|
|
def is_final(ann):
|
|
return isinstance(ann, FinalInstance)
|
|
|
|
# allows BroadcastingList instance to be subscriptable
|
|
class BroadcastingListCls(object):
|
|
def __getitem__(self, types):
|
|
return
|
|
|
|
# mypy doesn't support parameters on types, so we have to explicitly type each
|
|
# list size
|
|
BroadcastingList1 = BroadcastingListCls()
|
|
for i in range(2, 7):
|
|
globals()["BroadcastingList{}".format(i)] = BroadcastingList1
|
|
|
|
# Retrieves a fully-qualified name (module hierarchy + classname) for a given obj.
|
|
def _qualified_name(obj):
|
|
# This special case allows us to override the qualified name on a type.
|
|
# It's currently used in conjunction with tracing, where we create a
|
|
# fake module to filter only supported attributes. However, since this
|
|
# new type is defined as a local class, we need a mechanism to override
|
|
# its qualname so it appears correctly in the TorchScript system. This,
|
|
# we set '_jit_override_qualname' with the original traced module's
|
|
# qualified name, which is picked up here
|
|
if hasattr(obj, '_jit_override_qualname'):
|
|
return obj._jit_override_qualname
|
|
# short-circuit in cases where the object already has a known qualified name
|
|
if isinstance(obj, torch._C.ScriptFunction):
|
|
return obj.qualified_name
|
|
|
|
if getattr(obj, "__name__", None):
|
|
name = obj.__name__
|
|
# Enum classes do not have `__name__` attr, instead they have `name`.
|
|
elif isinstance(obj, enum.Enum):
|
|
name = obj.name
|
|
else:
|
|
raise RuntimeError("Could not get name of python class object")
|
|
|
|
|
|
if name == '<lambda>':
|
|
name = '_lambda' # make name a valid identifier
|
|
|
|
module_name = obj.__module__
|
|
|
|
# If the module is actually a torchbind module, then we should short circuit
|
|
if module_name == "torch._classes":
|
|
return obj.qualified_name
|
|
|
|
# The Python docs are very clear that `__module__` can be None, but I can't
|
|
# figure out when it actually would be.
|
|
if module_name is None:
|
|
raise RuntimeError("Could not get qualified name for class '{}': "
|
|
"__module__ can't be None.".format(name))
|
|
|
|
# if getattr(sys.modules[module_name], name) is not obj:
|
|
# raise RuntimeError("Could not get qualified name for class '{}': "
|
|
# "the attr {} on module {} is not the the class".format(name, name, module_name))
|
|
|
|
# __main__ is a builtin module, so rewrite it to "__torch__".
|
|
if module_name == "__main__":
|
|
module_name = "__torch__"
|
|
else:
|
|
# Everything else gets a "__torch__" prefix to avoid name collisions
|
|
# with the names of user values.
|
|
module_name = "__torch__." + module_name
|
|
|
|
if "." in name:
|
|
raise RuntimeError("Could not get qualified name for class '{}': "
|
|
"'{}' is not a valid identifier".format(name, name))
|
|
|
|
return module_name + "." + name
|
|
|
|
|
|
# Thin wrapper around SourceRangeFactory to store extra metadata
|
|
# about the function-to-be-compiled.
|
|
class SourceContext(torch._C._jit_tree_views.SourceRangeFactory):
|
|
def __init__(self, source, filename, file_lineno, leading_whitespace_len, uses_true_division=True):
|
|
super(SourceContext, self).__init__(source, filename, file_lineno, leading_whitespace_len)
|
|
self.uses_true_division = uses_true_division
|
|
|
|
|
|
def fake_range():
|
|
return SourceContext('', None, 0, 0).make_raw_range(0, 1)
|
|
|
|
|
|
def _try_get_dispatched_fn(fn):
|
|
if not callable(fn):
|
|
return None
|
|
return boolean_dispatched.get(fn)
|
|
|
|
|
|
def _get_named_tuple_properties(obj):
|
|
assert issubclass(obj, tuple) and hasattr(obj, '_fields')
|
|
fields = list(obj._fields)
|
|
annotations = []
|
|
has_annotations = hasattr(obj, '__annotations__')
|
|
for field in fields:
|
|
if has_annotations and field in obj.__annotations__:
|
|
the_type = torch.jit.annotations.ann_to_type(obj.__annotations__[field], fake_range())
|
|
annotations.append(the_type)
|
|
else:
|
|
annotations.append(torch._C.TensorType.get())
|
|
return type(obj).__name__, fields, annotations
|
|
|
|
|
|
def _create_named_tuple(t, unqual_name, field_names):
|
|
TupleType = collections.namedtuple(unqual_name, field_names)
|
|
return TupleType(*t)
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def _disable_emit_hooks():
|
|
hooks = torch._C._jit_get_emit_hooks()
|
|
torch._C._jit_set_emit_hooks(None, None)
|
|
yield
|
|
torch._C._jit_set_emit_hooks(hooks[0], hooks[1])
|
|
|
|
|
|
def _disable_emit_hooks_decorator(_DecoratorContextManager): # noqa: F811
|
|
def __enter__(self):
|
|
self.hooks = torch._C._jit_get_emit_hooks()
|
|
torch._C._jit_set_emit_hooks(None, None)
|
|
|
|
def __exit__(self, *args):
|
|
torch._C._jit_set_emit_hooks(self.hooks[0], self.hooks[1])
|
|
|
|
def _is_exception(obj):
|
|
if not inspect.isclass(obj):
|
|
return False
|
|
return issubclass(obj, Exception)
|