Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62445
PyTorch currently uses the old style of compiling CUDA in CMake which is just a
bunch of scripts in `FindCUDA.cmake`. Newer versions support CUDA natively as
a language just like C++ or C.
Test Plan: Imported from OSS
Reviewed By: ejguan
Differential Revision: D31503350
fbshipit-source-id: 2ee817edc9698531ae1b87eda3ad271ee459fd55
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`
All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008
Reviewed By: driazati, r-barnes
Differential Revision: D29838584
Pulled By: malfet
fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
Summary:
Deprecation warning reported by cmake:
```
CMake Deprecation Warning at CMakeLists.txt (cmake_minimum_required):
Compatibility with CMake < 2.8.12 will be removed from a future version of CMake.
Update the VERSION argument <min> value or use a ...<max> suffix to tell
CMake that the project does not need compatibility with older versions.
```
This is the only place that requires bumping min version. There're two others but only in `third_party` folder.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58306
Reviewed By: bdhirsh
Differential Revision: D28446097
Pulled By: zhouzhuojie
fbshipit-source-id: af5ef50e61bd57dc36089ebe62db70ba0081864c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57566
Fix the problem that `tempfile` has never been deleted even after `torch_shm_manager` is destroyed.
- The previous implementation has wrong path length for the Linux Socket. It leads to we lose the last character of the name of `tempfile` when bind the pathname to socket. At the end, we can not delete this file due to unexpected file name.
- After we solve the racing problem by introducing a temporary directory, it becomes more dangerous since it prevents `torch_shm_manager` to delete directory as the tempfile persists in the temporary directory.
Test Plan: Imported from OSS
Reviewed By: VitalyFedyunin
Differential Revision: D28202866
Pulled By: ejguan
fbshipit-source-id: 912cfd8fec0cc309d47df223b2b0faa599c60799
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57310
If we fail to exec `torch_shm_manager`, write an appropriate error message to stdout so that the parent process can have some context on the failure.
Reviewed By: ejguan
Differential Revision: D28047917
fbshipit-source-id: 68bf357df7a6b318c036f4f62cbb428a62cb139e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57309
Addressing a race condition that can occur in `torch_shm_manager` between the time its temporary file is unlinked and when it `bind()`s the manager server socket to that same name. In that time window, other threads/processes can re-create another temporary file with the same name, causing `bind()` to fail with `EADDRINUSE`.
This diff introduces `c10::TempDir` and associated helper functions that mirror those of `c10::TempFile` and generates the manager socket name using a combination of a temporary directory, which will be valid for the lifetime of `torch_shm_manager`, and a well-known file name within that directory that will never be used outside of `bind()`.
Reviewed By: ejguan
Differential Revision: D28047914
fbshipit-source-id: 148d54818add44159881d3afc2ffb31bd73bcabf
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57308
This diff makes `c10::TempFile` non-copyable but movable. `torch_shm_manager` was previously dependent upon some hidden behavior that was a result of copying `TempFile`s, which is also being made more explicit now that they can be moved but not copied.
Context:
`c10::TempFile` is currently copyable, which leads to surprising behavior. A seemingly valid `TempFile` may in fact be invalid if the original it was copied from has already been destroyed, resulting in the file descriptor to be closed and the filename being unlinked without the user knowing about it.
**In fact, both `c10::try_make_tempfile` and `c10::make_tempfile` cause copies of `TempFile` to be made**, which can easily be verified by explicitly deleting the copy constructor of `TempFile` and attempting to compile. This means that in practice, users of these functions are getting temporary files that have already been closed and unlinked.
This copying of `TempFile` is particularly interesting in the case of `torch_shm_manager`, which uses `try_make_tempfile` to generate the name of a Unix domain socket to communicate with clients. In order for `bind()` on the socket name to be successful, a file with that same name must not be linked in the filesystem, or `EADDRINUSE` will result. Happily, beacuse `try_make_tempfile` previously created a copy of the `TempFile` while destroying the original, `torch_shm_manager` did not encounter this. With this change, howevrer, `torch_shm_manager` must now explicitly destroy the `TempFile` before attempting to `bind()`. Unfortunately, this exposes a race condition--**other code can re-generate the same-named temporary file after the one created by `torch_shm_manager` is explicitly unlinked but before `torch_shm_manager` binds it to the server socket.** To be clear: this race condition already existed before this diff, but this makes things more explicit. The real fix will be in a follow-up change.
Reviewed By: ejguan
Differential Revision: D28047915
fbshipit-source-id: e8a1b6bb50419fe65620cfecdb67c566a4cf9056
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57307
Extend the `"ERROR"` message that `torch_shm_manager` writes to the pipe when it encounters a fatal error with some extra context (specifically, the `what()` on a caught `std::exception`), allowing the parent process to gain some insight into the cause of the failure.
Also, simply return from `main()` with an error exit code when a fatal exception is caught rather than re-throwing, because re-throwing leads to premature process termination that may prevent standard output from being flushed (and therefore the parent process from being able to read the error context from the pipe).
Reviewed By: ejguan
Differential Revision: D28047916
fbshipit-source-id: d423ee8ed1b2bf7831db877e8f8515ec6d6aa169
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os
def get_compiled_files_list():
import json
with open("build/compile_commands.json") as f:
data = json.load(f)
files = [os.path.relpath(node['file']) for node in data]
for idx, fname in enumerate(files):
if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
return files
def run_clang_tidy(fname):
check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
changes = check_output(["git", "ls-files", "-m"])
if len(changes) == 0:
return
check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])
def main():
git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
compiled_files = get_compiled_files_list()
for idx, fname in enumerate(git_files):
if fname not in compiled_files:
continue
if fname.startswith("caffe2/contrib/aten/"):
continue
print(f"[{idx}/{len(git_files)}] Processing {fname}")
run_clang_tidy(fname)
if __name__ == "__main__":
main()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892
Reviewed By: H-Huang
Differential Revision: D27991944
Pulled By: malfet
fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
Summary:
This is useful for linux distributions when the ABI/API of libtorch has
been changed. The default SOVERSION is set to
"${TORCH_VERSION_MAJOR}.${TORCH_VERSION_MINOR}".
ezyang
But if the release strategy of pytorch/caffe2 involves avoiding breaking API/ABI changes to libtorch for minor/patch releases, then we can set `TORCH_SOVERSION` to simply `TORCH_VERSION_MAJOR`. Please confirm that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37502
Differential Revision: D21303565
Pulled By: ezyang
fbshipit-source-id: 798f5ec7fc5f0431ff1a7f9e8e5d3a0d3b25bb22
Summary:
This renames the CMake `caffe2` target to `torch`, as well as renaming `caffe2_gpu` to `torch_gpu` (and likewise for other gpu target variants). Many intermediate variables that don't manifest as artifacts of the build remain for now with the "caffe2" name; a complete purge of `caffe2` from CMake variable names is beyond the scope of this PR.
The shell `libtorch` library that had been introduced as a stopgap in https://github.com/pytorch/pytorch/issues/17783 is again flattened in this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20774
Differential Revision: D15769965
Pulled By: kostmo
fbshipit-source-id: b86e8c410099f90be0468e30176207d3ad40c821
Summary:
libshm_manager doesn't need to depend on all of libtorch. It only uses tiny tempfile.h which can be moved to c10. I could just duplicate the file too, but it's not worth it as c10 is small enough.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17019
Differential Revision: D14052688
Pulled By: dzhulgakov
fbshipit-source-id: 8797d15f8c7c49c49d40b7ab2f43aa3bf6becb0c
Summary:
Rehash of previous attempts. This tries a different approach where we accept the install as specified in cmake (leaving bin/ include/ and lib/ alone), and then try to adjust the rest of the files to this more standard layout.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16414
Differential Revision: D13863635
Pulled By: zdevito
fbshipit-source-id: 23725f5c64d7509bf3ca8f472dcdcad074de9828
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.
I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.
I used the following script to do the canonicalization:
```
import subprocess
import re
import os.path
files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
for fn in files:
if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
continue
if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
continue
with open(fn, 'r') as f:
c = f.read()
def fmt(p):
return "#include <{}>".format(p)
def repl(m):
p = m.group(1)
if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
return fmt(p)
if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
return fmt(p)
for root in ["aten/src", "torch/lib", ""]:
for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
new_p = os.path.relpath(os.path.join(bad_root, p), root)
if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
return fmt(new_p)
print("ERROR: ", fn, p)
return m.group(0)
new_c = re.sub(r'#include "([^"]+)"', repl, c)
if new_c != c:
print(fn)
with open(fn, 'w') as f:
f.write(new_c)
```
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849
Reviewed By: dzhulgakov
Differential Revision: D13363445
Pulled By: ezyang
fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10478
- Removed Backend constructor from Device, and fixed all
use-sites to use DeviceType::CPU instead of kCPU, or
use a new function backendToDeviceType to perform
the conversion.
- New method device_type() on Type; it gives you the
underlying device type, e.g., CPU for SparseCPU.
- We add backward compatibility for kCPU/kCUDA uses,
by introducing a new special type which is implicitly
convertible to both DeviceType and Backend. As long as
you don't define a function that's overloaded on both
DeviceType and Backend (but not on BackendOrDeviceType),
the implicit conversions will ensure that uses
of at::Device(at::kCPU) keep working. We fixed use-sites in
the library, but did NOT fix sites in the test code, so that
we can exercise this BC code.
Reviewed By: Yangqing
Differential Revision: D9301861
fbshipit-source-id: 9a9d88620500715c7b37e655b4fd761f6dd72716
Summary:
See Note [Supervisor deleter] for how SupervisedPtr works.
This design is not the obvious one, but there were a lot of
constraints feeding into it:
- It must support the reallocation usage-pattern, where, given
an existing Storage, we allocate a new region of memory,
copy the existing data to it, and then deallocate the old
region of memory.
- Creation of a deleter for memory MUST avoid dynamic allocations
in the common case. We've done some benchmarking in Caffe2
where dynamic allocation for deleters is ruinously expensive,
and it's really hard to avoid these performance tarpits in
very general function wrappers like std::function or
folly::Function (while benchmarking this, we discovered that
folly::Function's move constructor was way more expensive
than it should be).
- We need to be able to deallocate data that comes from external
sources, e.g., dlpack and numpy tensors. Most notably,
you often cannot deallocate these with merely the void*
data pointer; you need some extra, out-of-band information
(e.g., the managing struct) to deallocate it. Sometimes,
you may even want to resize data living in an external source!
- The "core" allocators need to support being wrapped in a Thrust
allocator, so you need to be implement the following two functions:
char* allocate(size_t);
void deallocate(char*, size_t);
- We need to support tensors which contain non-POD, non-trivially
copyable data; specifically tensors of std::string. This is
an upcoming requirement from Caffe2. It's dirty AF, but
it's really useful.
- It should use C++ standard library types like std::unique_ptr
(which is hugely problematic because std::unique_ptr doesn't
call the deleter when the pointer is null.)
Here is the billing of changes:
- Built-in support for realloc() has been DROPPED ENTIRELY.
Instead, you're expected to allocate and then copy from
the old memory to the new memory if you want to do a
reallocation. This is what you'd generally have expected
to occur; and axing realloc() from the design lets us avoid
some tricky correctness issues with std::realloc(), namely
the fact that we must refuse the realloc if the type of the
elements are not trivially copyeable. If it really matters,
we can add this back, but there really needs to be a good
explanation WHY you need fast resizing reallocations (by in
large, people don't resize their storages, and it should
be acceptable to have a performance degradation when they
do).
- TH_STORAGE_FREEMEM is no more; instead, if you want a
storage which doesn't free its result, you just give it
an empty deleter.
- What we used to call an "allocator" (really, a combined
object for allocating/deleting) has been split into two
concepts, an allocator, and a smart pointer (SupervisedPtr)
which knows how to delete data.
- Unlike previously, where THAllocator/THCDeviceAllocator
could have a per-tensor context storing extra information
(e.g., a pointer to the metadata you need to actually
free the tensor), there is no context in the allocator or
the deleter of the smart pointer; instead, the smart
pointer directly holds an owning reference to the
metadata necessary to free the data. This metadata
is *freshly manufactured* upon every allocation, which
permits us to resize tensors even in the absence of
built-in support for realloc().
- By default, allocators don't support "raw" allocations
and deallocations with raw pointers. This is because
some allocations may return a different context every
time, in which case you need to reconstruct the context
at delete time (because all you got was a void*, not
a unique_ptr that carries the deleter).
- The diff between at::Allocator and THCDeviceAllocator is a
bit larger:
- It used to return a cudaError_t. Now, allocators
are expected to check the error status immediately and throw
an exception if there was an error. It turns out that this
is what was immediately done after all occurrences of
allocate/release, so it wasn't a big deal (although some
subsidiary interfaces had to themselves be converted to
not return cudaError_t).
There is one notable exception to this, and it is how
we handle CUDA OOM: if this occurs, we attempt to return
unused memory to the system and try again. This is now
handled by a catch-all try-catch block. The cost of
catching the exception is probably the least of your worries
if you're about to OOM.
- It used to take the CUDA stream to perform the allocation
on as an argument. However, it turned out that all call
sites, this stream was the stream for the current device.
So we can push this into the allocator (and the choice,
in the future, could be made explicitly by twiddling
thread local state.)
- It held two extra methods, emptyCache and cacheInfo, specifically
for interacting with some state in THCCachingAllocator.
But this "generality" was a lie, since THCCachingAllocator
was the only allocator that actually implemented these
methods, and there is actually a bunch of code in THC
which assumes that it is the caching allocator that is
the underlying allocator for CUDA allocations. So I
folded these two methods into this interface as
THCCachingAllocator_emptyCache and THCCachingAllocator_cacheInfo.
- It held its context directly inside the THCDeviceAllocator
struct. This context has been moved out into whatever
is holding the at::Allocator*.
- The APIs for getting at allocators/deleters is now a little different.
- Previously there were a bunch of static variables you could get
the address of (e.g., &THDefaultAllocator); now there is a
function getTHDefaultAllocator().
- Some "allocators" didn't actually know how to allocate (e.g.,
the IPC "allocator"). These have been deleted; instead, you
can wrap the produced pointers into SupervisedPtr using
an appropriate makeSupervisedPtr() static method.
- Storage sharing was a lot of work to wrangle, but I think I've
tamed the beast.
- THMapAllocator and its "subclasses" have been refactored to
be proper, honest to goodness C++ classes. I used the enum
argument trick to get "named" constructors. We use inheritance
to add refcounting and management (in libshm). What we previously
called the "Context" class (Context has been dropped from the name)
is now the supervisor for the data.
- Sometimes, we need to pull out the file descriptor from a
tensor. Previously, it was pulled out of the allocator context.
Now, we pull it out of the supervisor of the SupervisorPtr,
using the static method fromSupervisedPtr(), which uses the
deleter as the typeid, and refines the type if it matches.
- I renamed the std::function deleter into
InefficientStdFunctionSupervisor, to emphasize the fact that it does
a dynamic allocation to save the std::function deleter.
TODO:
- Windows libshm is in shambles and needs to be fixed.
Perhaps for the future:
- newFromFd is now unconditionally calling cudaPointerGetAttributes
even though this is unnecessary, because we know what the device
is from higher up in the callstack. We can fix this by making
newWithDataAndAllocator also take an explicit device argument.
- Consider statically distinguishing between allocators that
support raw_allocate/raw_deallocate, and those which don't.
The Thrust constraint applies only to the CUDA device allocator;
you never need to allocate CPU memory this way
- Really want to get rid of storage views. Ugh.
Nontrivial bugs I noticed when preparing this patch:
- I forgot to placement-new unique pointers and attempted to
assign them directly on uninitialized memory; very bad! Sam
Gross has encouraged me to replace this with a proper constructor
but I keep putting it off, because once everything goes in
StorageImpl there really will be a proper constructor.
- I rewrote a number of APIs to use newWithDataAndAllocator
instead of newWithAllocator, calling the allocator at the
call site (because they required "allocation context" which
we no longer give to "allocators"). When I did this, I forgot
to insert the multiplication with sizeof(real) to scale from
numels to number of bytes.
- The implementation of swap on storages was missing it for
scalarType and backend. It was benign (because the only case
we call swap is when these are the same), but I fixed it anyway.
- I accidentally returned a nullptr unique_ptr with no deleter,
even though there was a legitimate one. This matters, because
some code still shoves its hands in the deleter context to
get extra metadata about the function.
- I used std::move() on a unique_ptr, and then did a boolean
test on the pointer aftewards (always false!)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9358
Reviewed By: SsnL
Differential Revision: D8811822
Pulled By: ezyang
fbshipit-source-id: 4befe2d12c3e7fd62bad819ff52b054a9bf47c75
In some configurations (e.g., our internal build of GCC 5 + GLIBC 2.23),
-lrt is not sufficient to use shm_open; you also need to declare
a dependency on pthread. This patch adds a surgical extra fix to
detect this situation, in the case that I noticed it failing in the
wild.
Fixes#8110
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Have PyTorch depend on minimal libcaffe2.so instead of libATen.so
* Build ATen tests as a part of Caffe2 build
* Hopefully cufft and nvcc fPIC fixes
* Make ATen install components optional
* Add tests back for ATen and fix TH build
* Fixes for test_install.sh script
* Fixes for cpp_build/build_all.sh
* Fixes for aten/tools/run_tests.sh
* Switch ATen cmake calls to USE_CUDA instead of NO_CUDA
* Attempt at fix for aten/tools/run_tests.sh
* Fix typo in last commit
* Fix valgrind call after pushd
* Be forgiving about USE_CUDA disable like PyTorch
* More fixes on the install side
* Link all libcaffe2 during test run
* Make cuDNN optional for ATen right now
* Potential fix for non-CUDA builds
* Use NCCL_ROOT_DIR environment variable
* Pass -fPIC through nvcc to base compiler/linker
* Remove THCUNN.h requirement for libtorch gen
* Add Mac test for -Wmaybe-uninitialized
* Potential Windows and Mac fixes
* Move MSVC target props to shared function
* Disable cpp_build/libtorch tests on Mac
* Disable sleef for Windows builds
* Move protos under BUILD_CAFFE2
* Remove space from linker flags passed with -Wl
* Remove ATen from Caffe2 dep libs since directly included
* Potential Windows fixes
* Preserve options while sleef builds
* Force BUILD_SHARED_LIBS flag for Caffe2 builds
* Set DYLD_LIBRARY_PATH and LD_LIBRARY_PATH for Mac testing
* Pass TORCH_CUDA_ARCH_LIST directly in cuda.cmake
* Fixes for the last two changes
* Potential fix for Mac build failure
* Switch Caffe2 to build_caffe2 dir to not conflict
* Cleanup FindMKL.cmake
* Another attempt at Mac cpp_build fix
* Clear cpp-build directory for Mac builds
* Disable test in Mac build/test to match cmake
- Add additional timeouts to test_multiprocessing to reduce chances of
hanging indefintely on failure
- Add missing header guards
- Fix typo
- Check that torch_shm_manager exists in torch/__init__.py