Commit Graph

12 Commits

Author SHA1 Message Date
Jane Xu
6259601c8a Set test owners for tests with unknown owners (#67552)
Summary:
Action following https://github.com/pytorch/pytorch/issues/66232

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67552

Reviewed By: jbschlosser

Differential Revision: D32028248

Pulled By: janeyx99

fbshipit-source-id: a006f7026288b7126dba58b31cac28e10ce0fed6
2021-10-29 12:42:01 -07:00
Philip Meier
57d4c6cf42 replace self.assertTrue(torch.allclose(..)) with self.assertEqual(…) (#63637)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/63565

Pull Request resolved: https://github.com/pytorch/pytorch/pull/63637

Reviewed By: malfet

Differential Revision: D30541266

Pulled By: mruberry

fbshipit-source-id: ab461949782c6908a589ea098fcfcf5c3e081ee6
2021-08-25 16:47:40 -07:00
Shen Li
1022443168 Revert D30279364: [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: revert-hammer

Differential Revision:
D30279364 (b004307252)

Original commit changeset: c1ed77dfe43a

fbshipit-source-id: eab50857675c51e0088391af06ec0ecb14e2347e
2021-08-12 11:45:01 -07:00
Zsolt Dollenstein
b004307252 [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: manual inspection & sandcastle

Reviewed By: zertosh

Differential Revision: D30279364

fbshipit-source-id: c1ed77dfe43a3bde358f92737cd5535ae5d13c9a
2021-08-12 10:58:35 -07:00
Rong Rong (AI Infra)
806010b75e [BE] move more unittest.main() to run_tests() (#50923)
Summary:
Relate to https://github.com/pytorch/pytorch/issues/50483.

Everything except ONNX, detectron and release notes tests are moved to use common_utils.run_tests() to ensure CI reports XML correctly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/50923

Reviewed By: samestep

Differential Revision: D26027621

Pulled By: walterddr

fbshipit-source-id: b04c03f10d1fe96181b720c4c3868e86e4c6281a
2021-01-25 07:23:09 -08:00
Pritam Damania
cdc56d0b6c Support c10::optional<Tensor> in custom C++ autograd function. (#37700)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37700

Certain autograd functions can have optional Tensor arguments. For
this purpose it would be nice to support c10::optional<Tensor> as an argument
for C++ autograd functions.

I've added the appropriate overload to ExtractVariables to ensure this works.
For an example, you can look at D21272807 in terms of how this is used.
ghstack-source-id: 103541789

Test Plan: waitforbuildbot

Differential Revision: D21363491

fbshipit-source-id: 0c8665e9bfe279e6b9ab84a889524fea11fa971c
2020-05-06 01:59:51 -07:00
Sebastian Messmer
0d7391f8b2 Test cases for custom ops with autograd (#31003)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31003

-
ghstack-source-id: 95663728

Test Plan: unit tests

Differential Revision: D18896189

fbshipit-source-id: d71f7678fff644536fe30452ee21a5a7df1f1f0b
2019-12-15 22:37:24 -08:00
Edward Yang
173f224570 Turn on F401: Unused import warning. (#18598)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**

This was requested by someone at Facebook; this lint is turned
on for Facebook by default.  "Sure, why not."

I had to noqa a number of imports in __init__.  Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it.  Left for future work.

Be careful!  flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments.  flake8-3 will
report an import unused; flake8-2 will not.  For now, I just
noqa'd all these sites.

All the changes were done by hand.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14687478

fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
2019-03-30 09:01:17 -07:00
Thomas Viehmann
4c3b76c402 Add std::string to the getTypePtr for JIT inference of custom op types (#13683)
Summary:
This allows custom ops to take string parameters.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13683

Differential Revision: D13017010

Pulled By: soumith

fbshipit-source-id: 7c40aca7f57ba3f8812d34bc55828ff362c69bd2
2018-11-10 12:58:53 -08:00
Will Feng
cdead5ace1 Enable CircleCI for Linux jobs (#12389)
Summary:
Changes in this PR:
1. Intermediate Docker image is shared from build stage to test stage through ECR, in order to fix the Caffe2 flaky CUDA tests.
2. There are ~7 Caffe2 operator tests that are only flaky in `caffe2_py2_gcc4_8_ubuntu14_04_test` on CPU. Disabling those tests on that config only, which is okay to do because we are still running those tests in other test jobs.

After this PR is merged, CircleCI will be running on master automatically, and will be running on PRs if the author rebased their PR onto the newest master (which we will ask all the authors to do when we switch off Jenkins for Linux).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12389

Differential Revision: D10224267

Pulled By: yf225

fbshipit-source-id: dd1a90a425c3d13b870d3d328cb301eee2e6e2cd
2018-10-08 17:09:37 -07:00
Peter Goldsborough
a0d4106c07 Integrate custom op tests with CI (#10611)
Summary:
This PR is stacked on https://github.com/pytorch/pytorch/pull/10610, and only adds changes in one file `.jenkins/pytorch/test.sh`, where we now build the custom op tests and run them.

I'd also like to take this PR to discuss whether the [`TorchConfig.cmake`](https://github.com/pytorch/pytorch/blob/master/cmake/TorchConfig.cmake.in) I made is robust enough (we will also see in the CI) orionr Yangqing dzhulgakov what do you think?

Also ezyang for CI changes
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10611

Differential Revision: D9597627

Pulled By: goldsborough

fbshipit-source-id: f5af8164c076894f448cef7e5b356a6b3159f8b3
2018-09-10 15:40:21 -07:00
Peter Goldsborough
71ddd837d7 Support custom ops in ScriptModule and tidy up test files (#10610)
Summary:
This PR adds support for using custom ops in ScriptModules, the last step for our custom op strategy. You can now write

```
import torch

torch.ops.load_library('libcustom_ops.so')

class Model(torch.jit.ScriptModule):
    def __init__(self):
        super(Model, self).__init__()

    torch.jit.script_method
    def forward(self, input):
        return torch.ops.custom.op(input) + 1

model = Model()
model.forward(torch.ones(5)) # Works
model.save("model.pt") # Works
model = torch.jit.load("model.pt") # Works
```

You can then load the `model.pt` in C++ and execute its `forward` method!

Missing for this was the fact that the script compiler didn't know to convert `ops.custom.op` into a `BuiltinFunction` which then emits a function call. For this I came up with  the following strategy inside `torch/csrc/jit/scrip/init.cpp`:

1. When we access `torch.ops`, we return a `CustomOpValue` (subclass of `PythonValue`), whose purpose is only to return a `CustomOpNamespaceValue` (subclass of `PythonValue`) whenever something under it is accessed.
2. `CustomOpNamespaceValue` will then for each field accessed on it return a `BuiltinFunction`.

This doesn't reduce performance for any calls that are not to `torch.ops` (as opposed to inspecting every function call's name the call site, for example).

I also had to fix `BuiltinFunction` to not assume the namespace is always `aten::`.

A lot of other changes are just tidying up the Python and C++ test harness before I integrate it in CI.

zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10610

Differential Revision: D9387832

Pulled By: goldsborough

fbshipit-source-id: c00f431db56c7502a66fe1f813fe78067f428ecb
2018-08-21 18:41:27 -07:00