Commit Graph

126 Commits

Author SHA1 Message Date
Tanvir Zaman
25e2578967 Fix bytes_written and bytes_read (#64244)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64244

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64040

In operator cost inference functions, in many places we are using sizeof(x.data_type()). Since data_type() returns a 32 bit integer from [this enum](https://www.internalfb.com/code/fbsource/[15e7ffe4073cf08c61077c7c24a4839504b964a2]/fbcode/caffe2/caffe2/proto/caffe2.proto?lines=20), we are basically always getting 4 for sizeof(x.data_type()) no matter what actual data type x has. Big thanks to Jack Langman for specifically pointing to this bug.

We would instead use the size in bytes based on actual data type.

Test Plan:
Added unit tests BatchMatMulMemCostTest:

buck test //caffe2/caffe2/fb/fbgemm:batch_matmul_op_test -- BatchMatMulMemCostTest

Extended existing unit test test_columnwise_concat for different data types:

buck test //caffe2/caffe2/python/operator_test:concat_op_cost_test -- test_columnwise_concat

Reviewed By: CrazySherman

Differential Revision: D30656698

fbshipit-source-id: d42c0c9a0c5b0ddc5dba39e4994f1f85a5e618bf
2021-09-01 13:35:41 -07:00
Alban Desmaison
c3464e78a4 Revert D30561459: Fix bytes_written and bytes_read
Test Plan: revert-hammer

Differential Revision:
D30561459 (e98173ff34)

Original commit changeset: 976fa5167097

fbshipit-source-id: 43f4c234ca400820fe6db5b4f37a25e14dc4b0dd
2021-08-30 14:59:54 -07:00
Tanvir Zaman
e98173ff34 Fix bytes_written and bytes_read (#64040)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64040

In operator cost inference functions, in many places we are using sizeof(x.data_type()). Since data_type() returns a 32 bit integer from [this enum](https://www.internalfb.com/code/fbsource/[15e7ffe4073cf08c61077c7c24a4839504b964a2]/fbcode/caffe2/caffe2/proto/caffe2.proto?lines=20), we are basically always getting 4 for sizeof(x.data_type()) no matter what actual data type x has. Big thanks to Jack Langman for specifically pointing to this bug.

We would instead use the size in bytes based on actual data type.

Test Plan:
Added unit tests BatchMatMulMemCostTest:

buck test //caffe2/caffe2/fb/fbgemm:batch_matmul_op_test -- BatchMatMulMemCostTest

Extended existing unit test test_columnwise_concat for different data types:

buck test //caffe2/caffe2/python/operator_test:concat_op_cost_test -- test_columnwise_concat

Differential Revision: D30561459

fbshipit-source-id: 976fa5167097a35af548498480001aafd7851d93
2021-08-30 12:57:31 -07:00
Scott Wolchok
0a66d5b325 [PyTorch] Remove unnecessary iostream includes in headers (#61500)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61500

libstdc++ defines a static variable called `std::__ioinit` in iostream that adds global constructor size overhead to each translation that includes iostream. To reduce the size overhead from that, we can often include ostream instead.
ghstack-source-id: 136163529

Test Plan: buildsizebot some mobile apps

Reviewed By: dhruvbird

Differential Revision: D29648016

fbshipit-source-id: 9c3139712c71248513cc5032d21e77f3ecbae8fe
2021-08-19 18:54:51 -07:00
Nikita Shulga
a9b0a921d5 Disable avoid-non-const-global-variables lint check (#62008)
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`

All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`;  do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008

Reviewed By: driazati, r-barnes

Differential Revision: D29838584

Pulled By: malfet

fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
2021-07-22 18:04:40 -07:00
Feng Shi
b4a4a8434d [1/n]support double for Caffe2 ScatterWeightedSum (#60402)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60402

Add float64 data type support for ScatterWeightedSum for cases that 10^7 precision is not sufficient.

Test Plan: buck test caffe2/caffe2/python/operator_test:sparse_ops_test -- testScatterWeightedSum

Reviewed By: jianyuh

Differential Revision: D29190324

fbshipit-source-id: 871a60744694e901a2c7685a67350860745d6729
2021-06-29 14:17:04 -07:00
Nikita Shulga
4cb534f92e Make PyTorch code-base clang-tidy compliant (#56892)
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os

def get_compiled_files_list():
    import json
    with open("build/compile_commands.json") as f:
        data = json.load(f)
    files = [os.path.relpath(node['file']) for node in data]
    for idx, fname in enumerate(files):
        if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
            files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
    return files

def run_clang_tidy(fname):
    check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
    changes = check_output(["git", "ls-files", "-m"])
    if len(changes) == 0:
        return
    check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])

def main():
    git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
    compiled_files = get_compiled_files_list()
    for idx, fname in enumerate(git_files):
        if fname not in compiled_files:
            continue
        if fname.startswith("caffe2/contrib/aten/"):
            continue
        print(f"[{idx}/{len(git_files)}] Processing {fname}")
        run_clang_tidy(fname)

if __name__ == "__main__":
    main()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892

Reviewed By: H-Huang

Differential Revision: D27991944

Pulled By: malfet

fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
2021-04-28 14:10:25 -07:00
Brandon Lin
4a581ba6c2 Implement LengthsToOffsets operator in Caffe2 (#46590)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46590

This operator is very similar to LengthsToRanges but doesn't pack the offsets next to the original lengths.

Reviewed By: yf225

Differential Revision: D24419746

fbshipit-source-id: aa8b014588bb22eced324853c545f8684086c4e4
2020-10-29 07:03:34 -07:00
John Lundell
3883cdb87e TensorInferenceFunction checks
Summary: Added OpSchema::NeedsAllInputShapes wrapper around the TensorInferenceFunction to fix exception when referencing the dim array when the input shape was unknown. There may be other operators that could use a similar change, these are just the ones that was causing InferShapesAndTypes throw an exception for my examples.

Test Plan: Tested with notebook n352716

Differential Revision: D23745442

fbshipit-source-id: d63eddea47d7ba595e73c4693d34c790f3a329cc
2020-10-11 16:08:58 -07:00
Nikita Shulga
671160a963 Revert D23557576: Revert D23519521: [dper3] replace LengthsGather lowlevel module's PT implemetnatio to use caffe2 op
Test Plan: revert-hammer

Differential Revision:
D23557576

Original commit changeset: 33631299eabe

fbshipit-source-id: 704d36a16346f047b30e2da8be882062135f8617
2020-09-06 01:50:43 -07:00
Nikita Shulga
4fc29e9c43 Revert D23519521: [dper3] replace LengthsGather lowlevel module's PT implemetnatio to use caffe2 op
Test Plan: revert-hammer

Differential Revision:
D23519521 (8c64bb4f47)

Original commit changeset: ed9bd16a8af3

fbshipit-source-id: 33631299eabec05a1a272bfd0040d96203cf62a0
2020-09-05 20:43:04 -07:00
Ashish Shenoy
8c64bb4f47 [dper3] replace LengthsGather lowlevel module's PT implemetnatio to use caffe2 op
Summary: Use a more efficient C++ implementation in a caffe2 op to get rid of control flow statements here.

Test Plan:
- Ran `buck test dper3/dper3/modules/low_level_modules/tests:single_operators_test`
- Ran `buck-out/gen/dper3/dper3_models/experimental/pytorch/ads_model_generation_script.par --model_type="inline_cvr_post_imp" --model_version="april_2020" --gen_inference_model` and observed files getting generated:
```
[ashenoy@devbig086.ash8 ~/fbsource/fbcode] ls -l /tmp/ashenoy/inline_cvr_post_imp_april_2020/
total 278332
-rw-r--r--. 1 ashenoy users 71376941 Sep  3 23:10 serialized_inline_cvr_post_imp_april_2020_model_inference.pt
-rw-r--r--. 1 ashenoy users 71437424 Sep  3 22:09 serialized_inline_cvr_post_imp_april_2020_model_inference_shrunk.pt
-rw-r--r--. 1 ashenoy users    14952 Sep  3 22:38 serialized_inline_cvr_post_imp_april_2020_model_io_metadata_map.pt
-rw-r--r--. 1 ashenoy users    14952 Sep  3 21:42 serialized_inline_cvr_post_imp_april_2020_model_io_metadata_map_shrunk.pt
-rw-r--r--. 1 ashenoy users 67001662 Sep  3 22:38 serialized_inline_cvr_post_imp_april_2020_model_main.pt
-rw-r--r--. 1 ashenoy users 67126415 Sep  3 21:42 serialized_inline_cvr_post_imp_april_2020_model_main_shrunk.pt
-rw-r--r--. 1 ashenoy users  3945257 Sep  3 22:34 serialized_inline_cvr_post_imp_april_2020_model_preproc.pt
-rw-r--r--. 1 ashenoy users  4077266 Sep  3 21:37 serialized_inline_cvr_post_imp_april_2020_model_preproc_shrunk.pt
```
- Ran `buck-out/gen/dper3/dper3_models/experimental/pytorch/ads_model_generation_script.par --model_type="ctr_mbl_feed" --model_version="april_2020" --gen_inference_model` and observed model files getting generated:
```
[ashenoy@devbig086.ash8 ~/fbsource/fbcode] ls -l /tmp/ashenoy/ctr_mbl_feed_april_2020/
total 170304
-rw-r--r--. 1 ashenoy users  2641870 Sep  3 23:06 ctr_mbl_feed_april_2020_prod_eval_training_options
-rw-r--r--. 1 ashenoy users  2641870 Sep  3 23:06 ctr_mbl_feed_april_2020_prod_train_training_options
-rw-r--r--. 1 ashenoy users 42225079 Sep  3 23:59 serialized_ctr_mbl_feed_april_2020_model_inference.pt
-rw-r--r--. 1 ashenoy users 42576708 Sep  3 22:33 serialized_ctr_mbl_feed_april_2020_model_inference_shrunk.pt
-rw-r--r--. 1 ashenoy users    11194 Sep  3 23:29 serialized_ctr_mbl_feed_april_2020_model_io_metadata_map.pt
-rw-r--r--. 1 ashenoy users    11194 Sep  3 22:05 serialized_ctr_mbl_feed_april_2020_model_io_metadata_map_shrunk.pt
-rw-r--r--. 1 ashenoy users 39239139 Sep  3 23:29 serialized_ctr_mbl_feed_april_2020_model_main.pt
-rw-r--r--. 1 ashenoy users 39250842 Sep  3 22:05 serialized_ctr_mbl_feed_april_2020_model_main_shrunk.pt
-rw-r--r--. 1 ashenoy users  2839097 Sep  3 23:24 serialized_ctr_mbl_feed_april_2020_model_preproc.pt
-rw-r--r--. 1 ashenoy users  2944239 Sep  3 22:01 serialized_ctr_mbl_feed_april_2020_model_preproc_shrunk.pt
```

Reviewed By: houseroad

Differential Revision: D23519521

fbshipit-source-id: ed9bd16a8af3cca3a865d9614d67d07f01d8b18a
2020-09-04 21:19:53 -07:00
Dmytro Ivchenko
ba5137ea9d [pyper] Use Caffe2 ops
Summary: Replace inefficient python code w/ calls to Caffe2 operators

Test Plan: existing unit tests for modified operators

Reviewed By: alyssawangqq

Differential Revision: D21270962

fbshipit-source-id: cb11133be4eff80a24d1358fd7bb7d354075dd8b
2020-05-01 12:06:52 -07:00
Devin He
b46fddf506 idtt + zch distributed inference (#35763)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35763

Adds inference function and test for ScatterAssign

Test Plan: Updated unit test

Reviewed By: yyetim, shunting1986

Differential Revision: D20501079

fbshipit-source-id: 7ec6ef0127a151250dd699c90c2b80c35cfb1fe4
2020-04-03 12:09:34 -07:00
Tristan Rice
d4f3bc7f8e [dt] [caffe2] add/fix shape inference for StumpFunc, SliceGradient and ResizeLike (#35430)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35430

This fixes and adds tests for several commonly used operators.

There's some formatting differences due to running clang-format on one of the files.

Test Plan: buck test //caffe2/caffe2/fb/operators:hypothesis_test //caffe2/caffe2/python/operator_test:utility_ops_test //caffe2/caffe2/python/operator_test:concat_split_op_test

Reviewed By: yyetim

Differential Revision: D20657405

fbshipit-source-id: 51d86d0834003b8ac8d6acb5149ae13d7bbfc6ab
2020-03-26 17:50:32 -07:00
Lu Fang
c89340f068 Extend HasElements to support multiple inputs (#28717)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28717

Make HasElements support multiple inputs. Any input has element, then return true.

Test Plan: to be added

Reviewed By: BIT-silence

Differential Revision: D17972759

fbshipit-source-id: 3ecdea74a30fcfaaa6490fef1debc6cde68db922
2019-10-27 23:00:07 -07:00
hexiaoting
34536e207a Fix: convert Onnx DynamicSlice operator with 4 inputs to caffe2 fa… (#20846)
Summary:
I reported an issue [https://github.com/pytorch/pytorch/issues/20743](url)
and make this pull request for it
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20846

Reviewed By: zrphercule

Differential Revision: D15569135

Pulled By: houseroad

fbshipit-source-id: 96a2c818ef666a7d79b96decfa347d7154b34d5c
2019-06-19 00:09:15 -07:00
Lara
8d7a025703 ONNX Export Scatter
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18543

Differential Revision: D14658639

Pulled By: houseroad

fbshipit-source-id: 5d7821b54d2fc93f71120155adf328897d13aff6
2019-05-22 13:31:54 -07:00
Lara Haidar-Ahmad
001cffed9d ONNX Export IsNan op
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17698

Reviewed By: zrphercule

Differential Revision: D14470646

Pulled By: houseroad

fbshipit-source-id: d3e6adc83c4f9fa288c5fe0ae4c6af71fdd47905
2019-03-15 12:19:03 -07:00
Dmytro Dzhulgakov
5a2b2aa6af Remove calls to CopyFrom that can be sync (#13205)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13205

CopyFrom without context argument does the sync copy on the current gpu - exactly what most of the places need.

This diff kills about 60% of CopyFrom usages. Most common pattern is gpu->cpu copy with further FinishDeviceComputation - the latter can be just killed.

Reviewed By: Yangqing

Differential Revision: D11236076

fbshipit-source-id: eb790ca494dfc5d5e3a7d850b45d6f73221bb204
2018-10-29 13:57:42 -07:00
Jerry Zhang
537d671829 Renaming size() to numel() - 4/6
Summary: Codemod generated with clangr shard mode, 50 files per diff

Reviewed By: li-roy

Differential Revision: D10866391

fbshipit-source-id: 3badc4e86edaac376918fca8d09dbfa396ac3a2c
2018-10-26 16:47:36 -07:00
Yangqing Jia
da73d709a8 Remove unsafecoalesce op (#12897)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12897

UnsafeCoalesce Op is used during memonger days when we try to coalesce operators
for better efficienct computation kernels. It creates a little bit of an unsafe
underlying memory storage pattern.

With the new tensor unification I am not sure if it is still safe for us to do
so, so I propose we delete it for the sake of safety.

Reviewed By: bddppq, ilia-cher

Differential Revision: D10475980

fbshipit-source-id: b1a838c9f47d681c309ee8e2f961b432236e157e
2018-10-22 09:42:26 -07:00
Eli Amesefe
12efef166a Split out copy_op from utility_ops (#11470)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11470

In order to reduce build sizes, we are identifying files that can be split up into smaller units, allowing us to only include the ops we need.

Reviewed By: orionr, ajtulloch

Differential Revision: D9725819

fbshipit-source-id: def1074a33dffe99bd6a7e6e48aa9e5be3d04a6a
2018-09-12 16:25:48 -07:00
Martin Schatz
8da081f7a5 Add cost inference to ConvGradient and WeightedSum operators (#10744)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10744

As title

Reviewed By: jspark1105

Differential Revision: D9436387

fbshipit-source-id: 578b7a6d98843d57e3f8f4c564727e9cadbedd78
2018-09-05 13:56:05 -07:00
Mingzhe Li
e0dbb91060 Windows raw string fix (#10998)
Summary:
Breaking this out of https://github.com/pytorch/pytorch/pull/8338

mingzhe09088's fix of the docstrings for Windows builds. Unfortunately some versions of Windows seem to try and parse the `#` inside the string as a pre-processor declaration. We might need to change this to something else later, but want to get this landed first.

cc mingzhe09088 Yangqing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10998

Reviewed By: mingzhe09088

Differential Revision: D9557480

Pulled By: orionr

fbshipit-source-id: c6a6237c27b7cf35c81133fd9faefead675a9f59
2018-08-29 11:40:08 -07:00
Jerry Zhang
c9d337f436 Split IsEmptyOp (#10918)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10918

att

Differential Revision: D9515040

fbshipit-source-id: 53c05c160ba5dda92104aadc2e40801519a2cd28
2018-08-28 10:52:28 -07:00
Summer Deng
6667d55e73 Disallow input filler for GatherRangesOp (#10592)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10592

Filter out GatherRanges ops

Reviewed By: highker

Differential Revision: D9365220

fbshipit-source-id: e21ab00dc9e553c9aaf172e1241206e0c0a7a23d
2018-08-16 21:39:09 -07:00
James Sun
85408e744f Move filler interface to operator schema (#10522)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10522

Move filler interface to operator schema to avoid extra code for
caffe2 mobile.

Reviewed By: dzhulgakov

Differential Revision: D9312940

fbshipit-source-id: 77fb2406f0c6b171a1912a207e05e36da50c6966
2018-08-15 12:40:18 -07:00
Jerry Zhang
9eeb4e17af Split gather op for easier smaller code size (#9916)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9916

att

Differential Revision: D8961085

fbshipit-source-id: 39a9838647dc97611e77beb0607c4655de727ada
2018-07-27 17:15:33 -07:00
Jerry Zhang
aebf3b47ae Remove template parameter from Tensor (#9939)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9939

Pull Request resolved: https://github.com/facebookresearch/weakly-supervised-action-detection/pull/13

Pull Request resolved: https://github.com/pytorch/translate/pull/166

Pull Request resolved: https://github.com/pytorch/pytorch/pull/9125

Closes https://github.com/pytorch/pytorch/pull/9125

Use inheritance for polymorphism, and remove template parameter
This is to change the templating in call sites, the core implementations will change later

Before Caffe2 Tensor class was compile-time fixed to bind to a particular device/context. With this change, we're making it a runtime property (stored inside the tensor), but preserve the same semantics. For example, one has to specify device type in order to create a Tensor - there are no uninitialized tensors. More specifically the changes are:

1. We added an extra argument *DeviceType* to most of the constructors of the tensor, e.g. (Tensor(DeviceType type)),
2. Semantics of constructor Tensor(const Tensor<SrcContext>& src, ContextForCopy* context); is changed, in this constructor, the second context is passed in to enable us to call the templated Copy function, it could be in a different context as source and target previously, now we'll enforce that the context should have same device type as src, if it is provided.
3. To preserve 'get-or-construct' semantics of Blob, we added specialized getter Blob::GetMutableTensor that verifies both that Blob contains a Tensor and that it's of a correct type
4. Specifically, Tensor type is not default-constructible any more (as we don't have unknown device tensors) and thus some of the code handling STL containers needs to change

Note: Some changes are postponed just to keep this diff a bit smaller. Please see `TODO`s.

Reviewed By: ezyang, houseroad

Differential Revision: D9024330

fbshipit-source-id: e0b8295d2dc6ebe2963383ded5af799ad17164ba
2018-07-27 10:56:39 -07:00
Jerry Zhang
969b62f276 Revert D8121878: Remove template parameter from Tensor
Differential Revision:
D8121878

Original commit changeset: 4a5e9a677ba4

fbshipit-source-id: d8e2c0bb145b52fbcca323b22d1d3346f0b3249e
2018-07-26 14:02:04 -07:00
Jerry Zhang
cd5adc7b5f Remove template parameter from Tensor (#13)
Summary:
Pull Request resolved: https://github.com/facebookresearch/weakly-supervised-action-detection/pull/13

Pull Request resolved: https://github.com/pytorch/translate/pull/166

Pull Request resolved: https://github.com/pytorch/pytorch/pull/9125

Closes https://github.com/pytorch/pytorch/pull/9125

Use inheritance for polymorphism, and remove template parameter
This is to change the templating in call sites, the core implementations will change later

Before Caffe2 Tensor class was compile-time fixed to bind to a particular device/context. With this change, we're making it a runtime property (stored inside the tensor), but preserve the same semantics. For example, one has to specify device type in order to create a Tensor - there are no uninitialized tensors. More specifically the changes are:

1. We added an extra argument *DeviceType* to most of the constructors of the tensor, e.g. (Tensor(DeviceType type)),
2. Semantics of constructor Tensor(const Tensor<SrcContext>& src, ContextForCopy* context); is changed, in this constructor, the second context is passed in to enable us to call the templated Copy function, it could be in a different context as source and target previously, now we'll enforce that the context should have same device type as src, if it is provided.
3. To preserve 'get-or-construct' semantics of Blob, we added specialized getter Blob::GetMutableTensor that verifies both that Blob contains a Tensor and that it's of a correct type
4. Specifically, Tensor type is not default-constructible any more (as we don't have unknown device tensors) and thus some of the code handling STL containers needs to change

Note: Some changes are postponed just to keep this diff a bit smaller. Please see `TODO`s.

Reviewed By: xw285cornell

Differential Revision: D8121878

fbshipit-source-id: 4a5e9a677ba4ac82095df959851a054c81eccf81
2018-07-26 10:25:23 -07:00
Orion Reblitz-Richardson
7f33ec55b2 Fix Eigen issue on OS X with CUDA and nvcc compile (#9350)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9350

Re-apply #9270

Breaking this out of #8338

This takes care of the Eigen failure we saw on Mac CUDA builds when BUILD_CAFFE2 and BUILD_ATEN were removed. Fix is to isolate Eigen from headers included by cu files and processed by nvcc. This was worked on with smessmer.

Reviewed By: mingzhe09088

Differential Revision: D8794431

fbshipit-source-id: de656334af46c697802073f8e8d9a6aeb9ca65a7
2018-07-11 14:00:05 -07:00
Mike Kelley
8e6e8098ce Revert D8768025: [pytorch][PR] Fix Eigen issue on OS X with CUDA and nvcc compile
Differential Revision:
D8768025

Original commit changeset: 5b34017aeb67

fbshipit-source-id: 6ec892ff483bb9d966eb7138eadc77443972c8f8
2018-07-10 10:24:43 -07:00
Orion Reblitz-Richardson
bbeae24145 Fix Eigen issue on OS X with CUDA and nvcc compile (#9270)
Summary:
Breaking this out of #8338

This takes care of the Eigen failure we saw on Mac CUDA builds when BUILD_CAFFE2 and BUILD_ATEN were removed. Fix is to isolate Eigen from headers included by cu files and processed by nvcc. This was worked on with smessmer.

cc mingzhe09088 smessmer BIT-silence Yangqing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9270

Reviewed By: mingzhe09088

Differential Revision: D8768025

Pulled By: orionr

fbshipit-source-id: 5b34017aeb67e35a1b5938d962181ccd4cd37591
2018-07-10 09:25:42 -07:00
Orion Reblitz-Richardson
edb88b5f3a
Update from Facebook (#8887)
* add opencl + fpga context

adds an opencl context inside caffe2/fb which can be used for fpga access

* [Caffe2] Force tensor inference checks to be triggered during testing

We've started to rely on TensorInference functions more for different analysis.  This diff ensures that the TensorInference function's result matches what is expected from the definition of the operator.

* Enable building //caffe2:torch with @mode/opt

In @mode/opt, python runs out of a PAR, which breaks a lot of
assumptions in the code about where templates/ folders live relative
to __file__. Rather than introduce hacks with parutil, I simply turn
template_path into a parameter for all the relevant functions and
thread it through from the top level.

* [Caffe2] Fix cost models for DotProduct and Div.  Update Tensor Inference for dot product

As title.  DotProduct states that output is a 1-D tensor (https://caffe2.ai/docs/operators-catalogue.html#dotproduct) though code suggests it is either 0- or 1-D depending on inputs.  TensorInference defined to support implementation.

* [SG-MoE] Add an option to make the experts NOT as components

* [nomnigraph] Rename and fixup convertToNeuralNetOperator API

This will make things a bit cleaner

* no longer symlink THNN.h and THCUNN.h

* forced decoder network (onnx export)

Closes https://github.com/pytorch/translate/pull/95

Add networks in ensemble_export.py to create a forced decoding network from PyTorch NMT checkpoints. This network takes an arbitrary numberized (source, target) pair and returns the model score for the translation, including penalties.

Vocabulary reduction networks are also supported, but note that target indices which are not in the possible_translation_tokens generated for the source input will be trea

* Revert schema change to fix production models

Revert schema change to fix production models

* MockLogDeviceReader - rebase on FIX

# Goal

1), Build a make_mock_log_device_reader using make_mock_reader

2), Replace the real log_device_reader here: https://fburl.com/raihwf1p

# Log by D8151734

Real log_device_reader:
```
I0529 20:29:05.373108 954994 tensor.h:839] Tensor print_net/log of type std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >. Dims: (): read_net/ParseOpenTrainingRow:0
I0529 20:29:05.373244 954994 tensor.h:839] Tensor read_net/ParseOpenTrainin

* [C2/D2][1/n]: Nonnegative-Constrained Optimization -- log barrier

implement log barrier as a regularization method

* Add teacher weight screening.

Add teacher weight sceening according to teacher labels. If teacher label is zero, we do not use the distill loss in the objective function.

* Add NormalizerContext

See task for more detail. This implementation is a copy of what exists for RegularizerContext except for how the parameters are defined in the model_definition thrift file.

I'll try an alternative implementation which overrides the default arguments of functions instead like for argscopes in tensorflow.

https://github.com/pytorch/pytorch/compare/master...MaximeBoucher:update-from-facebook-0939578c068c?expand=1

* Adding cosine similarity option in dot processor

Add pairwise cosine similarity option in dot product.
Add an option to concate dot product and cosine similarity.
Add test cases.

* [nomnigraph][redo] Concat elim for sparseNN

Same as D7962948, which was reverted because Operator Schema was not
defined

* [pytorch] Revert pytorch/pytorch#7918 'Release GIL when copying to shared memory', breaks ASAN

Revert this pytorch diff that breaks ASAN when running Filament in dev mode; in opt mode it gives "bad file descriptor" errors. Looks like a race when copying tensors to shared memory in multiple mp.Queue's (which spawn separate threads).

https://github.com/pytorch/pytorch/pull/7918/files

* [nomnigraph][mobile] Enable nomnigraph by default, use -Oz on nomnigraph related code to reduce code size

enables nomnigraph and reduces codesize

* [Warmup] Allow both offline incremental training and online training

Change plan name on saving side and reading side to support both training type

This diff depends on D8128530 and D8168651.

* Revert D7802642: [Warmup] Allow both offline incremental training and online training

This reverts commit afc213cf9b36cecf75333a788391c4d09f4afccc

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* Add legacy grad logic to fix div op on old graphs.

Add legacy grad logic to fix div op on old graphs.

* Correctly propagate operator failures

Propagate errors from operators that throw exceptions and return false

* Revert D8374829: [caffe2][nomnigraph][redo] Concat elim for sparseNN

This reverts commit 6dda028c463e54bb5c32188bbbe9202107e188a5

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [Caffe2] Added extra_info to core.DeviceOption(), enforced extra_info to be inherited in scope.DeviceScope

extra_info is a newly defined field in DeviceOption proto. This diff added extra_info to the core.DeviceOption().  And, In scope.DeviceScope(), this diff enforce the new scope to inherit the extra_info from old scope.

* [opt] hgdirsync wasn't enabled, merge diverged code

Here's the damage, P59732616 basically xplat was left behind but had
the change from assert to CAFFE_ENFORCE

* OMP parallelism over RoIs for RoIAlign op

Simpler to parallelize over RoIs. Shouldn't affect other uses as it relies on
the number of OMP threads set during startup.

PR: https://github.com/pytorch/pytorch/pull/8562

* Use int64_t for shape in FillOps

to avoid overflow of int32

* Implement Rotated RoIAlign op

Based on Rotated RPNs as explained in https://arxiv.org/abs/1703.01086.
The idea is simple - orientation/angle is added as an RPN
anchor parameter and then the angle is further regressed similar to bbox
coords. There are some additional changes related to NMS and IoU, but besides
that it's a direct extension to Faster-RCNN. Further details in https://fb.quip.com/sZHlA1iMfWPZ.

RoIs are represented in [center_x, center_y, width, height, angle] format.
`angle` repre

* Rotated RoIAlign op CUDA forward implementation

CUDA forward impl for D8415490

* RoIAlignRotated op CUDA backward pass implementation

TSIA

* All remaining fixes to eliminate process_github.sh

Most of this diff has already been reviewed separately, except for the parts relating to _thnn/utils.py and _utils._internal.py

remove skipIf(True, 'Fbcode') line from process_github.sh

replace sed of cpp file with #ifdef to control cudnnDestroy use

undo sync-time deletion of .gitattributes, remove process_github.sh

switch to using _utils._internal rather than try-import-except

This diff also fixes the open-source bug where rebuilds have

* Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training"

Original commit changeset: 7707d2efe60e The original diff is backout becuase the online trainer package is backed out. This code would only work with new online trainer package

* [easy] improve error log in adagrad op

as title

* re-allow use of thnn_h_path

This fixes cffi usage in OSS

* [4/4] [tum] paralyzing layerNorm for GPU full sync

as title

* add compile=False to pytorch tests, remove hack with pyc

* Add shape and type inference for RowWiseArgMax operator

See title

* Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training"

This reverts commit 78167eeef0af16b60f72c82f9dcdda9b41b4dcbd

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [fix-flaky-test] mock_hive_reader_test flaky, because GlobalCounter collects local counts intervally

# Problem

`MockHiveReader` uses `GlobalCounter` to limit `max_examples`.

GlobalCounter on server node collect local counts from worker nodes every 1 sec.

This 1 sec delay makes it impossible to limit exactly to the `max_examples`, it will definitely exceed `max_examples`.

# Plan

Given,
```
Expected num_examples = max_examples + num_examples/sec (Read Speed) x 1 sec (GlobalCounter Sync Int

* [Caffe2] Fix FCGradient cost inference.  Prevent overflow in cost inference

FCGradient missed a factor 2 in the `num_outputs == 3` case.  Overflow was occurring with flop calculation for FC.  Changed types to `uint64_t` to prevent future problems.

* Fix binary ops with empty inputs

Fix binary ops with empty inputs

* Support the filling of input blob with provided data

as title for Biz Integrity case

* Back out "Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training""

Original commit changeset: 30c55dd38816 Original diff is reverted due to introducing bad integration test. Fixed the integration test.

* [c2][easy] improve pack ops error loggings

as desc.

* Add ShapeTypeInference for LpNorm operator

As desc

* Shard test_nn to reduce runtime for each test target

Closes https://github.com/pytorch/pytorch/pull/8793

The current test_nn would time out and be disabled in GreenWarden, and we need to have an option to split it up in order to pass the stress test. Right now GreenWarden roughly allows running 100 test cases in test_nn before timing out, and here we have an option to divide test_nn into 30 shards (with ~40 tests in each shard) to allow for some test suite growth in the future.

* Change default caffe2_streams_per_gpu to 1

* Remove IN_SANDCASTLE from common.py and test_nn.py

We prefer to disable the failing tests through Sandcastle UI instead.

* Add a new class for an updated prof_dag.proto

This diff contains:
- An updated prof_dag.proto that contains blob profiles.
- A class to deserialize this information (serialization is in a follow up diff)
- Update to separate profiling information from NeuralNet (and use it as part of the class above).
- Unit tests

* Lambdarank for SparseNN

This diff adds a lambda_rank_layer for SparseNN.
 changes include
1) Adds support for multi sessions in c2 op
2) Adds support for two different loss functions in c2 op
3) Unit tests for op

* Revert D8586950: Back out "Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training""

This reverts commit 012220ed63eccc35659a57b31d16a3625da6317b

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [easy] A few fixups to multithread predictor benchmark

(1) support perf on T6 server
(2) remove dead code

* fix a bug about the map size

as title

* Fix reduce sum on in-place case.

Fix reduce sum on in-place case.

* [Warmup] Reland reverted diff Allow both offline incremental training and online training

Closes https://github.com/pytorch/pytorch/pull/8827

fix net transform integration test. Allow offline and online trainer to coexist D7802642.

* Add StoreHandlerNotAvailableException

Add an exception for a store that is not available or has been
deleted.

* Use exception handling for fault tolerance, missing KV store

Remove status blobs to communication ops so that exceptions propagate on
failure.

* [C2/D2][2/n]: Nonnegative-Constrained Optimization -- bounded grad proj

for simple bounded constrained optimization, incl non-negative box constraints.

* [GanH]: Adaptive Weighting with More Estimations

With implemented postivity optimization, we now learn adaptive weights with different
parameterizations.

This improves parameter estimation and training stability.

* Revert some changes for landing

* Remove AutoNoGIL in StorageSharing

* Temporarily disable net_tests

* Revert "[Caffe2] Force tensor inference checks to be triggered during testing"

This reverts commit 67ef05c22b2f71b4a489695384932f968384a2a4.

* Revert "Fix reduce sum on in-place case."

This reverts commit 6cb8a8e1b3db7b6d20941b0053e3f3836068eb64.

* Revert "Revert "Fix reduce sum on in-place case.""

This reverts commit 130a257c0893dc09f4bd6e6a45d112261807fd2c.
2018-06-26 14:55:48 -07:00
Matthew Inkawhich
b10c94b507 Update operator documentation with markdown descriptions and interfaces (#8085)
* Update operator documentation with markdown descriptions and interfaces

* Added rest of updated operator documentation to source files

* Commiting local changes for rebase

* fixed bracket typo in sqrt_op.cc file

* Added updated markdown documentation to remaining completed ops
2018-06-15 19:02:24 -04:00
Nathan Inkawhich
38dbe6e605 Updates to caffe2 operator documentation (#7917)
* Significant updates to the operator docs in prep for merge
2018-05-29 14:38:56 -07:00
Sebastian Meßmer
49f8581745
Update from facebook (#7855)
* [mpscnn] MPSCNNChannelShuffle

att

* [Easy] Adding tags as an argument to the functional layer

Without it "tags" would be added as an argument to the operator.

The change here is based on the assumption that there is no operator that takes "tags" as an argument.

* Fix locally_connected_op schema check.

Fix locally_connected_op schema check.

* [C2] Add TypeAndShape inference for few more operators

As desc

* [c2] Shape inference should support 0 as dimension

Tensors can have 0 in their dimension.

* Make MockHiveReader loop over and support max_examples

Replace DatasetReader with RandomDatasetReader.

So that Mock Hive Reader can simulate a large data input using a small sample file as source.

* Utility function to wipe cache between benchmark runs

Caffe2 benchmark does not wipe out cache between runs, and this potentially creates an unrealistically optimistic picture of performance. This diff adds utility function to wipe out the cache.

* Allow caffe2 GlobalInit to be invoked multiple times

Allow caffe2 GlobalInit to be invoked multiple times. Will re-parse gflags and update logging levels on successive invocations, but will not re-run init functions or perform other one-time initialization.

* Add Caffe2 GlobalInitIsCalledGuard to base net and operator classes

Warn if caffe2's GlobalInit function has not been invoked before creating an operator or net object. This is based on discussion here: https://fb.quip.com/kqGIAbmK7vNG

* Rethrow current exception on failure

Rethrow current exception instead of copy constructing a new one on op failure.

* Make `clone()` return subclass of List/Struct

`clone()` is not working correctly when we subclass those classes

* Wipe the cache before the net run

the util function is copied from D7409424
will rebase once D7409424 is landed.

* [Caffe2] [Mobile] Support utils/cast.h::GetCastDataType with LITE_PROTO builds

* Correct includes

async_polling include -> async_base include

* Prepare execution flags for executor migration

Making async_scheduling aware of underlying net type to prepare for executor
migration

* Add operator level observers into async executor

Adding operator level observers into RunAsync operators' calls

* Cleanup TEST_Benchmark

Remove duplicate code and provide default implementation in NetBase

* [C2] Fix type and shape inference for binary comparison ops

As desc.

* Add GlobalInit to predictor to ensure initialization is always done before prediction

FACEBOOK:

Redo D7651453 the correct way.

Now use a static variable for the arguments passed to GLog

* Remove spammy log message

This method is currently used in various places inside Caffe itself.

* Disable events for operators inside a chain

We don't need to use events in operators within a chain because the chain is
always scheduled on a single stream, keeping only first and last event for
scheduling purposes

* Ensure correct finish run order

In rare cases we might call finishRun and trigger net's destruction while
another worker is still holding shared_ptr to a thread pool, that can cause
thread pool destruction from within a worker thread in case no other nets are
using the pool. This diff fixes the order of calling finishRun and also changes
pool() to return raw pointer to keep pool's ownership within the net

* Reduce unnecessary polling

Make sure we don't waste CPU by polling operators that we can set an efficient
callbacks on

* Squash commit of syncing 9506eeb from github to fbcode

Patch xplat buck fix

add virtual destructor to OptimizationPass

add virtual destructor to OptimizationPass

build fixes for sync

build fixes for sync

* Fix net tracing

Fix net tracing from async_scheduling

* Fix logging
2018-05-29 11:38:02 -07:00
Paul Jesse Hellemn
b875fb281c
Update from facebook (#7451)
* [bootcamp] Improve "Shape" operator to support axes specification

To improve .shape operator of Caffe2 to support x.shape(tensor, axes), which takes an optional int array "axes" as input. For example, x.shape(tensor, [1, 0]) will return the dimension for axis 1 and 0 following the specified order. For current version, "axes" input allows duplications and can have arbitrary length.

* Back out "Add barrier net that runs before training nets"

Original commit changeset: b373fdc9c30f. Need additional changes to some callers to support barrier failures.

* Change warning to verbose log to reduce log spam

The `LOG(WARNING)` was a bit spammy for regular use so lets just make it a `VLOG`.

* Extract the shared code from different caffe2_benchmark binaries

The OSS benchmark and Internal benchmark will share most functions in the benchmark.

* Support MFR in sequence training

As titled.

* Make knowledge distillation work with using logged prediction feature as teacher label.

1) Add loading raw dense feature as teacher label.
2) Optional calibration function for teacher label
3) Add teacher label into generic unit test
4) Deprecated TTSN workflow version using feature_options to config teacher label

* [C2/CUDA]: unjoined cross entropy sigmoid

as desc

* Add async_scheduling executor into deferrable_net_exec_test

Add async_scheduling into tests and fix some exception cases

* Fix Event disabled error

When disabling event in RNN ops make sure we don't call Finish on disabled
event from op's RunAsync

* cuda ensure cpu output op can handle both TensorCPU and TensorCUDA

as desc.

* [C2 Core] Infer input device option in C2 hypothesis_test checkers

Improve how we default input blob device options.
Previously it defaults as where op lives but it is not necessarily the case.

For example:
CopyCPUToGPU

* [C2 Op]SplitByLengthsOp CPU/GPU implementation

[C2 Op]SplitByLengthsOp CPU/GPU implementation

* fix undefined symbol error

not sure why we're getting undefined symbol even with link_whole = True
Need to figure out why but need this workaround for now

* Add tools in DAIPlayground platform to help debugging models

Add additional tools to allow Plauground override individual method defined in AnyExp.  This will allow user to create module that specificly change certain default method behavior.  An example included in this diff is deactivating test model and checkpointing.  When debugging any model problems, switching off components helps me quickly narrow down the location of the bug.  The technique is extensively used in task T27038712 (Steady memory increase in EDPM, eventually resulting in gloo/cuda.cu:34: out of memory)

* add shape and type inference for int8 conversion operator

* Fix flaky test for group_norm

Fix flaky test for group_norm

* Fix group_norm_op_test flaky

Fix group_norm_op_test flaky

* Implementation of composite learning rate policy

In many state-of-the-arts deep learning works, people use a simple trick to
schedule the learning rate: use a fixed learning rate until error plateaus
and then switch to a different fixed learning rate, and so on. In this diff,
we implemented a simple version of the composite learning rate. The user gives
a set of learning rates policies and corresponding iteration nums, and the
optimizer will change the learning rate policy based on the number of iterations so far.

For example, the user give two learning rate policies, one is FixedLearningRate
and PolyLearningRate, with an iteration number of 1k. Then the first 1k iteration,
we use FixedLearningRate. For the following iterations, we use PolyLearningRate.

* Split two use cases of CachedReader into two classes, DBFileReader and CachedReader

# Use Cases:

1). input: DB file -> output: DatasetReader.

Use DBFileReader.

2). input: Reader -> build cache DB file -> output: DatasetReader.

Use CachedReader.

# Changes to CachedReader:

1). Move db_path to the constructor.
Because in mock reader. cache will always be built ahead.

# Changes to tests:

1). Make a separate TestCase class for CachedReader and DBFileReader.

2). Make it possible to add more test functions by adding setUp, tearDown and _make_temp_path.

3). Make delete db_path more general. `db_path` could be a file for `log_file_db`, but could also be a directory for `leveldb`.

* Back out "On Mobile phones, call GlobalInit with no arguments in predictor in case we need to perform initialization"

Original commit changeset: 4489c6133f11

* Fix LARS bug

Fixed a bug in the LARS implementation which caused all subsequent blobs not using LARS to have the LARS learning rate multiplier applied to them.

* [tum] support sparse init & add uniformFill option

as title

* Propagate exception for async nets

Capture the exception when an exception is thrown in async nets and re-throw it after wait().  This allows exceptions to be propagated up to the caller.

This diff was a part of D7752068.  We split the diff so that C2 core files changes are in a separate diff.

* Automatic update of fbcode/onnx to 69894f207dfcd72d1e70497d387201cec327efbc

Previous import was 403ccfbd0161c38f0834413d790bad0874afbf9a

Included changes:
- **[69894f2](https://github.com/onnx/onnx/commit/69894f2)**: Use op schema.all tensor types in random like definitions (#865) <Scott McKay>
- **[b9d6b90](https://github.com/onnx/onnx/commit/b9d6b90)**: Clarify random like operators (#846) <Scott McKay>
- **[fc6b5fb](https://github.com/onnx/onnx/commit/fc6b5fb)**: Refactor shape inference implementation (#855) <anderspapitto>
- **[b7d8dc8](https://github.com/onnx/onnx/commit/b7d8dc8)**: fix cmake warning message (#863) <Eric S. Yu>
- **[f585c5d](https://github.com/onnx/onnx/commit/f585c5d)**: add pytorch-operator test for tile (#831) <Wenhao Hu>
- **[993fe70](https://github.com/onnx/onnx/commit/993fe70)**: add install step (#832) <Eric S. Yu>
- **[68bc26c](https://github.com/onnx/onnx/commit/68bc26c)**: add type inference for traditional ml ops except classifier ops. (#857) <Ke Zhang>
- **[9cc0cda](https://github.com/onnx/onnx/commit/9cc0cda)**: fix string representation of scalar types (#858) <G. Ramalingam>
- **[1078925](https://github.com/onnx/onnx/commit/1078925)**: fix y in pow test case to scalar (#852) <Wenhao Hu>
- **[c66fb6f](https://github.com/onnx/onnx/commit/c66fb6f)**: Add some math function shape inference (#845) <anderspapitto>
- **[ff667d1](https://github.com/onnx/onnx/commit/ff667d1)**: Refactor return type and docs for ONNXIFI_BACKEND_DIRECTX_ID (#853) <Marat Dukhan>
- **[11c6876](https://github.com/onnx/onnx/commit/11c6876)**: clear initializer names when clear initializer (#849) <Wenhao Hu>
- **[73c34ae](https://github.com/onnx/onnx/commit/73c34ae)**: Clarify FeatureVectorizer description. (#843) <Scott McKay>
- **[1befb9b](https://github.com/onnx/onnx/commit/1befb9b)**: Remove useless text in docs (#850) <Lu Fang>
- **[e84788f](https://github.com/onnx/onnx/commit/e84788f)**: Fix SELU attributes' default values (#839) <Lu Fang>
- **[ebac046](https://github.com/onnx/onnx/commit/ebac046)**: Add tile test case (#823) <Wenhao Hu>
- **[8b7a925](https://github.com/onnx/onnx/commit/8b7a925)**: a few more shape inference functions (#772) <anderspapitto>
- **[9718f42](https://github.com/onnx/onnx/commit/9718f42)**: Make the coefficient non optional for LinearClassifier (#836) <Jaliya Ekanayake>
- **[ef083d0](https://github.com/onnx/onnx/commit/ef083d0)**: Add save_tensor and load_tensor functions for Protos (#770) <Lu Fang>
- **[45ceb55](https://github.com/onnx/onnx/commit/45ceb55)**: Check if CMAKE_BUILD_TYPE set before project(). (#812) <Sergii Dymchenko>
- **[4b3d2b0](https://github.com/onnx/onnx/commit/4b3d2b0)**: [WIP] reenable shape inference tests (#834) <anderspapitto>
- **[22d17ee](https://github.com/onnx/onnx/commit/22d17ee)**: RNN tests: LSTM, GRU, SimpleRNN (#739) <Peyman Manikashani>
- **[de65b95](https://github.com/onnx/onnx/commit/de65b95)**: dimension denotation (#443) <Tian Jin>
- **[eccc76e](https://github.com/onnx/onnx/commit/eccc76e)**: fix field number issue in onnx operator proto and enable its build (#829) <Ke Zhang>
- **[d582beb](https://github.com/onnx/onnx/commit/d582beb)**: disable shape inference test to unbreak ci (#830) <Lu Fang>
- **[485b787](https://github.com/onnx/onnx/commit/485b787)**: function proto for composite op. (#802) <Ke Zhang>
- **[cd58928](https://github.com/onnx/onnx/commit/cd58928)**: specify defaults for attributes of Affine op (#820) <G. Ramalingam>
- **[7ee2cf9](https://github.com/onnx/onnx/commit/7ee2cf9)**: merge the dummy backend back into the main one (#743) <anderspapitto>
- **[1c03a5a](https://github.com/onnx/onnx/commit/1c03a5a)**: [Proposal] ONNX Interface for Framework Integration (previously ONNX Backend API) header and docs (#551) <Marat Dukhan>
- **[3769a98](https://github.com/onnx/onnx/commit/3769a98)**: Rename real model test case from VGG-16 to ZFNet (#821) <Lu Fang>

* [C2]ReluN Op

relu n op.

tf reference: https://www.tensorflow.org/api_docs/python/tf/nn/relu6

* Call destructor when assigning a blob value

* Add executor overrides

Add executor overrides flag to enable migration to async_scheduling executor

* Add barrier net that runs before training nets - attempt #2

Add a synchonize barrier net that is run before training nets.  With this net, shards that are faster will wait for other shards before start training.  This reduce chances of the faster shards timing out during GLOO AllReduce.
Removed explicit data_parallel_model.py.synchronize call in holmes workflow.

This change was landed previously but caused errors for some EDPM workflows - See https://fb.facebook.com/groups/1426530000692545/permalink/1906766366002237/ - because EDPM assumes any call to CreateOrCloneCommonWorld and Gloo ops are wrapped in exception handlers but in this case exception thrown in the barrier init net is not handled.

To address this issue, we add _CreateOrCloneCommonWorld to the param_init_net instead of a new barrier init net.  Since errors for param_init_net run is handled gracefully and re-rendezvous, it should fixes the problem.

* Handle empty nets in async_scheduling

Make sure we don't get stuck on empty nets

* use CUDA_ARCH for conditional compile

* [C2 fix] infer function for ensure_cpu_output_op

* Update group_norm test to reduce flaky test

* Fix lr_multiplier for GPU
2018-05-10 23:14:27 -07:00
daquexian
9a3c723644 Add missing PrintOp arguments doc (#7084) 2018-04-30 11:17:56 -07:00
Yinghai Lu
ef8f556212
[Caffe2] Changes done inside Facebook (#6378)
* fix unit test for sqrt op

From the error logging:

[idx, grad, grad_estimate] are:
[[ 146.            0.5           0.45776367]
 [ 147.            0.5           0.45776367]

The gradient == 0.5 is correct, which means the SqrtOp and its gradient is doing right job. (Because y = sqrt(x), loss = y^2/2 = x/2, and then d(loss)/dx = 1/2 = 0.5; )

The test failed because of numerical problem of grad_estimate (in unit test). It can be because the step_size is small, and float precision is not high (when there are multiple elements in the tensor, we do sum(y^2) to compute loss)

This diff
- increase the step size, and also move the test cases to be further away from 0 (where sqrt(x) is not well defined) to be safe :)
- also clean up, and merge the test case for inplace Vs. non-inplace

Tested with:

`CAFFE2_HYPOTHESIS_PROFILE=debug ai_bt caffe2/caffe2/python/operator_test:elementwise_ops_test -- "test_sqrt"`

* CompositeReader & CompositeReaderBuilder

A new type of reader gluing multiple readers together.

* Back out "Revert D7394363: [GanH]: Log D Trick for Cross Entropy with Sigmoid"

Original commit changeset: 9325a4356dbe

* [dai][WIP] convert params to int8 on ps before sending to trainer

Add float->uint8 conversion in addition to float->fp16 conversion in model_saver.

* [easy] improve unit test for sparse length sum ops

as desc.

#accept2ship

* Update GitHub upstream to 771fcb3455

* move sparse hash unique ops to OOS and add unit tests

- move the SparseHash version to OOS, since 'sparsehash' is already deps of caffe2 OOS: https://fburl.com/arssw4n1
- The 'SparseHash' engine is also being used in OOS, so the SparseHash version shall be in OOS to reduce confusion: https://fburl.com/o5ea7ah2

- fix the CUDA UniqueOp for the case when batch is empty.
- add unit test

* group_norm_op for caffe2

This is the cuda op for Group Normalization (GN): https://arxiv.org/abs/1803.08494

This code implements GN in one op that computes Y=gamma * (X-mu) / sigma + beta and also its gradients. It is expected to have minimal memory consumption (similar to the BN op), without creating new blobs if GN were implemented as several ops (e.g., reshape, norm_mean/std, affine_channel).

* Resubmit D7405233: disappeared in D7464958

OOS publish causes the op missing -- however, test was still there

* [c2] add sparse hash engine for cuda unique op

The SparseHash version of UniqueOp copy input tensor to CPU, and make use of sparse hash map to get unique output, and then copy back to GPU.

* [dper][gpu] enable unit testing gpu trainer for sparse nn

to debug the GPU trainer using mock data in unit test.

make it easier to develop GPU trainer for new models.

* Reuse Gloo context for Synchronize() calls

Previously we were creating (and leaking) the Gloo context on each call to Synchronize(). Now only run the common world op and create the barrier net once, then run the barrier net on each Synchronize() call. Since timeout is associated with the Gloo context, assert that the timeout is fixed instead of trying to handle the complexity of multiple timeouts (and associated contexts).

* [GanH/WGAN][1/n]: add FC param clipping

as titled

* [mobile] minimizing changes between caffe2_benchmark and speed_benchmark

* [GanH]: enable diagnose within model

avoid finding blob names but to directly enable inside the model

* Add `net_transformer_fun` option to DPM

This callback allows for various transformations to be made to the
model after gradient operators have been added. The immediate motivation for
this is to allow transformations such has "checkpoint-and-recompute" which
allow trading off memory for additional compute.

Adding several callbacks like this has made DPM's API less than ideal at this
stage. However, I could not find any reasonable alternative.

* [DT] [33/n] Compile flow task groups

task groups need to compiled in order to pickle the object in fblearner. However I also changed the Job's compile function as creating new object is not necessary.

* Initial commit for sparse_normalize vectorization and benchmark

* [GanH]: LB Calibration for JSD

as titled

* Tracing event in async executor

Adding event tracing through TRACE_EVENT macro in async executor

* [Resubmit] D7409751 Reseting book-keeping blobs when the reservoir is reset

D7409751 got lost in D7464958

* Visualizing realtime weights values

we want to visualize the weights values as optimizer is iterating. This diff supports to visual the weights at an assigned index.
Currently, we assume the blob to be 2 dimensional.

* [GanH][Easy]: Fix Homotopy Weighting

apparantely, there was a bug in homotopy weight (alpha, beta) update

* [c2] move sparse hash unique op out of oss

so that oss do not need to depend on google hash map.

* Get rid of std::round as it's not supported on Android

* Revert changes on setup.py

* Skip shaky test on Dataio

* fix
2018-04-10 21:11:43 -07:00
Orion Reblitz-Richardson
1d5780d42c Remove Apache headers from source.
* LICENSE file contains details, so removing from individual source files.
2018-03-27 13:10:18 -07:00
sf-wind
602a09dde7 Update caffe2 from facebook 4f527ef46abf (#2234)
* [GanH]: two_task_discriminator

as titled

and adding label smooth

* [Dper2] Simplified UI options needed for blob magnitude visualization

* [GanH]: fix tags

as titled

* Added type and shape inference for GatherRange operator

This helps with type / shape inference when using this operator in layers.
Also just a nice to have in general.

* Demonstrate Caffe2 exception handling with StoreHandlerTimeoutError in Python

We'd like to catch and recover from certain Caffe2 net exceptions. Use this diff to demonstrate a pattern of registering a pybind exception mapping and catching in Pythonusing caffe2::StoreHandlerTimeoutException.

* Bind Gloo IoException to IoError in Python

Allow peer failure handling and recovery using an exception based mechanism. This diff registers gloo::IoException with pybind.

* [GanH]: add label smoothing to softmax with loss

as titled

* [C2] Enable LARS in Adagrad and hook it to DPER

* [DPER] Don't pass LayerModelHelper in create_trainer_nodes

Since we're planning to get rid of it eventually and I want to get access to
NetDef only interface ASAP - I'm looking towards removing all references to
LMH, where we don't really need them.

* fix bugs in LambdaRankNdcgOp

the loss and gradient in LambdaRankNdcgOp are incorrect. The loss should be negative log of probs instead of log.

* Restrict thread pool on iOS to only big cores

Historically, iPhones exposed only one type of cores, and Caffe2 thread pool used all of them.
However, iPhone 8/iPhone X exposes 2 big + 4 LITTLE cores. As our thread pool doesn't support work stealing or other forms of load balancing, fast cores end up waiting for the slow ones, and it may be better to restrict execution to only 2 fast cores, like we do on Android.

* Remove SparseLength Sum/WeightedSum/Mean operators with fp16 engine

Remove SparseLength Sum/WeightedSum/Mean operators with fp16 engine

* make clang happy and get fewer warnings

make clang happy and get fewer warnings

* [Personalization] Support add_output_schema() in layer_model_helper

Problem:
Currently the output_schema of sparse_nn can only be set once. https://fburl.com/efth5zer.

Solution:
For flexibility, we want to add fields to output_schema incrementally.

Plan:
Wrap the change of `model._output_schema` into a new function `add_output_schema()` for adding additional output_schema.

Callsite:
The add_output_schema() should be called instead at https://fburl.com/efth5zer

Reference:
The newly added `add_output_schema()` will be similar to `add_loss()` in https://fburl.com/t2ii8njh
2018-03-12 12:22:59 -07:00
Orion Reblitz-Richardson
c18f9b4dea Back out "[codemod] - comment out unused parameters"
Original commit changeset: 8e10b1f1e2ae

@allow-large-files
2018-02-26 10:26:25 -08:00
Orion Reblitz-Richardson
7e9f8af018 [codemod] - comment out unused parameters 2018-02-26 10:26:25 -08:00
Orion Reblitz-Richardson
b0d09dd8d7 Cleanup operator docs for catalog generation.
Summary:
* Likely need to test this so bad formatting can't be added in the future, but cleaning all operators so we at least have good examples.
* Formatting between our internal Facebook operator catalog and external caffe2.ai catalog are still slightly different. We'll work on this.
Closes https://github.com/caffe2/caffe2/pull/1846

Reviewed By: pjh5

Differential Revision: D6848570

Pulled By: orionr

fbshipit-source-id: b9bc0bfccb243d0440bd7b2406858cad8dc37e92
2018-02-02 16:36:05 -08:00
Jon Morton
4238f5e604 Extract some utility operators to their own source files to reduce build size.
Summary: Extract some operators from utility_ops and normalize_op to reduce build size impact of depending on these files.

Reviewed By: Maratyszcza

Differential Revision: D6616741

fbshipit-source-id: 1757b6b8a3ce4e2a248deee61322344e5095e940
2017-12-28 20:35:44 -08:00
Lu Fang
fab5885df6 Add Min and MinGradient Op in Caffe2
Summary: Add Min and MinGradient Op

Reviewed By: jamesr66a

Differential Revision: D6608668

fbshipit-source-id: 7e1f8fa7a42a94f26152da0109d597e5deeb21c0
2017-12-20 14:49:55 -08:00
Jiyan Yang
6e33ae79df Add gradient op for WeightedSum op
Reviewed By: dzhulgakov

Differential Revision: D6149163

fbshipit-source-id: 0e8cf400323233d001243bc5cb25a0025115a564
2017-10-26 00:16:51 -07:00