`vmap(F.embedding)(DTensor, DTensor)` was failing because F.embedding's
batching rule generates a new tensor via at::arange, at::arange
generates a regular tensor, and DTensor rightfully errors on mixed
DTensor-regular Tensor operations.
This PR fixes the problem by activating DTensor implicit replication on
just the at::arange and the subsequent add operation.
In order to accomplish this I move the DTensor implicit replication flag
to C++ (most batching rules are in C++).
Test Plan:
- new test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162117
Approved by: https://github.com/bdhirsh
- Enable communication of tensors with Complex datatype in ProcessGroupGloo, similar to how ProcessGroupNCCL handles it.
- Move a function, which checks if Complex datatype is supported by a reduce operation, from ProcessGroupNCCL.cpp into a new file to be shared with ProcessGroupGloo.
Fixes#156632
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156633
Approved by: https://github.com/d4l3k
Adding a test that is closer to real use case. Thanks @mlazos for fixing a few issues so this test works for most cases.
We still have to skip the AOTI and dynamic case due to accuracy issues.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160782
Approved by: https://github.com/mlazos
This PR is greatly simplified now that it stacked on top of a PR that builds with distributed always. We only need to stub functions that may not be defined due to a backend not being enabled.
Signed-off-by: Edward Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159889
Approved by: https://github.com/wconstab
ghstack dependencies: #160449
# why
- gather everything up to make choices, without running
potentially expensive generators
- enables overrides where we toss the entire list of configs
from inductor, without having to enumrate it (expensive)
# what
- add a holding class that just gets all the components necessary
to generate a ChoiceCaller
- use that class to generate ChoiceCallers
- this does not (yet) add the override function, but just prepares
the scene
```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```
Differential Revision: [D81520569](https://our.internmc.facebook.com/intern/diff/D81520569)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161347
Approved by: https://github.com/eellison
ghstack dependencies: #162075, #161340, #161341, #161342, #161343, #161344, #161345, #161346
# why
- heuristics providers know decide whether to (or which choices to add)
in the max-autotune case
- enables an eventual override point to gracefully fallback to the
standard behavior
# what
- max-autotune is determined inside V.choices.get_mm_configs
because it's mm only right now, we can just do
`config.max_autotune or config.max_autotune_gemm`
a TODO indicates that this can change in the future when this
expands to more templates
# testing
```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```
Differential Revision: [D81520573](https://our.internmc.facebook.com/intern/diff/D81520573)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161344
Approved by: https://github.com/jansel
ghstack dependencies: #162075, #161340, #161341, #161342, #161343
# why
- central point to analyze and override all generated choices
# what
- add a pseudo heuristic for aten that just yields a single, empty
kwargs
- add a pseudo heuristic with the bias_addmm logic for it
- add an addmm specific heuristic that yields a single choice, but
also expands it with alpha and beta kwargs
- replace all the aten.bind calls with V.choices.get_mm_configs
using the now matching API for aten
# testing
```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```
Differential Revision: [D81520580](https://our.internmc.facebook.com/intern/diff/D81520580)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161342
Approved by: https://github.com/jansel
ghstack dependencies: #162075, #161340, #161341
# why
- to have a central registry of templates/externkernelchoice
to match them to heuristics etc, they need unique names
- mm is both the triton template name and the aten_mm name
# what
- add a uid() to KernelTemplate/ExternKernelChoice that returns name
- override in ExternKernel to prepend "aten::"
- override in TritonTemplate to prepend "triton::"
This id is just use to find template heuristics, so it has no other
impact
# testing
```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```
Differential Revision: [D81520579](https://our.internmc.facebook.com/intern/diff/D81520579)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161341
Approved by: https://github.com/jansel, https://github.com/eellison
ghstack dependencies: #162075, #161340
# why
- a step towards a unified interface for all choices, where any
adjustment to nodes (e.g. unsqueezing) happens as part of
choice specific preprocessing, behind a common point
# what
- move the unsqueeze logic for triton nodes for scaled_mm inside
the new hookup for adjusting the kernel inputs for template
heuristics
# testing
```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v -k "scale"
```
Differential Revision: [D81520582](https://our.internmc.facebook.com/intern/diff/D81520582)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161340
Approved by: https://github.com/jansel, https://github.com/eellison
ghstack dependencies: #162075
Following #157905 I think the macro around
```
TORCH_INTERNAL_ASSERT(use_rowwise == false, "rowwise scaled_gemm not supported with blaslt");
```
was never updated and this would cause `float8` tests to fail. Also it appears the `Lt` accepts two inputs with `e4m3` and `e5m2` dtypes simultaneously, so removing that check here as well...
CC @lw
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161305
Approved by: https://github.com/Skylion007, https://github.com/drisspg, https://github.com/jeffdaily
Co-authored-by: Jeff Daily <jeff.daily@amd.com>
Summary:
Weight vector needs to be upcasted since some FP8 formats (like Float8_e4m3fn) don't have CPU implementations in PyTorch. Reference: https://docs.pytorch.org/docs/stable/tensors.html#id13
We will use FP32 for the scale vector multiplication and convert to the target dtype.
Upcasting helps with the following:
1. **Full CPU support**: `float32` has complete CPU kernel implementations for all operations
2. **Numerical stability**: `float32` provides more precision during intermediate calculations
3. **Compatibility**: Works across all devices (CPU/GPU) and PyTorch versions
Test Plan:
UTs
Rollback Plan:
Differential Revision: D81711093
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162202
Approved by: https://github.com/wwwjn
Avoid merges from extra PGO key, if same source has different rank. Unlikely to happen (needs code hash match & source variable type to change), but being safe.
Differential Revision: D81299840
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162097
Approved by: https://github.com/bobrenjc93
Summary: When running coordinate descent tuning the logging is difficult to parse if the results are parallelized at all. This includes the kernel name in each step so post-processing can unify the results, even if run in parallel.
Test Plan:
NFC. Just a logging change.
Rollback Plan:
Differential Revision: D80942794
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161409
Approved by: https://github.com/PaulZhang12
Summary:
The binary torch is running inside of can be larger than needed and in certain
situations, this can cause a loss of memory.
Test Plan:
We've manually run tests via
```
TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 TORCHINDUCTOR_WORKER_SUPPRESS_LOGGING=0
make mc8-train-publish-cint-datafm-toy -C
minimal_viable_ai/models/ifr_mtml/main_v1/ 2>&1 | tee ~/run_out
```
and overriding the binary used to be the built fbpkg in /packages.
We've also kicked off manual runs at
```
fire-feid-20250903-1051-ae8c6827
```
Which do show the binary running - https://fburl.com/scuba/procprint/e6lwv32m
Rollback Plan:
steps:
- jk.update:
jk: pytorch/compiler:subproc_worker_binary
constant_bool: null
consistent_pass_rate: null
fractional_host_rollout: null
sampling_rate: null
- manual.note:
content: ''
Differential Revision: D81616624
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162093
Approved by: https://github.com/masnesral
This is a reposting of PR #128519.
This change is important to how we maintain PyTorch at Google.
From the previous PR:
"
This will make the script more flexible for the directory where it is executed.
...
We plan to use the deprecated_yaml from a blaze genrule that invokes pyi.py. As the input to the pyi.py, genrule requires the input file to be explicitly listed out. When we feed the value of tools/autograd/deprecated.yaml to genrule, it failed to resolve since tools/autograd is a package from blaze perspective. Any file under a blaze package will a proper blaze target to be access.
"
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161772
Approved by: https://github.com/albanD
Co-authored-by: Haifeng Jin <haifeng-jin@users.noreply.github.com>