Commit Graph

92926 Commits

Author SHA1 Message Date
Edward Yang
6e8f17c580 [RELAND] Always build USE_DISTRIBUTED (#160449) and Make distributed modules importable even when backend not built (#159889) (#162594)
Summary:
Original: D81957844 and D81957923

Also, https://github.com/pytorch/pytorch/pull/162142 is patched in as well

#buildall

Test Plan:
sandcastle and oss ci

Rollback Plan:

Reviewed By: H-Huang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162594
Approved by: https://github.com/H-Huang, https://github.com/dcci
2025-09-12 03:56:18 +00:00
Klaus Zimmermann
31345fb4f7 Make functorch notebook symlinks PEP 517 valid (#157813)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157813
Approved by: https://github.com/zou3519, https://github.com/atalman
2025-09-12 03:52:08 +00:00
Daniel Vega-Myhre
872ed60679 [mxfp8 torch._scaled_grouped_mm] fix meta registration for 3d tensor (#162765)
Meta registration checks for torch._scaled_grouped_mm has a bug for 3d "B" tensors. Namely, the scale shape for such a tensor should be 2d with shape (G, blocked_K * blocked_N), but it currently enforces an expected 3d shape of (G, blocked_K, blocked_N).

See Blas.cpp for correct validation logic [here](8e217a9f6d/aten/src/ATen/native/cuda/Blas.cpp (L1622)).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162765
Approved by: https://github.com/ngimel
2025-09-12 03:51:52 +00:00
atalman
e8eeb06034 Move inductor jobs 3.9->3.10 (#162323)
Related to: https://github.com/pytorch/pytorch/issues/161167

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162323
Approved by: https://github.com/huydhn, https://github.com/Skylion007

Co-authored-by: Huy Do <huydhn@gmail.com>
2025-09-12 03:43:06 +00:00
Yang Wang
3cd734584d bring back the old vllm's use_existing_torch.py (#162747)
vllm's pr will override our dependencies for torch.

quick fix to add the use_existing_torch.py. syncing with vllm now regarding the uv approach they have

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162747
Approved by: https://github.com/huydhn
2025-09-12 03:41:39 +00:00
PyTorch MergeBot
222ec8d28e Revert "AMD CPU CI - Add freezing + fix label trigger (#162176)"
This reverts commit 9cac1b9259.

Reverted https://github.com/pytorch/pytorch/pull/162176 on behalf of https://github.com/huydhn due to Sorry for reverting this but hardcoding the input online 122 does not make sense ([comment](https://github.com/pytorch/pytorch/pull/162176#issuecomment-3283532452))
2025-09-12 03:39:13 +00:00
thenumberouscode
c140bf217f [indexing] Prevent integer overflow from large step values in C++ (#161707)
Fixes https://github.com/pytorch/pytorch/issues/160868
hmmm, I found an existing fix PR after I've finished this one. For reference, the old PR was
https://github.com/pytorch/pytorch/pull/147433/files.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161707
Approved by: https://github.com/leslie-fang-intel, https://github.com/CaoE, https://github.com/mlazos
2025-09-12 03:16:23 +00:00
Janani Sriram
7eb92b076f [Inductor][FP8] Validate exhaustive autotuning for FP8 Inductor templates (#162678)
Summary: Validate exhaustive autotuning for FP8 Inductor templates: scaled MM templates require `block_k >= 32`. Before, exhaustive autotuning defaulted to a limited set of autotuning configs, as limitations for exhaustively autotuning on FP8 shapes had not been tested.

Test Plan:
```
CUDA_VISIBLE_DEVICES=0 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 ENABLE_PERSISTENT_TMA_MATMUL=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_SEARCH_SPACE=DEFAULT buck2 run mode/{opt,inplace} pytorch/t
ritonbench:run -- --op fp8_gemm --only torch_fp8_gemm,pt2_fp8_gemm --metrics tflops,accuracy --input-loader=/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/json_fi
les/rowwise_ptma_0.json --output="/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/autotune/gpu0_bench.csv" --atol=1e-2 --rtol=0.5 2>&1 | tee ~/personal/exhaustive_
autotune_rowwise_persistent_tma/autotune/gpu0.log
```

Rollback Plan:

Differential Revision: D82174075

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162678
Approved by: https://github.com/coconutruben
2025-09-12 02:12:33 +00:00
Shangdi Yu
ccb450b190 [pre_compile] Add check for cuda and hardware version (#162438)
if we detect compiled model is using cuda in meaningful way, we should store information about cuda + hardware

 Example: `SystemInfo(python_version='3.12.9', torch_version='2.9.0a0+gite02b0e6', cuda_version='12.6', triton_version=(3, 4), gpu_name='NVIDIA PG509-210')`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162438
Approved by: https://github.com/zhxchen17
2025-09-12 01:42:07 +00:00
Gabriel Ferns
ae97eb86f7 Reland "Fix conv exhaustive autotuning and expand Exhaustive test coverage" (#161957)
reland https://github.com/pytorch/pytorch/pull/159387

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161957
Approved by: https://github.com/coconutruben
2025-09-12 01:36:43 +00:00
mengph
7a9c4d794c [BUG]Fixed handle cannot be hit in the cache in the IPC ExpandableSegment (#161885)
Fixed the bug that handle cannot be hit in the ipcMemHandle_to_devptr cache in the IPC scenario of ExpandableSegment.

Fixes #161884

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161885
Approved by: https://github.com/albanD
2025-09-12 01:09:17 +00:00
Avik Chaudhuri
501e19137a fix var args for shape guards (#162633)
Summary: Fixes #162599

Test Plan:
added test based on repro

Rollback Plan:

Differential Revision: D82144520

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162633
Approved by: https://github.com/tugsbayasgalan
2025-09-12 00:33:35 +00:00
Aaryaman Vasishta
4a757e1e17 [ROCm] Support torch.cuda._compile_kernel (#162510)
Supports `torch.cuda._compile_kernel` on ROCm. Related to https://github.com/pytorch/pytorch/pull/151484
Tested on Windows with gfx1201. Testing on Linux pending.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162510
Approved by: https://github.com/mycpuorg, https://github.com/msaroufim
2025-09-12 00:18:47 +00:00
Yuxingwang-intel
563921619b Fix the regression issue caused by non-arrch64 platforms not hitting the MKLDNN path. (#162168)
This issue was introduced by the commit in issue #161065. Added an extra check to provide a proper path for other platforms.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162168
Approved by: https://github.com/mingfeima, https://github.com/malfet

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2025-09-12 00:17:08 +00:00
Nikita Shulga
84d8ec73f1 [CD] Build Mac wheels using setup-python action (#162136)
Biggest difference between both conda and homebrew CPython builds and one from python.org, is that later are universal binaries and they are always trying to build universal extension...

Workaround lots of universal binary build attempts by explicitly specifying both `_PYTHON_PLATFORM` and `--plat-name` as well as `ARCH_FLAGS`

Suppressed actionlint warning on use of `freethreaded` flag which is document in https://github.com/actions/setup-python/tree/v5

TODO: Remove lots of temporary workarounds when `3.14` is out in October 2025

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162136
Approved by: https://github.com/atalman, https://github.com/huydhn
ghstack dependencies: #162297, #162265
2025-09-12 00:16:31 +00:00
Ramya Ramineni
a956066b4e [ROCm] Define uint32 t when ROCM_VERSION >= 70000 (#160587)
This PR fixes the errors like below:
```
[rank3]: RuntimeError: The following operation failed in the TorchScript interpreter.
[rank3]: Traceback of TorchScript (most recent call last):
[rank3]: RuntimeError: /tmp/comgr-28f951/input/CompileSourceACC062:67:7: error: unknown type name 'uint32_t'; did you mean '__hip_internal::uint32_t'?
[rank3]:    67 |       uint32_t int32;
[rank3]:       |       ^~~~~~~~
[rank3]:       |       __hip_internal::uint32_t
```
Earlier uint32_t was defined in HIP headers in std namespace. Now it is moved to __hip_internal namespace in hip headers. This change is made in ROCm 7.0.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160587
Approved by: https://github.com/jeffdaily
2025-09-12 00:13:26 +00:00
David Berard
ff6870d134 [BE][flex attention] compute RMSE in float64 (#162088)
I saw a failure where the reference error was 0.0, and the compiled error was 0.035. Although the failure still occurs with or without this change, it was confusing to see RMSE of 0.0.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162088
Approved by: https://github.com/drisspg
2025-09-11 23:53:31 +00:00
PyTorch MergeBot
92f9ed7ac3 Revert "[2/N]Port several test files under test/distributed to Intel GPU (#159473)"
This reverts commit fa1d409e83.

Reverted https://github.com/pytorch/pytorch/pull/159473 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it seems to break an distributed tests ([comment](https://github.com/pytorch/pytorch/pull/159473#issuecomment-3282999084))
2025-09-11 23:51:21 +00:00
Zhengxu Chen
8e217a9f6d [precompile] Fix issues with guard serialization on distributed types. (#162418)
Summary: Add more support for torch internal distributed data structures.

Test Plan:
test_guard_serialization.py

Rollback Plan:

Differential Revision: D81927732

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162418
Approved by: https://github.com/dolpm
2025-09-11 23:09:55 +00:00
hanchchch
429052f151 fix: raise value error on init ParametrizationList if original.device != new.device (#162717)
raise value error on init `ParametrizationList`, if `original.device != new.device`.
currently `_maybe_set` will throw below error in such situations, which I think it's not convenient to debug.

```
[rank1]: RuntimeError: Attempted to set the storage of a tensor on device "cuda:1" to a storage on different device "cpu".  This is no longer allowed; the devices must match.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162717
Approved by: https://github.com/lezcano
2025-09-11 23:07:58 +00:00
Nakul Iyer
a3f01f6418 [MTIA Runtime] Add foreach_div ops to native_functions.yaml (#162732)
Summary: Quick fix for runtime support on foreach_div, see D81274963. Fixed an issue that I created in that diff so that the CIs pass.

Test Plan:
CIs created in D81274963 and D81286593 pass.

Added some logs in [aten_mtia_ops.py](https://www.internalfb.com/code/fbsource/[c56272ba042c43c65517dcac254364cf732fcfa9]/fbcode/mtia/host_runtime/torch_mtia/aten_mtia_ops.cpp?lines=3676) to all the foreach_div ops. We can see that the correct MTIA kernels are being invoked in the tests.
https://www.internalfb.com/intern/testinfra/testrun/15481123829281588

Rollback Plan:

Differential Revision: D82161434

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162732
Approved by: https://github.com/danielhou0515
2025-09-11 22:47:03 +00:00
Aaryaman Vasishta
62843c14bb [ROCm/Windows] Support aotriton for scaled_dot_product_attention on Windows. (#162330)
Enables flash attention and/or memory efficient attention on Windows with scaled_dot_product_attention via. aotriton.
Already tested to be working on Windows with TheRock.

Steps to enable: simply set `USE_FLASH_ATTENTION=1` and `USE_MEM_EFF_ATTENTION=1` as usual. See https://github.com/ROCm/TheRock/blob/main/external-builds/pytorch/build_prod_wheels.py#L578-L604

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162330
Approved by: https://github.com/xinyazhang, https://github.com/ScottTodd, https://github.com/jeffdaily

Co-authored-by: Scott Todd <scott.todd0@gmail.com>
2025-09-11 22:35:09 +00:00
Nick Riasanovsky
082d3dd9d5 [Triton] [Inductor] Restrict subprocess autotuning to just Triton (#162688)
Summary: Restricts subprocess benchmarking to only `TritonTemplateCaller`, which is expected by the underlying `target` method. THhis triggered a bug with large K shapes because the decompose k is `SubgraphChoiceCaller`.

Test Plan:
mm autotuning with a large k and `TORCHINDUCTOR_AUTOTUNE_IN_SUBPROC=1`

Rollback Plan:

Differential Revision: D82181924

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162688
Approved by: https://github.com/PaulZhang12, https://github.com/eellison, https://github.com/mlazos
2025-09-11 22:17:57 +00:00
PyTorch MergeBot
468c1f9e9d Revert "[nn] Assert parsed iterable arguments are an appropriate length (#162340)"
This reverts commit b5e6e58050.

Reverted https://github.com/pytorch/pytorch/pull/162340 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it seems to break an MPS tests on ExecuTorch ([comment](https://github.com/pytorch/pytorch/pull/162340#issuecomment-3282676242))
2025-09-11 21:22:57 +00:00
Nick Riasanovsky
9614c2eb14 [Triton] [Inductor] Pruned failed compilations from Autotuning candidates (#162673)
Summary:
When exahaustively autotuning a new template you may hit situations that lead to compilation failures. This template will still attempt to autotune because nothing was marking this as failed and in my experiments lead to a crash/segfault if I didn't set `TORCHINDUCTOR_AUTOTUNE_IN_SUBPROC=1`.

To help eliminate this issue this PR marks any template that fails to compile as "failed" and then removes all of the failed templates from the choice candidates. In the case where it would have just failed to compile twice, this should at least reduce compilation time.

Test Plan:
Tested locally when experminenting with the new blackwell templates and a Triton version that contains a bug related to `num_warps < 4`.

Rollback Plan:

Differential Revision: D82172207

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162673
Approved by: https://github.com/PaulZhang12, https://github.com/mlazos
2025-09-11 21:22:36 +00:00
Janani Sriram
4c6a6c2db9 [Inductor][FP8] Add new scaled_mm and scaled_persistent_mm configs to Inductor FP8 Triton templates (#162699)
Summary:
Add new `scaled_mm` and `scaled_persistent_mm` configs to `template_heuristics.py` for Inductor FP8 Triton templates. These configs are a representative subset of the most performant configs generated from exhaustively autotuning FP8 Triton kernels with per-tensor and per-row scaling.

See this [spreadsheet](https://docs.google.com/spreadsheets/d/1Fal1vhFUJIUcLpM2kJect6IkgeUFvCY-nUr3RTupM_4/edit?gid=1732602731#gid=1732602731) for benchmarks and performance metrics.

Test Plan:
Verify that configs do not error, i.e.
```
CUDA_VISIBLE_DEVICES=0 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+i
nductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 ENABLE_PERSISTENT_TMA_MATMUL=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 buck2 run mode/{opt,inplace} pytorch/tritonbench:run -- --op fp8_gemm --only pt2_fp8_gemm --metrics tflops,accuracy --input-loader={input_path} --output="{output_csv}" --atol=1e-2 --rtol=0.5 2>&1 | tee {log_file}
```

Rollback Plan:

Reviewed By: NikhilAPatel, PaulZhang12

Differential Revision: D81651226

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162699
Approved by: https://github.com/PaulZhang12
2025-09-11 21:21:06 +00:00
Rohit Manav
3ad3bfe11d added example for torch.is_storage (#162614)
Fixes #162613

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162614
Approved by: https://github.com/malfet

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2025-09-11 20:25:26 +00:00
PyTorch MergeBot
1c6dfbe557 Revert "[inductor] FlexibleLayout for ExternKernelChoice for mms (#161351)"
This reverts commit f08487aa86.

Reverted https://github.com/pytorch/pytorch/pull/161351 on behalf of https://github.com/huydhn due to Check with @coconutruben and the internal failures look real ([comment](https://github.com/pytorch/pytorch/pull/161351#issuecomment-3282511692))
2025-09-11 20:24:15 +00:00
PyTorch MergeBot
934f878883 Revert "[inductor] leverage template stacking in V.choices.get_mm_configs (#161350)"
This reverts commit 623e623c82.

Reverted https://github.com/pytorch/pytorch/pull/161350 on behalf of https://github.com/huydhn due to Check with @coconutruben and the internal failures look real ([comment](https://github.com/pytorch/pytorch/pull/161351#issuecomment-3282511692))
2025-09-11 20:24:15 +00:00
PyTorch MergeBot
cef05b1202 Revert "[inductor][choices] rename get_mm_configs to get_template_configs (#162293)"
This reverts commit 30191fcf03.

Reverted https://github.com/pytorch/pytorch/pull/162293 on behalf of https://github.com/huydhn due to Check with @coconutruben and the internal failures look real ([comment](https://github.com/pytorch/pytorch/pull/161351#issuecomment-3282511692))
2025-09-11 20:24:15 +00:00
Boyuan Feng
b500c166ef [FlexAttention][Easy] turn off TMA when cannot use it (#162569)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162569
Approved by: https://github.com/drisspg
2025-09-11 19:51:19 +00:00
Jeff Daily
d65ffdef3d [ROCm] fix miopen batchnorm changing output format (#162112)
It was found that the integration of miopen batchnorm was causing the output to always be in default contig memory format even when the input was channels last.  This also unskips a number of related unit tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162112
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
Co-authored-by: Dmitry Nikolaev <dmitry.nikolaev@amd.com>
Co-authored-by: Jithun Nair <37884920+jithunnair-amd@users.noreply.github.com>
2025-09-11 19:37:48 +00:00
Pian Pawakapan
ac72f81c12 [dynamic shapes] unbacked-safe should_swap (#160473)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160473
Approved by: https://github.com/laithsakka
2025-09-11 18:51:25 +00:00
Arijit Mukhopadhyay
9cac1b9259 AMD CPU CI - Add freezing + fix label trigger (#162176)
Added the following changes:

1. Added freezing by default for AMD CPU based CI
2. Fixed issue with label based CI triggers

Addresses code review comment in https://github.com/pytorch/pytorch/pull/161155

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162176
Approved by: https://github.com/malfet, https://github.com/jeffdaily
2025-09-11 18:41:29 +00:00
Isalia20
9bc648235d [MPS] mps sparse mul op implementation (#162349)
Implements mps sparse mul operation as well as enables other operations such as:
1. copy_
2. div
3. sum
4. floor
5. power
6. sub
7. floor_divide

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162349
Approved by: https://github.com/pearu, https://github.com/malfet

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2025-09-11 18:36:24 +00:00
David Berard
799471d92b [triton] Update 3.5 pin (AMD compilation fix + warp spec) (#162733)
Fixes #162390

Also adds warp spec (thanks @manman-ren!)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162733
Approved by: https://github.com/atalman
2025-09-11 18:19:16 +00:00
justinchuby
43d9b5ecaa [ONNX] Set fallback=False by default (#162726)
This change addresses confusing error messages users encounter when using the ONNX exporter with default settings. Previously, `fallback=True` was the default, which would attempt to fall back to the TorchScript exporter when the dynamo path failed, leading to mixed error messages that obscured the actual issues.

## Problem

When `fallback=True` by default:
- Users get confusing error messages mixing dynamo and TorchScript export failures
- Error messages tell users to provide the `f` argument unnecessarily
- Dynamo error messages get flushed with TorchScript errors when both paths fail
- Users expecting the dynamo path get unexpected fallback behavior

## Solution

Changed the default from `fallback=True` to `fallback=False` in both:
- `torch.onnx.export()` function
- `torch.onnx._internal.exporter._compat.export_compat()` function

## Impact

**Before:**
```python
# Would fallback to TorchScript on dynamo failure, causing mixed error messages
torch.onnx.export(model, args)
```

**After:**
```python
# Clean dynamo-only errors by default
torch.onnx.export(model, args)

# Advanced users can still opt-in to fallback behavior
torch.onnx.export(model, args, fallback=True)
```

Fixes #162697

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162726
Approved by: https://github.com/titaiwangms, https://github.com/xadupre
2025-09-11 18:09:58 +00:00
Tugsbayasgalan Manlaibaatar
463fbc8ca0 Support vmap + custom autograd function/improve DTensor constructor inefficiency (#162240)
This makes gemma3 exportable on transformers=4.55.4

In HF, there is a torch funciton mode called TransformGetItemToIndex which internally calls custom autograd function. When this custom autograd function is called under vmap, It triggers CustomFunctionHigherOrderOP which error-ed because there was no pre-dispatch proxy mode implementation.

Since there are number of requests lately to add various operators in pre-dispatch IR, I introduce a decorator in export that works similar to `allow_in_graph`. Basically:
1) We intercept custom_autograd_function.apply at pre-dispatch mode when this decorator is applied
2) We apply `flat_apply` HOP to hide the pytree spec for this autograd function. Note that this adds restriction that this custom autograd function needs to take in fx-able types.
3) subclass constructor decorator is implemented similarly, so we just refactor it to use similar implementation as this new decorator. eventually we should delete the subclass constructor decorator.
4) Move some code in subclass constructor decorator to exit early in non-export environment which should shave off some inefficiency (around 1% according to @swolchok 's benchmark)

Fixes: https://github.com/pytorch/pytorch/issues/161563#issuecomment-3246309758

Differential Revision: [D82141316](https://our.internmc.facebook.com/intern/diff/D82141316)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162240
Approved by: https://github.com/ydwu4
2025-09-11 17:42:41 +00:00
Catherine Lee
2f53395943 [ez][CI] Fix docs push in nightly workflow (#162657)
HUD metrics page says docs push hasn't happened in 21 days
<img width="293" height="142" alt="image" src="https://github.com/user-attachments/assets/f930aab8-0503-4bf2-b962-8c375dec6b78" />

I guess main branch docs just haven't been updated?  Did anyone notice?  Do we care?

Either way I think this should fix it

Likely started after https://github.com/pytorch/pytorch/pull/161182
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162657
Approved by: https://github.com/huydhn
2025-09-11 16:45:41 +00:00
Avik Chaudhuri
fccddf02b6 repro 161902 (#162416)
Summary:
Sometimes `ShapeEnv.create_symbol` can return a `sympy.Integer`. This messes up our phantom symbol infra for derived dims.

Fixes #161902

Test Plan:
added test based on repro

Rollback Plan:

Differential Revision: D81960709

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162416
Approved by: https://github.com/tugsbayasgalan
2025-09-11 16:35:23 +00:00
Nikita Shulga
8be8b94793 Update SECURITY.md with reporting guidelines (#162608)
Added clarification that all reports will be disclosed within 90 days

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162608
Approved by: https://github.com/seemethere, https://github.com/albanD
2025-09-11 16:30:29 +00:00
suo
fe8cc619b8 [torch][c10d] fix split_group in mixed backend case (#162424)
Today we can initialize a mixed-backend process group (e.g. "cpu:gloo,cuda:nccl") but we can only pass one set of process group options.

However, when we call `split_group`, we retrieve that set of options from the parent PG and pass it to the ProcessGroup::groupSplit C++ API, which then attempts to propagate that set of options to all backends.

This leads to an assert on some user code, where ProcessGroupGloo::split is expecting gloo options but receives nccl options instead.

Arguably the APIs as currently designed are just broken; we should not ever expect a single set of backend options to apply across multiple backends. However, fixing this would require changing quite a few public APIs.

As a quick fix, since user-provided options really only exist for NCCL, just warn and fall-back to defaulted options for Gloo if non-gloo options are detected.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162424
Approved by: https://github.com/d4l3k, https://github.com/fduwjj, https://github.com/H-Huang
2025-09-11 16:29:32 +00:00
atalman
2f5a24c2a2 Smoke tests don't run nvshmem on Windows (#162646)
Only available for linux x86 and aarch64 :
https://pypi.org/project/nvidia-nvshmem-cu13/#files

nvshmem is available only on linux:
``
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | "
``
https://github.com/pytorch/pytorch/blob/main/.github/scripts/generate_binary_build_matrix.py#L57
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162646
Approved by: https://github.com/kwen2501
2025-09-11 16:09:20 +00:00
Nikita Shulga
24492cbab2 [BE] Cleanup stale comments/copy from gemm (#162001)
Followup after https://github.com/pytorch/pytorch/pull/154012

Since the introduction of `gemm_no_downcast_stub` it's no longer necessary to allocate temporary array and then manually implement the `beta` logic in the codebase
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162001
Approved by: https://github.com/drisspg
ghstack dependencies: #161999
2025-09-11 15:48:43 +00:00
Avik Chaudhuri
3f6d88f04c paths to exclude shape guards (#162684)
Summary: Easier to land than https://www.internalfb.com/diff/D82030581

Test Plan:
everything blamed by https://www.internalfb.com/diff/D80713603 (except some old exir tests)

Rollback Plan:

Differential Revision: D82180349

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162684
Approved by: https://github.com/tugsbayasgalan
2025-09-11 15:34:06 +00:00
PyTorch MergeBot
94db2ad51d Revert "Move prioritized text linker optimization code from setup.py to cmake (#160078)"
This reverts commit 26b3ae5890.

Reverted https://github.com/pytorch/pytorch/pull/160078 on behalf of https://github.com/atalman due to Sorry reverting this broke linux aarch64 CUDA nightlies [pytorch/pytorch/actions/runs/17637486681/job/50146967503](https://github.com/pytorch/pytorch/actions/runs/17637486681/job/50146967503) ([comment](https://github.com/pytorch/pytorch/pull/160078#issuecomment-3281426631))
2025-09-11 15:29:29 +00:00
PyTorch MergeBot
9f783e172d Revert "Build and Install Arm Compute Library in manylinux docker image (#159737)"
This reverts commit 582d278983.

Reverted https://github.com/pytorch/pytorch/pull/159737 on behalf of https://github.com/atalman due to Sorry reverting this broke linux aarch64 CUDA nightlies [pytorch/pytorch/actions/runs/17637486681/job/50146967503](https://github.com/pytorch/pytorch/actions/runs/17637486681/job/50146967503) ([comment](https://github.com/pytorch/pytorch/pull/159737#issuecomment-3281398272))
2025-09-11 15:25:24 +00:00
Animesh Jain
a8432bcaad [dynamo][guards] Fail on an unknown framelocals to dict conversion (#162695)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162695
Approved by: https://github.com/williamwen42
ghstack dependencies: #162694
2025-09-11 15:01:00 +00:00
Animesh Jain
a3a40cb741 [dynamo][guards] Do not consturct framelocals to dict on GlobalsGuardAccessor (#162694)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162694
Approved by: https://github.com/williamwen42
2025-09-11 15:01:00 +00:00
Tugsbayasgalan Manlaibaatar
c924c675d0 Fix persistent buffer bug (#162190)
For non-persistent buffers, we should properly register them.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162190
Approved by: https://github.com/zhxchen17
2025-09-11 14:56:26 +00:00