Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53068
Adds a ```bool is_available()``` method to the backend contract: it returns ```true``` if ```compile()``` and ```execute()``` can be called; ```false``` otherwise.
It is used to implement the following changes in the ```LoweredModule```:
* ```compile()``` in ```__setstate__``` will run if ```is_available()```, else ```__setstate__``` throws an exception (“Backend not available.”).
* ```compile()``` at ```LoweredModule``` creation will run if ```is_available()```, else a WARNING will be thrown.
* ```execute()``` will only be executed if ```is_available()``` returns true; else throws an exception (“Backend not available.”).
The goal of these changes is to ensure we have a well defined behaviour for the different combinations of backend availability on-host and on-target.
More specifically, backends may have different capabilities to compile and/or execute the Module, depending whether this happens on-host (i.e. where the program is being written) or on-target (where the program is being executed).
First of all, we know that "preprocess" always takes place, and that only happens on-host at creation time. So, we can assume that any compilation is needed/possible on-host then all of it could be pushed here.
Overall, we want to ensure the following:
**On host**
| compile | execute | Outcome |
| -- | -- | -- |
| No | No | On module creation, LoweredModule is generated, with a warning (since compilation and execution can still take place on-target). On module load, throws an exception (since execution is not possible). |
| No | Yes | This configuration should not be possible. This assumes the full compiler is not available, even if some work was done in preprocess the program cannot be finalized for execution. |
| Yes | No | In this case, the expectation would be for is_available() to return false, and compilation logic to move into preprocess. |
| Yes | Yes | All good. This is the only case that is_available() should return true. |
**On target**
| compile | execute | Outcome |
| -- | -- | -- |
| No | No | Loading the LoweredModule throws an exception. Since execution is not possible. |
| No | Yes | Basically this is another instance of Yes/Yes: compilation per se may not be possible on device, which means compile() can be called without issue but it is a no-op, and thus is_available should return true. Consequently, loading the LoweredModule: Succeeds, if the preprocessed module is ready for execution. Fails with exception otherwise. |
| Yes | No | This configuration should not be possible. Just putting here for completeness. |
| Yes | Yes | All good. This, along with No/Yes case (because compilation is assumed to have happened on-host, so it's just another instance of Yes/Yes), are the cases where is_available() should return true. |
**Refactoring existing code**
This change also updates other backends (Glow) code, to implement the is_available() method to have the same behaviour as before this change (i.e. always available).
This should not cause backward incompatibilities with already saved models since we're adding a new method to the PyTorchBackendInterface.
Models saved with the old interface that didn't have is_available() will still find the other 2 methods in the bound object (i.e. compile and execute), and the saved LoweredModule logic will be the old one.
**Future**
We plan to use is_available() to implement support for fallback to the PyTorch interpreter.
ghstack-source-id: 123498571
Test Plan: Added C++ (test_backend.cpp) and Python (test_backends.py) tests to validate the exceptions.
Reviewed By: jackm321, spaugh, iseeyuan
Differential Revision: D26615833
fbshipit-source-id: 562e8b11db25784348b5f86bbc4179aedf15e0d3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52603
This PR introduced a backend with minimum compilation capability to the to_<backend> flow. The targets are:
- Demonstrate the end-to-end flow with adding a backend -> compilation -> runtime
- How the backend compilation errors be surfaced to the user, with the original model's source code information. (C++ only in this PR. Python APIs will be demonstrated in a following PR.)
Changes:
- Compilation
1. A backend with minimum compilation features, "backend_with_compiler_demo" is added.
2. The compilation happens AOT in the ```pre_process``` function registered to this backend.
3. Compiled results are stored in a string blob for each method. They are serialized to the lowered module with ```__get_state__``` function.
4. Error message with model source code is thrown, for features not handled by the backend compiler.
- Runtime
1. The compiled blob is loaded in ```__set_state__``` method.
2. The ```compile``` function of the backend pass through the AOT compiled blob. (TODO: parsing the blob to the format that the backend can understand can happen here.)
3. The ```execute``` function of the backend executes the specified method (handle).
Test Plan:
- ```BackendTest.TestCompiler```: the C++ end-to-end demonstration on a supported model. After compilation and running, the lowered model produces the same result as the original torchscript model.
- ```BackendTest.TestCompilerNotSupport```: Demonstrate the error message from the AOT compilation for a feature not supported from the input module. The error message looks like:
```
"The node of aten::mul is not supported in this compiler. Source code: File "<string>", line 3
def forward(self, x, h):
return x * h
~~~~~ <--- HERE
```
Reviewed By: raziel
Differential Revision: D26593968
Pulled By: iseeyuan
fbshipit-source-id: 8f264f60a0470e9f07e36fdeccbf17da6c1d7cd7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52258
Removes deprecated preprocess method from the backend interface.
Preprocessing logic should be now registered along with the backend interface (i.e. PyTorchBackendInterface) via the BackendPreprocessFunction.
Also refactored internal dependencies.
ghstack-source-id: 121704837
Test Plan:
Validates all related tests pass:
buck test mode/dev //caffe2/test/cpp/jit:jit -- --exact 'caffe2/test/cpp/jit:jit - BackendTest.ToBackend'
python test/test_jit.py TestBackends
===== Glow
buck test mode/dev //glow/fb/torch_glow/tests:TorchGlowBackendTests
buck test mode/dev //glow/fb/torch_glow/tests:torch_glow_backend_tests
Reviewed By: jackm321
Differential Revision: D26443479
fbshipit-source-id: afdc51ae619ced293d10c7a6a12f3530e4c4e53c
Summary:
This is a re-land off https://github.com/pytorch/pytorch/pull/51797 with fix for spurious libcuda dependency
Fix limits the scope of `no-as-needed` linker flag to just `jitbackend_test`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52340
Reviewed By: agolynski, iseeyuan
Differential Revision: D26476168
Pulled By: malfet
fbshipit-source-id: f909428af82182b3bffd020ca18cca7a9b5846b6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51797
The C++ API, ```codegen_backend_module``` is added to ```to_<backend>```. Python related stuffs are decoupled in this function. It can be used from both C++ and python.
* Tests
Python: The existing ```test_backends.py```, which calls the C++ API under the hood.
C++: The end-to-end test of ```jit.BackendTest.ToBackend``` is added in ```test_backend.cpp```. The original class definitions in this file is moved to ```test_backend_lib.cpp```
ghstack-source-id: 121687464
(Note: this ignores all push blocking failures!)
Test Plan: CI
Reviewed By: raziel
Differential Revision: D26280518
fbshipit-source-id: fd466e4b448847ce64010a3297fff0b5760c5280