pytorch/test/cpp/jit/test_backend_lib.cpp
Nikita Shulga f235c65a2b [TorchScript] C++ interface of to_<backend> (Re-land) (#52340)
Summary:
This is a re-land off https://github.com/pytorch/pytorch/pull/51797 with fix for spurious libcuda dependency

Fix limits the scope of `no-as-needed` linker flag to just `jitbackend_test`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52340

Reviewed By: agolynski, iseeyuan

Differential Revision: D26476168

Pulled By: malfet

fbshipit-source-id: f909428af82182b3bffd020ca18cca7a9b5846b6
2021-02-17 07:17:50 -08:00

82 lines
2.4 KiB
C++

#include <torch/csrc/jit/backends/backend.h>
namespace torch {
namespace jit {
// This test JIT backend is intended to do the minimal amount of work
// necessary to test that the JIT backend registration endpoints and
// code generation are working correctly. It is not intended to
// produce numerically correct results.
class TestBackend : public PyTorchBackendInterface {
public:
// Constructor.
explicit TestBackend() {}
virtual ~TestBackend() = default;
c10::IValue preprocess(
c10::IValue mod,
c10::impl::GenericDict method_compile_spec) override {
return mod;
}
c10::impl::GenericDict compile(
c10::IValue processed,
c10::impl::GenericDict method_compile_spec) override {
auto spec =
c10::impl::toTypedDict<std::string, at::IValue>(method_compile_spec);
// Return the same string as a value for every key in method_compile_spec.
auto handles = c10::Dict<std::string, std::string>();
for (const auto& it : spec) {
handles.insert(it.key(), it.key());
}
return c10::impl::toGenericDict(handles);
}
c10::impl::GenericList execute(
c10::IValue handle,
c10::impl::GenericList inputs) override {
TORCH_INTERNAL_ASSERT(handle.isString());
TORCH_INTERNAL_ASSERT(inputs.size() > 0);
c10::List<at::Tensor> output_list;
// Implement simple accumulator and negative accumulator (?) ops. Return one
// or both of them depending on the handle to make sure multiple outputs are
// handled.
c10::IValue value = inputs[0];
at::Tensor accum = value.toTensor();
accum = accum.clone();
at::Tensor sub_accum = value.toTensor();
sub_accum = sub_accum.clone();
for (size_t i = 1, e = inputs.size(); i < e; ++i) {
value = inputs[i];
accum.add_(value.toTensor(), 1.0);
sub_accum.sub_(value.toTensor(), 1.0);
}
if (handle.toStringRef() == "accum") {
output_list.emplace_back(accum);
} else if (handle.toStringRef() == "sub_accum") {
output_list.emplace_back(sub_accum);
} else if (handle.toStringRef() == "forward") {
output_list.emplace_back(accum);
output_list.emplace_back(sub_accum);
}
return c10::impl::toList(output_list);
}
};
c10::IValue preprocess(
const Module& mod,
const c10::Dict<IValue, IValue>& method_compile_spec) {
return mod._ivalue();
}
namespace {
static auto cls = torch::jit::backend<TestBackend>("test_backend", preprocess);
}
} // namespace jit
} // namespace torch