Commit Graph

405 Commits

Author SHA1 Message Date
Nikita Shulga
3859aace20 [MPS] Skip tests broken on Ventura (#90843)
Also add `torch.backends.mps.is_macos13_or_newer`
See https://github.com/pytorch/pytorch/issues/85758

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90843
Approved by: https://github.com/kulinseth, https://github.com/albanD
2022-12-14 19:51:00 +00:00
Richard Zou
4b1053497c [vmap] Prepend "legacy" to files for old vmap implementation (#90324)
We have an older torch.vmap implementation. It is no longer supported.
It still needs to exist somewhere for the sake of BC with
torch.autograd.functional.

This PR makes it clear what files are meant for implementing the old
vmap implementation. I've seen a couple of PRs recently adding support
for the old vmap implementation, so this will lessen the confusion.

Test Plan:
- CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90324
Approved by: https://github.com/samdow
2022-12-07 18:46:15 +00:00
Edward Z. Yang
4908a12542 Reland "SymIntify convolution backend calculation (#89069)"" (#89142)
This reverts commit 90db86be10.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89142
Approved by: https://github.com/albanD, https://github.com/malfet
2022-11-16 21:41:47 +00:00
PyTorch MergeBot
90db86be10 Revert "SymIntify convolution backend calculation (#89069)"
This reverts commit 09ed8b67e2.

Reverted https://github.com/pytorch/pytorch/pull/89069 on behalf of https://github.com/DanilBaibak due to breaking internal builds
2022-11-16 16:36:27 +00:00
Edward Z. Yang
09ed8b67e2 SymIntify convolution backend calculation (#89069)
We will need this to implement a convolution meta function that
is SymInt aware.  I use templates so that regular convolution code
is not affected by the change.  No tests for symbolic ints directly; that will
come in a subsequent PR which also needs to refactor fake tensors.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89069
Approved by: https://github.com/SherlockNoMad
2022-11-16 14:02:43 +00:00
PyTorch MergeBot
ba4d5aae06 Revert "rename DisableTorchFunction to DisableTorchFunctionSubclass (#88218)"
This reverts commit 7f28be10e5.

Reverted https://github.com/pytorch/pytorch/pull/88218 on behalf of https://github.com/izaitsevfb due to BC-breaking change, D41211901
2022-11-11 19:13:05 +00:00
PyTorch MergeBot
4e5d7afe84 Revert "add DisableTorchFunction that matches DisableTorchDispatch (#88219)"
This reverts commit c0ecce15b5.

Reverted https://github.com/pytorch/pytorch/pull/88219 on behalf of https://github.com/izaitsevfb due to BC-breaking change, D41211901
2022-11-11 19:08:30 +00:00
samdow
c0ecce15b5 add DisableTorchFunction that matches DisableTorchDispatch (#88219)
Closes #87990. This implements a new disable guard that matches DisableTorchDispatch (disables all subclasses and modes)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88219
Approved by: https://github.com/ezyang
2022-11-10 14:51:13 +00:00
samdow
7f28be10e5 rename DisableTorchFunction to DisableTorchFunctionSubclass (#88218)
First half of #87990. This doesn't change any of the behavior and is just a rename

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88218
Approved by: https://github.com/ezyang, https://github.com/zou3519
2022-11-10 14:51:13 +00:00
kshitij12345
eb9b156019 [fix] MathBits: serialization (#88182)
Fixes #81690

TODO:

* [x] C++ Unpickler Fix (locally tested pickled in Python and unpickled in C++)
* [x] C++ Pickler Fix (locally tested pickled in C++ and unpickled in Python)
* [x] Do quant_tensor, sparse_tensor, etc require similar changes? (Sparse and Quant don't need this)
* [x] Add Comments
* [x] How to make sure C++ and Python are in sync? (Functions in `pickler.h` help in getting and setting Tensor Metadata (math-bits for now) on a tensor. They are the only place which should handle this.)

Notes:
Quant Tensor don't support complex dtypes and for float they segfault with `_neg_view` : https://github.com/pytorch/pytorch/issues/88484

Sparse Tensor:
```python
>>> a = torch.tensor([[0, 2.], [3j, 0]]).to_sparse()
>>> a.conj().is_conj()
False
>>> a._neg_view()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NotImplementedError: Cannot access storage of SparseTensorImpl
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88182
Approved by: https://github.com/ezyang, https://github.com/anjali411
2022-11-09 17:15:12 +00:00
Nikita Shulga
e1c123d29a Add UBSAN to ASAN (#88055)
Add undefined behavior sanitizer to `USE_ASAN` option.
Added `torch._C._crash_if_vptr_ubsan()` that only fails if vptr belongs to a wrong class after typecast
Deleted all ubsan supressions, but disabled `ProtoTest::Basic` as it fails above-mentioned vptr check.

Fixes https://github.com/pytorch/pytorch/issues/88042
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88055
Approved by: https://github.com/ezyang
2022-11-01 17:59:35 +00:00
Elias Ellison
fc21b9db23 Use Eager Code To Determine Conv Layout (#87305)
The logic for determine conv backend and therefore output striding is very complex. It depends on build settings, input striding/contiguity, sizes, etc. Eventually we should port that logic to the meta impl for dynamic shapes but that will require a lot more work and keeping the implementations in sync. See https://github.com/pytorch/torchdynamo/issues/1701

This is a prerequisite to removing the inductor conv stride propagation and more general fake tensor for inductor propagation. In that PR, the meta impls for cpu conv give incorrect striding which led to test failures (https://github.com/pytorch/pytorch/pull/87083).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87305
Approved by: https://github.com/ezyang
2022-10-28 16:37:04 +00:00
Driss Guessous
35c611d30f Add mem efficient backend flag (#87946)
# Summary
Add in a torch.backends.cuda flag and update context manager to pic between the three implementations of the scaled_dot_product_attention.

cc @cpuhrsch @jbschlosser @bhosmer @mikaylagawarecki
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87946
Approved by: https://github.com/cpuhrsch
2022-10-28 15:51:10 +00:00
soulitzer
adb76ef510 Expose API for backward execution order (#87507)
In this PR:
- graph_task stores graph roots on construction so that we can later traverse through the graph
- before the nodes are returned, they needed to be converted from raw_ptr to shared_ptr, and this should be OK because the graph is guaranteed to be alive

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87507
Approved by: https://github.com/albanD
2022-10-26 21:28:45 +00:00
Brian Hirsh
ce0c6e828e Reland "add an API for external backends to register custom device names (#86992)" (#87453)
Re-land of https://github.com/pytorch/pytorch/pull/86992

This reverts commit a895af9250.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87453
Approved by: https://github.com/ezyang, https://github.com/albanD
2022-10-21 16:51:36 +00:00
PyTorch MergeBot
a895af9250 Revert "add an API for external backends to register custom device names (#86992)"
This reverts commit fb6826bfd8.

Reverted https://github.com/pytorch/pytorch/pull/86992 on behalf of https://github.com/jeanschmidt due to breaking internal builds - D40534212 - arstudio-windows-tests-landcastle-0
2022-10-20 14:51:08 +00:00
Brian Hirsh
fb6826bfd8 add an API for external backends to register custom device names (#86992)
This API adds some improvements to external backends who are building C++ backends out of tree using the `PrivateUse1` dispatch key.

The docs and linked examples go over the API in more detail, but you should be able to use it like:
```
# This should probably be in the __init__.py file of a external backend's python package
> torch.register_privateuse1_backend("foo")`
# And it will allow the user to do this:
> a = torch.ones(2, device="foo")
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/86992
Approved by: https://github.com/albanD
2022-10-19 16:44:17 +00:00
Kurt Mohler
1dbc8ad3b7 Add Warning class and refactor C++ warnings to use it (#84101)
Also adds `TORCH_WARN_WITH` and `TORCH_WARN_DEPRECATION` macros

Part of #72948

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84101
Approved by: https://github.com/albanD
2022-10-18 20:02:42 +00:00
Jason Ansel
f1fdb6efbd Manual changes for moving dynamo to core (#86621)
This is the subset of the changes in #86461 not auto-generated by `copy_to_core.sh`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86621
Approved by: https://github.com/albanD
2022-10-11 23:01:21 +00:00
Elias Ellison
d3f7c34cb3 Enable aten-aten decomps (#85921)
Invokes aten-aten decomps with re-entrant FakeMode. These decomps are being used in other places, so it's good to unify the path static fake tensor takes / get additional testing etc. There is also an instance where we return different devices with cpu/cuda which this fixes ([batch_norm](https://github.com/pytorch/pytorch/blob/master/torch/_decomp/decompositions.py#L1374))

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85921
Approved by: https://github.com/ezyang
2022-10-08 05:12:42 +00:00
PyTorch MergeBot
7ec12a559c Revert "Enable aten-aten decomps (#85921)"
This reverts commit 62e4f51efd.

Reverted https://github.com/pytorch/pytorch/pull/85921 on behalf of https://github.com/huydhn due to Sorry for reverting your PR. I think it breaks a dynamo test in trunk 62e4f51efd
2022-10-08 01:59:54 +00:00
soulitzer
ba3fde6aa0 Add multi-grad hooks (#86260)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86260
Approved by: https://github.com/albanD
2022-10-07 21:16:45 +00:00
Elias Ellison
62e4f51efd Enable aten-aten decomps (#85921)
Invokes aten-aten decomps with re-entrant FakeMode. These decomps are being used in other places, so it's good to unify the path static fake tensor takes / get additional testing etc. There is also an instance where we return different devices with cpu/cuda which this fixes ([batch_norm](https://github.com/pytorch/pytorch/blob/master/torch/_decomp/decompositions.py#L1374))

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85921
Approved by: https://github.com/ezyang
2022-10-07 21:04:39 +00:00
Sahan Paliskara
936e93058b Delete torch::deploy from pytorch core (#85953)
As we have migrated torch::deploy over to https://github.com/pytorch/multipy, we can now delete it from pytorch core as ongoing development will happen there.

This PR was created due to syncing issues with https://github.com/pytorch/pytorch/pull/85443 which is where the review history can be found.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85953
Approved by: https://github.com/seemethere, https://github.com/malfet
2022-10-06 07:20:16 +00:00
Elias Ellison
9da5646cdb Add device logic handling for functions which allow scalar inputs as tensors (#86149)
Some functions allow scalars as tensor inputs. Add handling for them in device logic.

Fix for https://github.com/pytorch/torchdynamo/issues/1445
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86149
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
2022-10-04 18:54:00 +00:00
Driss Guessous
cd6477617c Custom sdp implementations dense (#85984)
# Summary

- This code creates the runtime dispatch system for choosing a performant fused SDP kernel. The only choice of fused kernel is flash_attention. It also creates python flags and a context manager that can be used to turn off and on behavior for dispatch.
- This also adds support for flash_attention with dense tensors.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85984
Approved by: https://github.com/cpuhrsch
2022-10-03 17:36:37 +00:00
Elias Ellison
f183a989a2 Fix fake tensor kernel nesting (#85920)
If you e.g. printed within a decomp which would call `in_kernel_invocation_manager`, on the exit from the manager it would unilaterally remove meta from the tls / set the tensor to return its real device. We should just restore what the existing state was.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85920
Approved by: https://github.com/ezyang, https://github.com/bdhirsh, https://github.com/huydhn
2022-10-02 04:19:40 +00:00
PyTorch MergeBot
b562987c28 Revert "Fix fake tensor kernel nesting (#85920)"
This reverts commit c2d9ea7f4b.

Reverted https://github.com/pytorch/pytorch/pull/85920 on behalf of https://github.com/huydhn due to Sorry for reverting your PR but I suspect that it causes a flaky memory leak issue in TestFakeTensorCUDA.test_fake_crossref_backward_amp_linalg_lstsq_cuda_float32
2022-10-01 19:30:21 +00:00
Elias Ellison
c2d9ea7f4b Fix fake tensor kernel nesting (#85920)
If you e.g. printed within a decomp which would call `in_kernel_invocation_manager`, on the exit from the manager it would unilaterally remove meta from the tls / set the tensor to return its real device. We should just restore what the existing state was.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85920
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
2022-09-30 23:11:20 +00:00
soulitzer
a876432aea Expose torch._will_engine_execute_node (#84773)
Addresses: https://github.com/pytorch/pytorch/issues/83617

This PR a way to query the TLS graph task's exec_info which is a map mapping the Node to a bool indicating whether it will be executed in the current backward pass (as determined by the inputs= argument for .grad of .backward).
- this works with both custom Function nodes and normal codegened nodes
-  to be able to verify whether the pyobject passed is an actual node, we now store pointers to PyTypeObjects into a set on registration.
- error out when .backward without inputs= to avoid silently returning True

Alternatives:
- not sure if it is possible to bind to Python from a raw pointer to Node. At least we wouldn't be able to use existing logic, and the Python object should only hold a weak reference to the Node.
- other solutions to the motivating issue seem to require more extensive modification to the engine

See the issue linked for an example of usage
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84773
Approved by: https://github.com/albanD
2022-09-28 20:13:52 +00:00
Sherlock Huang
01dbbeeeb5 Expose cpp_backtrace to python binding (#84896)
We can now get cpp stack trace by calling torch.utils.get_cpp_backtrace()

Sample output when calling from a torch_dispatch stack:
```
<omitting python frames>
frame #23: torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<pybind11::handle>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName) (0x7f69330bab90 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/utils/python_arg_parser.cpp:323)
frame #24: <unknown function> (0x7f6932a09e79 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/python_variable.cpp:2252)
frame #25: <unknown function> (0x7f69261aee33 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/PythonFallbackKernel.cpp:56)
frame #26: <unknown function> (0x7f69261afef9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:19)
frame #27: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #28: <unknown function> (0x7f6926fae9b9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/boxing.h:227)
frame #29: at::Tensor c10::Dispatcher::redispatch<at::Tensor, at::Tensor const&>(c10::TypedOperatorHandle<at::Tensor (at::Tensor const&)> const&, c10::DispatchKeySet, at::Tensor const&) const (0x7f6926e821f5 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:106)
frame #30: at::_ops::alias::redispatch(c10::DispatchKeySet, at::Tensor const&) (0x7f6927142c31 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:438)
frame #31: <unknown function> (0x7f692ae4f8be in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/ADInplaceOrViewType_1.cpp:1361)
frame #32: <unknown function> (0x7f692ae4f9b1 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/ADInplaceOrViewType_1.cpp:1362)
frame #33: <unknown function> (0x7f692aef77e9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13)
frame #34: <unknown function> (0x7f6926fae7d8 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:50)
frame #35: at::Tensor c10::Dispatcher::redispatch<at::Tensor, at::Tensor const&>(c10::TypedOperatorHandle<at::Tensor (at::Tensor const&)> const&, c10::DispatchKeySet, at::Tensor const&) const (0x7f6926e821c9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:97)
frame #36: at::_ops::alias::redispatch(c10::DispatchKeySet, at::Tensor const&) (0x7f6927142c31 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:438)
frame #37: <unknown function> (0x7f6929ec654a in /fsx/users/bahuang/repos/pytorch_fsx/build/aten/src/ATen/RedispatchFunctions.h:10697)
frame #38: <unknown function> (0x7f6929d9edae in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/VariableType_1.cpp:2837)
frame #39: <unknown function> (0x7f6929d9f043 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/VariableType_1.cpp:2838)
frame #40: <unknown function> (0x7f6929e7d2f9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13)
frame #41: <unknown function> (0x7f6929eb1344 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:478)
frame #42: <unknown function> (0x7f6929ea7b99 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:490)
frame #43: <unknown function> (0x7f6929e7d370 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:563)
frame #44: <unknown function> (0x7f6929e7d43a in /fsx/users/bahuang/repos/pytorch_fsx/c10/util/C++17.h:239)
frame #45: <unknown function> (0x7f6929e7d48c in /fsx/users/bahuang/repos/pytorch_fsx/c10/util/C++17.h:364)
frame #46: <unknown function> (0x7f6929e7d50a in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:554)
frame #47: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #48: c10::KernelFunction::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadd26 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:43)
frame #49: c10::Dispatcher::redispatchBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f692603890a in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:652)
frame #50: <unknown function> (0x7f69260387f9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:388)
frame #51: <unknown function> (0x7f69261af0ef in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/PythonFallbackKernel.cpp:96)
frame #52: <unknown function> (0x7f69261aff2b in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:25)
frame #53: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #54: c10::KernelFunction::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadd26 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:43)
frame #55: c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6925fd6ab2 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:628)
frame #56: <unknown function> (0x7f6925fd6690 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:376)
frame #57: <unknown function> (0x7f692bf5b525 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:380)
frame #58: <unknown function> (0x7f692bf59fac in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/runtime/register_c10_ops.cpp:15)
frame #59: <unknown function> (0x7f692bf5af41 in /usr/include/c++/7/bits/std_function.h:316)
frame #60: std::function<void (std::vector<c10::IValue, std::allocator<c10::IValue> >&)>::operator()(std::vector<c10::IValue, std::allocator<c10::IValue> >&) const (0x7f6932ab9a0f in /usr/include/c++/7/bits/std_function.h:706)
frame #61: <unknown function> (0x7f6932aad541 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/stack.h:41)
frame #62: <unknown function> (0x7f6932ab3102 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/pybind_utils.h:1206 (discriminator 1))
frame #63: <unknown function> (0x7f6932ab3943 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/pybind_utils.h:1272)
frame #64: <unknown function> (0x7f6932a46120 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/init.cpp:1767)
frame #65: <unknown function> (0x7f6932a997be in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/cast.h:1441)
frame #66: <unknown function> (0x7f6932a8a985 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/cast.h:1410)
frame #67: <unknown function> (0x7f6932a66e1e in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:249)
frame #68: <unknown function> (0x7f6932a66ec2 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:224)
frame #69: <unknown function> (0x7f6932473111 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:929)
frame #104: __libc_start_main (0x7f693485dc87 in /build/glibc-uZu3wS/glibc-2.27/csu/../csu/libc-start.c:310)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84896
Approved by: https://github.com/ezyang
2022-09-27 14:59:08 +00:00
Elias Ellison
bcc544e9d7 Add FakeCrossRef tests for backwards, Fix Layer Norm Backward Decomp (#85417)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85417
Approved by: https://github.com/ezyang
2022-09-26 17:08:14 +00:00
PyTorch MergeBot
d10de31cc8 Revert "Add FakeCrossRef tests for backwards, Fix Layer Norm Backward Decomp (#85417)"
This reverts commit 78afa0cf0c.

Reverted https://github.com/pytorch/pytorch/pull/85417 on behalf of https://github.com/clee2000 due to broke tests on trunk 78afa0cf0c
2022-09-23 17:21:43 +00:00
Elias Ellison
78afa0cf0c Add FakeCrossRef tests for backwards, Fix Layer Norm Backward Decomp (#85417)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85417
Approved by: https://github.com/ezyang
2022-09-23 15:50:03 +00:00
Richard Zou
5e5c319549 Move functorch python bindings to torch/csrc (#85426)
This moves functorch's python bindings to torch/csrc/functorch/init.cpp.
Coming next is the torchdim move. I didn't do torchdim yet because
moving functorch's python bindings unblocks some other things that I
want to do first.

Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85426
Approved by: https://github.com/ezyang
2022-09-22 18:47:12 +00:00
PyTorch MergeBot
5043457a8e Revert "Add FakeCrossRef tests for backwards, Fix Layer Norm Backward Decomp (#85417)"
This reverts commit 9c77083965.

Reverted https://github.com/pytorch/pytorch/pull/85417 on behalf of https://github.com/clee2000 due to broke tests on trunk (and pull somehow) 9c77083965
2022-09-22 15:44:38 +00:00
Elias Ellison
9c77083965 Add FakeCrossRef tests for backwards, Fix Layer Norm Backward Decomp (#85417)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85417
Approved by: https://github.com/ezyang
2022-09-22 13:03:57 +00:00
PyTorch MergeBot
3122a96ee4 Revert "Improve and expose cpp_backtrace to python binding (#84896)"
This reverts commit 73fbca1ea6.

Reverted https://github.com/pytorch/pytorch/pull/84896 on behalf of https://github.com/kit1980 due to Broke libtorch and linux-binary-manywheel - 73fbca1ea6
2022-09-21 03:13:20 +00:00
Sherlock Huang
73fbca1ea6 Improve and expose cpp_backtrace to python binding (#84896)
We can now get cpp stack trace by calling torch.utils.get_cpp_backtrace()

Sample output when calling from a torch_dispatch stack:
```
<omitting python frames>
frame #23: torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<pybind11::handle>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName) (0x7f69330bab90 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/utils/python_arg_parser.cpp:323)
frame #24: <unknown function> (0x7f6932a09e79 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/python_variable.cpp:2252)
frame #25: <unknown function> (0x7f69261aee33 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/PythonFallbackKernel.cpp:56)
frame #26: <unknown function> (0x7f69261afef9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:19)
frame #27: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #28: <unknown function> (0x7f6926fae9b9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/boxing.h:227)
frame #29: at::Tensor c10::Dispatcher::redispatch<at::Tensor, at::Tensor const&>(c10::TypedOperatorHandle<at::Tensor (at::Tensor const&)> const&, c10::DispatchKeySet, at::Tensor const&) const (0x7f6926e821f5 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:106)
frame #30: at::_ops::alias::redispatch(c10::DispatchKeySet, at::Tensor const&) (0x7f6927142c31 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:438)
frame #31: <unknown function> (0x7f692ae4f8be in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/ADInplaceOrViewType_1.cpp:1361)
frame #32: <unknown function> (0x7f692ae4f9b1 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/ADInplaceOrViewType_1.cpp:1362)
frame #33: <unknown function> (0x7f692aef77e9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13)
frame #34: <unknown function> (0x7f6926fae7d8 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:50)
frame #35: at::Tensor c10::Dispatcher::redispatch<at::Tensor, at::Tensor const&>(c10::TypedOperatorHandle<at::Tensor (at::Tensor const&)> const&, c10::DispatchKeySet, at::Tensor const&) const (0x7f6926e821c9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:97)
frame #36: at::_ops::alias::redispatch(c10::DispatchKeySet, at::Tensor const&) (0x7f6927142c31 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:438)
frame #37: <unknown function> (0x7f6929ec654a in /fsx/users/bahuang/repos/pytorch_fsx/build/aten/src/ATen/RedispatchFunctions.h:10697)
frame #38: <unknown function> (0x7f6929d9edae in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/VariableType_1.cpp:2837)
frame #39: <unknown function> (0x7f6929d9f043 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/VariableType_1.cpp:2838)
frame #40: <unknown function> (0x7f6929e7d2f9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13)
frame #41: <unknown function> (0x7f6929eb1344 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:478)
frame #42: <unknown function> (0x7f6929ea7b99 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:490)
frame #43: <unknown function> (0x7f6929e7d370 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:563)
frame #44: <unknown function> (0x7f6929e7d43a in /fsx/users/bahuang/repos/pytorch_fsx/c10/util/C++17.h:239)
frame #45: <unknown function> (0x7f6929e7d48c in /fsx/users/bahuang/repos/pytorch_fsx/c10/util/C++17.h:364)
frame #46: <unknown function> (0x7f6929e7d50a in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:554)
frame #47: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #48: c10::KernelFunction::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadd26 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:43)
frame #49: c10::Dispatcher::redispatchBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f692603890a in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:652)
frame #50: <unknown function> (0x7f69260387f9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:388)
frame #51: <unknown function> (0x7f69261af0ef in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/PythonFallbackKernel.cpp:96)
frame #52: <unknown function> (0x7f69261aff2b in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:25)
frame #53: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #54: c10::KernelFunction::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadd26 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:43)
frame #55: c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6925fd6ab2 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:628)
frame #56: <unknown function> (0x7f6925fd6690 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:376)
frame #57: <unknown function> (0x7f692bf5b525 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:380)
frame #58: <unknown function> (0x7f692bf59fac in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/runtime/register_c10_ops.cpp:15)
frame #59: <unknown function> (0x7f692bf5af41 in /usr/include/c++/7/bits/std_function.h:316)
frame #60: std::function<void (std::vector<c10::IValue, std::allocator<c10::IValue> >&)>::operator()(std::vector<c10::IValue, std::allocator<c10::IValue> >&) const (0x7f6932ab9a0f in /usr/include/c++/7/bits/std_function.h:706)
frame #61: <unknown function> (0x7f6932aad541 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/stack.h:41)
frame #62: <unknown function> (0x7f6932ab3102 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/pybind_utils.h:1206 (discriminator 1))
frame #63: <unknown function> (0x7f6932ab3943 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/pybind_utils.h:1272)
frame #64: <unknown function> (0x7f6932a46120 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/init.cpp:1767)
frame #65: <unknown function> (0x7f6932a997be in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/cast.h:1441)
frame #66: <unknown function> (0x7f6932a8a985 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/cast.h:1410)
frame #67: <unknown function> (0x7f6932a66e1e in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:249)
frame #68: <unknown function> (0x7f6932a66ec2 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:224)
frame #69: <unknown function> (0x7f6932473111 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:929)
frame #104: __libc_start_main (0x7f693485dc87 in /build/glibc-uZu3wS/glibc-2.27/csu/../csu/libc-start.c:310)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84896
Approved by: https://github.com/ezyang
2022-09-21 01:32:33 +00:00
Aidyn-A
1456cca1fc Fix exception handling, improve overheads and avoid constructing storage for element size (#84612)
These changes were proposed by @MatthiasKohl in #84271 and #84542 that fix #84267 and #84056 respectively.
The reason I am creating the pull request is CLA check (see original PRs).

cc @ptrblck @malfet
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84612
Approved by: https://github.com/ngimel
2022-09-19 20:21:46 +00:00
soulitzer
7f88934a8f [reland 2] Call jit decomp in VariableType to improve forward AD coverage (#84976)
Reland of https://github.com/pytorch/pytorch/pull/84675
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84976
Approved by: https://github.com/zou3519
2022-09-15 22:46:19 +00:00
PyTorch MergeBot
36d79143ce Revert "[reland] Call jit decomposition in VariableType to increase forward AD coverage (#84151) (#84675)"
This reverts commit bb4e96c964.

Reverted https://github.com/pytorch/pytorch/pull/84675 on behalf of https://github.com/osalpekar due to causing asan xplat link-time errors like ld.lld: error: undefined symbol: torch::jit::has_jit_decomposition(c10::FunctionSchema const&)
2022-09-13 22:54:54 +00:00
soulitzer
bb4e96c964 [reland] Call jit decomposition in VariableType to increase forward AD coverage (#84151) (#84675)
This reverts commit acb4a09628.

In addition, we also fix a memory leak in layer norm.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84675
Approved by: https://github.com/zou3519
2022-09-12 20:33:14 +00:00
Mikayla Gawarecki
e217b30b0f Add torch.nested namespace (#84102)
First step towards #83775
- only `to_padded_tensor` is moved to the nested namespace for now
- following the schema used for `special`, `fft`, `linalg` and other namespaces, nested functions are registered in native_functions.yaml as `nested_{function_name}` and are bound to the desired Python name in
`torch/nested/__init__.py`, and the desired C++ name in `torch/csrc/api/include/torch/nested.h`.

~~**Question**: should we keep the documentation for `Tensor.to_padded_tensor` or can this deleted since it is shared by `torch.nested.to_padded_tensor`?~~

[generated nested docs](https://docs-preview.pytorch.org/84102/nested.html?highlight=nested#module-torch.nested)

Differential Revision: [D39361148](https://our.internmc.facebook.com/intern/diff/D39361148)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84102
Approved by: https://github.com/drisspg
2022-09-12 16:31:05 +00:00
Taylor Robie
1fa9a377d0 [Profiler] Start moving python bindings out of autograd (#82584)
A lot of profiler code still lives in autograd for historic reasons. However as we formalize and clean up profiler internals it makes sense to pull more and more into the profiler folders/namespace. For now I'm just moving some of the core config data structures and those related to `torch::profiler::impl::Result` to keep the scope manageable.

Differential Revision: [D37961462](https://our.internmc.facebook.com/intern/diff/D37961462/)

**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D37961462/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82584
Approved by: https://github.com/albanD, https://github.com/Gamrix
2022-08-19 17:15:18 +00:00
Edward Z. Yang
df69660832 Revert "Revert "Add a lint rule for torch/csrc/util/pybind.h include (#82552)"" (#82599)
This reverts commit 532b8a9e00.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82599
Approved by: https://github.com/albanD
2022-08-02 19:37:02 +00:00
Elias Ellison
642aed8b99 Add Autocast Support for FakeTensors / use fake device dispatch keys (#82449)
From PR:
```
Note: [Fake Tensor Dispatch Keys]
In order to model the behavior of device-specific autocast
and autograd logic, we update the dispatch keys of FakeTensors
to reflect their fake device. This includes the BackendComponent
(DispatchKey::Meta -> DispatchKey::CUDA), and also the BackendComponent
related Autocast and Autograd keys. __torch__dispatch__ sits below
Autocast and Autograd, and is only invoked when we are at the
kernel for the BackendComponent. Then, we add Meta to the
thread-local dispatch include set to hit the meta kernel
instead of the kernel of the BackendComponent for the fake device.
```

Also adds the `conv1/2/3d.padding` operators to the Autocast rule set. Without that fix, the FakeTensor dtype would diverge.

See: https://github.com/pytorch/pytorch/issues/81608

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82449
Approved by: https://github.com/ezyang
2022-08-01 21:40:36 +00:00
PyTorch MergeBot
532b8a9e00 Revert "Add a lint rule for torch/csrc/util/pybind.h include (#82552)"
This reverts commit 9465c0e0b5.

Reverted https://github.com/pytorch/pytorch/pull/82552 on behalf of https://github.com/zengk95 due to This seems to be breaking windows binary wheels
2022-08-01 20:25:35 +00:00
Edward Z. Yang
9465c0e0b5 Add a lint rule for torch/csrc/util/pybind.h include (#82552)
We define specializations for pybind11 defined templates
(in particular, PYBIND11_DECLARE_HOLDER_TYPE) and consequently
it is important that these specializations *always* be #include'd
when making use of pybind11 templates whose behavior depends on
these specializations, otherwise we can cause an ODR violation.

The easiest way to ensure that all the specializations are always
loaded is to designate a header (in this case, torch/csrc/util/pybind.h)
that ensures the specializations are defined, and then add a lint
to ensure this header is included whenever pybind11 headers are
included.

The existing grep linter didn't have enough knobs to do this
conveniently, so I added some features.  I'm open to suggestions
for how to structure the features better.  The main changes:

- Added an --allowlist-pattern flag, which turns off the grep lint
  if some other line exists.  This is used to stop the grep
  lint from complaining about pybind11 includes if the util
  include already exists.

- Added --match-first-only flag, which lets grep only match against
  the first matching line.  This is because, even if there are multiple
  includes that are problematic, I only need to fix one of them.
  We don't /really/ need this, but when I was running lintrunner -a
  to fixup the preexisting codebase it was annoying without this,
  as the lintrunner overall driver fails if there are multiple edits
  on the same file.

I excluded any files that didn't otherwise have a dependency on
torch/ATen, this was mostly caffe2 and the valgrind wrapper compat
bindings.

Note the grep replacement is kind of crappy, but clang-tidy lint
cleaned it up in most cases.

See also https://github.com/pybind/pybind11/issues/4099

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82552
Approved by: https://github.com/albanD
2022-08-01 17:16:58 +00:00
Jing Xu
0e95746580 [RFC] enable oneMKL&oneDNN on-demands verbose functinality (#63212)
**RFC:
Problem statement** 
Intel oneMKL and oneDNN are used to accelerate performance on Intel platforms. Both these 2 libraries provide verbose functionality to dump detailed operator execution information as well as execution time. These verbose messages are very helpful to performance profiling. However, the verbose functionality works for the entire execution. In many scenarios, though, we only would like to profile partial of the execution process. This feature is to expose PyTorch API functions to control oneDNN and oneMKL verbose functionality in runtime.

**Additional context**  
The most used performance profiling steps are shown as the following code snippet:

```
def inference(model, inputs):
    # step0 (optional): jit
    model = torch.jit.trace(model, inputs)

    # step1: warmup
    for _ in range(100):
        model(inputs)

    # step2: performance profiling. We only care the profiling result, as well as oneDNN and oneMKL verbose messages, of this step
    model(inputs)

    # step3 (optional): benchmarking
    t0 = time.time()
    for _ in range(100):
        model(inputs)
    t1 = time.time()
    print(‘dur: {}’.format((t1-t0)/100))
    return model(inputs)
```

Since environment variables MKL_VERBOSE and DNNL_VERBOSE will be effect to the entire progress, we will get a great number of verbose messages for all of 101 iterations (if step3 is not involved). However, we only care about the verbose messages dumped in step2. It is very difficult to filter unnecessary verbose messages out if we are running into a complicated usages scenario. Also, jit trace will also bring more undesired verbose messages.

Furthermore, there are more complicated topologies or usages like cascaded topologies as below:

```
model1 = Model1()
model2 = Model2()
model3 = Model3()
x1 = inference(model1, x)
x2 = inference(model2, x1)
y = inference(model3, x2)
```

There are many cases that it is very hard to split these child topologies out. In this scenario, it is not possible to investigate performance of each individual topology with `DNNL_VERBOSE` and `MKL_VERBOSE`.

To solve this issue, oneDNN and oneMKL provide API functions to make it possible to control verbose functionality in runtime.
```
int mkl_verbose (int enable)
status dnnl::set_verbose(int level)
```

oneDNN and oneMKL print verbose messages to stdout when oneMKL or oneDNN ops are executed.
Sample verbose messages:
```
MKL_VERBOSE SGEMM(t,n,768,2048,3072,0x7fff64115800,0x7fa1aca58040,3072,0x1041f5c0,3072,0x7fff64115820,0x981f0c0,768) 8.52ms CNR:OFF Dyn:1 FastMM:1 TID:0  NThr:44
dnnl_verbose,exec,cpu,inner_product,brgemm:avx512_core,forward_training,src_f32::blocked:ab:f0 wei_f32::blocked:AB16b64a:f0 bia_f32::blocked:a:f0 dst_f32::blocked:ab:f0,,,mb16ic768oc768,0.0839844
```

**Design and implementation** 
The design is to make python-interfaced wrap functions to invoke mkl_verbose and dnnl::set_verbose functions.

**Design concern**  

- Need to add wrapper C++ functions for mkl_verbose and dnnl::set_verbose functions in torch/csrc and aten/csrc.
- Python API functions will be added to device-specific backends
  - with torch.backends.mkl.verbose(1):
  - with torch.backends.mkldnn.verbose(1):

**Use cases**  
```
def inference(model, inputs):
    # step0 (optional): jit
    model = torch.jit.trace(model, inputs)

    # step1: warmup
    for _ in range(100):
        model(inputs)

    # step2: performance profiling
    with torch.backends.mkl.verbose(1), torch.backends.mkldnn.verbose(1):
        model(inputs)

    # step3 (optional): benchmarking
    t0 = time.time()
    for _ in range(100):
        model(inputs)
    t1 = time.time()
    print(‘dur: {}’.format((t1-t0)/100))
    return model(inputs)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63212
Approved by: https://github.com/VitalyFedyunin, https://github.com/malfet
2022-07-27 23:29:35 +00:00