pytorch/torch/csrc/Module.cpp
Jing Xu 0e95746580 [RFC] enable oneMKL&oneDNN on-demands verbose functinality (#63212)
**RFC:
Problem statement** 
Intel oneMKL and oneDNN are used to accelerate performance on Intel platforms. Both these 2 libraries provide verbose functionality to dump detailed operator execution information as well as execution time. These verbose messages are very helpful to performance profiling. However, the verbose functionality works for the entire execution. In many scenarios, though, we only would like to profile partial of the execution process. This feature is to expose PyTorch API functions to control oneDNN and oneMKL verbose functionality in runtime.

**Additional context**  
The most used performance profiling steps are shown as the following code snippet:

```
def inference(model, inputs):
    # step0 (optional): jit
    model = torch.jit.trace(model, inputs)

    # step1: warmup
    for _ in range(100):
        model(inputs)

    # step2: performance profiling. We only care the profiling result, as well as oneDNN and oneMKL verbose messages, of this step
    model(inputs)

    # step3 (optional): benchmarking
    t0 = time.time()
    for _ in range(100):
        model(inputs)
    t1 = time.time()
    print(‘dur: {}’.format((t1-t0)/100))
    return model(inputs)
```

Since environment variables MKL_VERBOSE and DNNL_VERBOSE will be effect to the entire progress, we will get a great number of verbose messages for all of 101 iterations (if step3 is not involved). However, we only care about the verbose messages dumped in step2. It is very difficult to filter unnecessary verbose messages out if we are running into a complicated usages scenario. Also, jit trace will also bring more undesired verbose messages.

Furthermore, there are more complicated topologies or usages like cascaded topologies as below:

```
model1 = Model1()
model2 = Model2()
model3 = Model3()
x1 = inference(model1, x)
x2 = inference(model2, x1)
y = inference(model3, x2)
```

There are many cases that it is very hard to split these child topologies out. In this scenario, it is not possible to investigate performance of each individual topology with `DNNL_VERBOSE` and `MKL_VERBOSE`.

To solve this issue, oneDNN and oneMKL provide API functions to make it possible to control verbose functionality in runtime.
```
int mkl_verbose (int enable)
status dnnl::set_verbose(int level)
```

oneDNN and oneMKL print verbose messages to stdout when oneMKL or oneDNN ops are executed.
Sample verbose messages:
```
MKL_VERBOSE SGEMM(t,n,768,2048,3072,0x7fff64115800,0x7fa1aca58040,3072,0x1041f5c0,3072,0x7fff64115820,0x981f0c0,768) 8.52ms CNR:OFF Dyn:1 FastMM:1 TID:0  NThr:44
dnnl_verbose,exec,cpu,inner_product,brgemm:avx512_core,forward_training,src_f32::blocked:ab:f0 wei_f32::blocked:AB16b64a:f0 bia_f32::blocked:a:f0 dst_f32::blocked:ab:f0,,,mb16ic768oc768,0.0839844
```

**Design and implementation** 
The design is to make python-interfaced wrap functions to invoke mkl_verbose and dnnl::set_verbose functions.

**Design concern**  

- Need to add wrapper C++ functions for mkl_verbose and dnnl::set_verbose functions in torch/csrc and aten/csrc.
- Python API functions will be added to device-specific backends
  - with torch.backends.mkl.verbose(1):
  - with torch.backends.mkldnn.verbose(1):

**Use cases**  
```
def inference(model, inputs):
    # step0 (optional): jit
    model = torch.jit.trace(model, inputs)

    # step1: warmup
    for _ in range(100):
        model(inputs)

    # step2: performance profiling
    with torch.backends.mkl.verbose(1), torch.backends.mkldnn.verbose(1):
        model(inputs)

    # step3 (optional): benchmarking
    t0 = time.time()
    for _ in range(100):
        model(inputs)
    t1 = time.time()
    print(‘dur: {}’.format((t1-t0)/100))
    return model(inputs)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63212
Approved by: https://github.com/VitalyFedyunin, https://github.com/malfet
2022-07-27 23:29:35 +00:00

1304 lines
41 KiB
C++

#include <sys/types.h>
#include <torch/csrc/python_headers.h>
#ifndef _MSC_VER
#include <sys/socket.h>
#endif
#include <ATen/ATen.h>
#include <ATen/DLConvertor.h>
#include <ATen/ExpandUtils.h>
#include <ATen/LinalgBackend.h>
#include <ATen/Parallel.h>
#include <ATen/Utils.h>
#include <ATen/VmapMode.h>
#include <ATen/core/Vitals.h>
#include <ATen/dlpack.h>
#include <ATen/native/ConvUtils.h>
#include <c10/util/Logging.h>
#include <c10/util/irange.h>
#include <libshm.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <torch/csrc/THConcat.h>
#include <cstdlib>
#include <unordered_map>
#include <torch/csrc/DataLoader.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/QScheme.h>
#include <torch/csrc/Stream.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/TypeInfo.h>
#include <torch/csrc/api/include/torch/python/init.h>
#include <torch/csrc/autograd/python_enum_tag.h>
#include <torch/csrc/autograd/python_fft_functions.h>
#include <torch/csrc/autograd/python_legacy_variable.h>
#include <torch/csrc/autograd/python_linalg_functions.h>
#include <torch/csrc/autograd/python_nn_functions.h>
#include <torch/csrc/autograd/python_return_types.h>
#include <torch/csrc/autograd/python_sparse_functions.h>
#include <torch/csrc/autograd/python_special_functions.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/jit/python/init.h>
#include <torch/csrc/jit/python/python_ir.h>
#include <torch/csrc/jit/python/python_tracer.h>
#include <torch/csrc/lazy/python/init.h>
#include <torch/csrc/monitor/python_init.h>
#include <torch/csrc/multiprocessing/init.h>
#include <torch/csrc/onnx/init.h>
#include <torch/csrc/tensor/python_tensor.h>
#include <torch/csrc/utils/disable_torch_function.h>
#include <torch/csrc/utils/init.h>
#include <torch/csrc/utils/pycfunction_helpers.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/utils/python_compat.h>
#include <torch/csrc/utils/python_dispatch.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/tensor_dtypes.h>
#include <torch/csrc/utils/tensor_layouts.h>
#include <torch/csrc/utils/tensor_memoryformats.h>
#include <torch/csrc/utils/tensor_new.h>
#include <torch/csrc/utils/tensor_numpy.h>
#include <torch/csrc/utils/tensor_qschemes.h>
#ifdef USE_DISTRIBUTED
#ifdef USE_C10D
#include <torch/csrc/distributed/autograd/python_autograd.h>
#include <torch/csrc/distributed/c10d/c10d.h>
#include <torch/csrc/distributed/rpc/rpc.h>
#include <torch/csrc/distributed/rpc/testing/testing.h>
#endif
#endif
#if defined(USE_VALGRIND)
#include <callgrind.h>
#endif
namespace py = pybind11;
PyObject* module;
THPGenerator* THPDefaultCPUGenerator = nullptr;
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
static PyObject* THPModule_initNames(PyObject* self, PyObject* arg) {
static std::vector<std::string> names;
THPObjectPtr types(PySequence_Fast(arg, "expected a sequence"));
if (!types)
return nullptr;
// NOLINTNEXTLINE(bugprone-branch-clone)
auto num_classes = PySequence_Fast_GET_SIZE(types.get());
names.reserve(names.size() + num_classes);
for (Py_ssize_t i = 0; i < num_classes; i++) {
PyObject* obj = PySequence_Fast_GET_ITEM(types.get(), i);
THPUtils_assert(PyType_Check(obj), "expected a PyTypeObject");
PyTypeObject* type = (PyTypeObject*)obj;
THPObjectPtr module_name(PyObject_GetAttrString(obj, "__module__"));
if (!module_name)
return nullptr;
THPUtils_assert(
THPUtils_checkString(module_name.get()),
"expected __module__ to be a string");
std::string name = THPUtils_unpackString(module_name.get());
names.emplace_back(name + "." + type->tp_name);
type->tp_name = names.back().c_str();
}
Py_RETURN_NONE;
}
//
// Callback for python part. Used for additional initialization of python
// classes
static PyObject* THPModule_initExtension(
PyObject* _unused,
PyObject* shm_manager_path) {
HANDLE_TH_ERRORS
if (!THPUtils_checkString(shm_manager_path)) {
THPUtils_setError(
"initialization error - expected bytes/string object as shm_manager_path!");
return nullptr;
}
torch::utils::initializeLayouts();
torch::utils::initializeMemoryFormats();
torch::utils::initializeQSchemes();
torch::utils::initializeDtypes();
torch::tensors::initialize_python_bindings();
std::string path = THPUtils_unpackString(shm_manager_path);
libshm_init(path.c_str());
auto module = THPObjectPtr(PyImport_ImportModule("torch"));
if (!module)
throw python_error();
THPStorage_postInit(module);
THPAutograd_initFunctions();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// The idea behind these two functions is to make it easy to test if we are
// built with ASAN: they're designed not to crash if ASAN is not enabled, but
// to trigger ASAN if it is enabled. This lets us run a "canary" tests which
// checks if our build environment is misconfigured.
static PyObject* THPModule_crashIfCsrcASAN(PyObject* module, PyObject* arg) {
THPUtils_assert(
THPUtils_checkLong(arg),
"crash_if_csrc_asan expects an int, "
"but got %s",
THPUtils_typename(arg));
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays, modernize-avoid-c-arrays)
volatile char x[3];
x[THPUtils_unpackInt(arg)] = 0;
// NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
return THPUtils_packInt32(x[0]);
}
static PyObject* THPModule_crashIfCsrcUBSAN(PyObject* module, PyObject* arg) {
THPUtils_assert(
THPUtils_checkLong(arg),
"crash_if_csrc_ubsan expects an int, "
"but got %s",
THPUtils_typename(arg));
int32_t x = THPUtils_unpackInt(arg);
double y = 1.0 / x;
return THPUtils_packInt32((int)y);
}
static PyObject* THPModule_crashIfATenASAN(PyObject* module, PyObject* arg) {
THPUtils_assert(
THPUtils_checkLong(arg),
"crash_if_aten_asan expects an int, "
"but got %s",
THPUtils_typename(arg));
return THPUtils_packInt32(at::_crash_if_asan(THPUtils_unpackInt(arg)));
}
static PyObject* THPModule_getNumThreads(PyObject* module, PyObject* noargs) {
return THPUtils_packInt32(at::get_num_threads());
}
static PyObject* THPModule_setNumThreads(PyObject* module, PyObject* arg) {
THPUtils_assert(
THPUtils_checkLong(arg),
"set_num_threads expects an int, "
"but got %s",
THPUtils_typename(arg));
int nthreads = (int)THPUtils_unpackLong(arg);
THPUtils_assert(nthreads > 0, "set_num_threads expects a positive integer");
at::set_num_threads(nthreads);
Py_RETURN_NONE;
}
static PyObject* THPModule_getNumInteropThreads(
PyObject* module,
PyObject* noargs) {
return THPUtils_packInt32(at::get_num_interop_threads());
}
static PyObject* THPModule_setNumInteropThreads(
PyObject* module,
PyObject* arg) {
THPUtils_assert(
THPUtils_checkLong(arg),
"set_num_interop_threads expects an int, "
"but got %s",
THPUtils_typename(arg));
int nthreads = (int)THPUtils_unpackLong(arg);
THPUtils_assert(
nthreads > 0, "set_num_interop_threads expects a positive integer");
at::set_num_interop_threads(nthreads);
Py_RETURN_NONE;
}
PyObject* THPModule_setDefaultTensorType(PyObject* _unused, PyObject* type) {
HANDLE_TH_ERRORS
torch::tensors::py_set_default_tensor_type(type);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_setDefaultDtype(PyObject* _unused, PyObject* dtype) {
HANDLE_TH_ERRORS
torch::tensors::py_set_default_dtype(dtype);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_addDocStr(PyObject* _unused, PyObject* args) {
// adds a __doc__ string to a function, similar to numpy's arr_add_docstring
static std::vector<std::string> all_docs;
PyObject* obj = nullptr;
PyObject* doc_obj = nullptr;
if (!PyArg_ParseTuple(args, "OO", &obj, &doc_obj)) {
return nullptr;
}
const char* doc_str = "<invalid string>";
if (THPUtils_checkString(doc_obj)) {
all_docs.push_back(THPUtils_unpackString(doc_obj));
doc_str = all_docs.back().c_str();
}
if (Py_TYPE(obj) == &PyCFunction_Type) {
PyCFunctionObject* f = (PyCFunctionObject*)obj;
if (f->m_ml->ml_doc) {
return PyErr_Format(
PyExc_RuntimeError,
"function '%s' already has a docstring",
f->m_ml->ml_name);
}
f->m_ml->ml_doc = doc_str;
} else if (strcmp(Py_TYPE(obj)->tp_name, "method_descriptor") == 0) {
PyMethodDescrObject* m = (PyMethodDescrObject*)obj;
if (m->d_method->ml_doc) {
return PyErr_Format(
PyExc_RuntimeError,
"method '%s' already has a docstring",
m->d_method->ml_name);
}
m->d_method->ml_doc = doc_str;
} else if (strcmp(Py_TYPE(obj)->tp_name, "getset_descriptor") == 0) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-cstyle-cast)
PyGetSetDescrObject* m = (PyGetSetDescrObject*)obj;
if (m->d_getset->doc) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-vararg)
return PyErr_Format(
PyExc_RuntimeError,
"attribute '%s' already has a docstring",
m->d_getset->name);
}
// This field is not const for python < 3.7 yet the content is
// never modified.
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
m->d_getset->doc = const_cast<char*>(doc_str);
} else if (Py_TYPE(obj) == &PyType_Type) {
PyTypeObject* t = (PyTypeObject*)obj;
if (t->tp_doc) {
return PyErr_Format(
PyExc_RuntimeError, "Type '%s' already has a docstring", t->tp_name);
}
t->tp_doc = doc_str;
} else {
return PyErr_Format(
PyExc_TypeError,
"don't know how to add docstring to type '%s'",
Py_TYPE(obj)->tp_name);
}
Py_INCREF(obj);
return obj;
}
PyObject* THPModule_inferSize(PyObject* _unused, PyObject* args) {
HANDLE_TH_ERRORS
Py_ssize_t num_args = args ? (Py_ssize_t)PyTuple_Size(args) : 0;
THPUtils_assert(num_args == 2, "expected exactly 2 arguments");
PyObject* arg1 = PyTuple_GET_ITEM(args, 0);
THPUtils_assert(THPSize_Check(arg1), "expected a torch.Size as argument 1");
PyObject* arg2 = PyTuple_GET_ITEM(args, 1);
THPUtils_assert(THPSize_Check(arg2), "expected a torch.Size as argument 2");
auto size1 = THPUtils_unpackLongs(arg1);
auto size2 = THPUtils_unpackLongs(arg2);
auto sizes = at::infer_size(size1, size2);
return THPSize_NewFromSizes(sizes.size(), sizes.data());
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_setBackcompatBroadcastWarn(
PyObject* module,
PyObject* arg) {
THPUtils_assert(
PyBool_Check(arg),
"set_backcompat_broadcast_warn expects a bool, "
"but got %s",
THPUtils_typename(arg));
setBackCompatBroadcastWarn(arg == Py_True);
Py_RETURN_NONE;
}
static PyObject* THPModule_getBackcompatBroadcastWarn(
PyObject* module,
PyObject* noargs) {
if (getBackCompatBroadcastWarn())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
static PyObject* THPModule_setBackcompatKeepdimWarn(
PyObject* module,
PyObject* arg) {
THPUtils_assert(
PyBool_Check(arg),
"set_backcompat_keepdim_warn expects a bool, "
"but got %s",
THPUtils_typename(arg));
setBackCompatKeepdimWarn(arg == Py_True);
Py_RETURN_NONE;
}
static PyObject* THPModule_getBackcompatKeepdimWarn(
PyObject* module,
PyObject* noargs) {
if (getBackCompatKeepdimWarn())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_hasDistributed(PyObject* _unused, PyObject* noargs) {
#ifdef USE_DISTRIBUTED
Py_RETURN_TRUE;
#else
Py_RETURN_FALSE;
#endif
}
static PyObject* THPModule_showConfig(PyObject* module, PyObject* noargs) {
HANDLE_TH_ERRORS
return THPUtils_packString(at::show_config());
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_cxxFlags(PyObject* module, PyObject* noargs) {
HANDLE_TH_ERRORS
return THPUtils_packString(at::get_cxx_flags());
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_parallelInfo(PyObject* module, PyObject* noargs) {
HANDLE_TH_ERRORS
return THPUtils_packString(at::get_parallel_info());
END_HANDLE_TH_ERRORS
}
void DLPack_Capsule_Destructor(PyObject* data) {
HANDLE_TH_ERRORS
DLManagedTensor* dlMTensor =
(DLManagedTensor*)PyCapsule_GetPointer(data, "dltensor");
if (dlMTensor) {
// the dlMTensor has not been consumed, call deleter ourselves
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
dlMTensor->deleter(const_cast<DLManagedTensor*>(dlMTensor));
} else {
// the dlMTensor has been consumed
// PyCapsule_GetPointer has set an error indicator
PyErr_Clear();
}
END_HANDLE_TH_ERRORS_RET()
}
PyObject* THPModule_toDLPack(PyObject* _unused, PyObject* data) {
HANDLE_TH_ERRORS
THPUtils_assert(THPVariable_Check(data), "data must be a Tensor");
DLManagedTensor* dlMTensor = at::toDLPack(THPVariable_Unpack(data));
return PyCapsule_New(dlMTensor, "dltensor", DLPack_Capsule_Destructor);
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_fromDLPack(PyObject* _unused, PyObject* data) {
using namespace torch::autograd;
HANDLE_TH_ERRORS
auto tensor = torch::utils::tensor_fromDLPack(data);
return THPVariable_Wrap(tensor);
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_setAllowTF32CuDNN(PyObject* _unused, PyObject* arg) {
THPUtils_assert(
PyBool_Check(arg),
"set_allow_tf32_cublas expects a bool, "
"but got %s",
THPUtils_typename(arg));
at::globalContext().setAllowTF32CuDNN(arg == Py_True);
Py_RETURN_NONE;
}
PyObject* THPModule_allowTF32CuDNN(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().allowTF32CuDNN())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setFloat32MatmulPrecision(
PyObject* _unused,
PyObject* arg) {
THPUtils_assert(
THPUtils_checkString(arg),
"set_float32_matmul_precision expects a str, "
"but got %s",
THPUtils_typename(arg));
std::string s = THPUtils_unpackString(arg);
at::globalContext().setFloat32MatmulPrecision(s);
Py_RETURN_NONE;
}
PyObject* THPModule_float32MatmulPrecision(
PyObject* _unused,
PyObject* noargs) {
std::string s = "highest";
auto p = at::globalContext().float32MatmulPrecision();
if (p == at::Float32MatmulPrecision::HIGH) {
s = "high";
} else if (p == at::Float32MatmulPrecision::MEDIUM) {
s = "medium";
}
return THPUtils_packString(s);
}
PyObject* THPModule_setUserEnabledCuDNN(PyObject* _unused, PyObject* arg) {
THPUtils_assert(
PyBool_Check(arg),
"set_enabled_cudnn expects a bool, "
"but got %s",
THPUtils_typename(arg));
at::globalContext().setUserEnabledCuDNN(arg == Py_True);
Py_RETURN_NONE;
}
PyObject* THPModule_userEnabledCuDNN(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().userEnabledCuDNN())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setUserEnabledMkldnn(PyObject* _unused, PyObject* arg) {
THPUtils_assert(
PyBool_Check(arg),
"set_enabled_mkldnn expects a bool, "
"but got %s",
THPUtils_typename(arg));
at::globalContext().setUserEnabledMkldnn(arg == Py_True);
Py_RETURN_NONE;
}
PyObject* THPModule_userEnabledMkldnn(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().userEnabledMkldnn())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setDeterministicCuDNN(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
THPUtils_assert(
PyBool_Check(arg),
"set_deterministic_cudnn expects a bool, "
"but got %s",
THPUtils_typename(arg));
at::globalContext().setDeterministicCuDNN(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_deterministicCuDNN(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().deterministicCuDNN())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setDeterministicAlgorithms(
PyObject* _unused,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
static torch::PythonArgParser parser(
{"_set_deterministic_algorithms(bool mode, *, bool warn_only=False)"});
torch::ParsedArgs<2> parsed_args{};
auto r = parser.parse(args, kwargs, parsed_args);
bool mode = r.toBool(0);
bool warn_only = r.toBool(1);
at::globalContext().setDeterministicAlgorithms(mode, warn_only);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_deterministicAlgorithms(
PyObject* _unused,
PyObject* noargs) {
if (at::globalContext().deterministicAlgorithms()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* THPModule_deterministicAlgorithmsWarnOnly(
PyObject* _unused,
PyObject* noargs) {
if (at::globalContext().deterministicAlgorithmsWarnOnly()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* THPModule_setWarnAlways(PyObject* _unused, PyObject* arg) {
THPUtils_assert(
PyBool_Check(arg),
"setWarnOnlyOnce expects a bool, "
"but got %s",
THPUtils_typename(arg));
c10::Warning::set_warnAlways(arg == Py_True);
Py_RETURN_NONE;
}
PyObject* THPModule_warnAlways(PyObject* _unused, PyObject* noargs) {
if (c10::Warning::get_warnAlways()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* THPModule_setBenchmarkCuDNN(PyObject* _unused, PyObject* arg) {
THPUtils_assert(
PyBool_Check(arg),
"set_benchmark_cudnn expects a bool, "
"but got %s",
THPUtils_typename(arg));
at::globalContext().setBenchmarkCuDNN(arg == Py_True);
Py_RETURN_NONE;
}
PyObject* THPModule_benchmarkCuDNN(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().benchmarkCuDNN()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* THPModule_setAllowTF32CuBLAS(PyObject* _unused, PyObject* arg) {
THPUtils_assert(
PyBool_Check(arg),
"set_allow_tf32_cublas expects a bool, "
"but got %s",
THPUtils_typename(arg));
at::globalContext().setAllowTF32CuBLAS(arg == Py_True);
Py_RETURN_NONE;
}
PyObject* THPModule_allowTF32CuBLAS(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().allowTF32CuBLAS()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* THPModule_setAllowFP16ReductionCuBLAS(
PyObject* _unused,
PyObject* arg) {
THPUtils_assert(
PyBool_Check(arg),
"set_allow_fp16_reduction_cublas expects a bool, "
"but got %s",
THPUtils_typename(arg));
at::globalContext().setAllowFP16ReductionCuBLAS(arg == Py_True);
Py_RETURN_NONE;
}
PyObject* THPModule_allowFP16ReductionCuBLAS(
PyObject* _unused,
PyObject* noargs) {
if (at::globalContext().allowFP16ReductionCuBLAS()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* THPModule_setFlushDenormal(PyObject* _unused, PyObject* arg) {
THPUtils_assert(
PyBool_Check(arg),
"flush_denormal expects a bool, "
"but got %s",
THPUtils_typename(arg));
if (!at::globalContext().setFlushDenormal(arg == Py_True)) {
Py_RETURN_FALSE;
};
Py_RETURN_TRUE;
}
PyObject* THPModule_getDefaultDtype(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
auto scalar_type = torch::tensors::get_default_scalar_type();
auto dtype = (PyObject*)torch::getTHPDtype(scalar_type);
Py_INCREF(dtype);
return dtype;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_getDefaultDevice(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
return THPUtils_packString(c10::DeviceTypeName(
dispatchKeyToDeviceType(torch::tensors::get_default_dispatch_key()),
/*lower_case=*/true));
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_setQEngine(PyObject* /* unused */, PyObject* arg) {
THPUtils_assert(
THPUtils_checkLong(arg),
"set_qengine expects an int, "
"but got %s",
THPUtils_typename(arg));
HANDLE_TH_ERRORS
auto qengine = static_cast<int>(THPUtils_unpackLong(arg));
at::globalContext().setQEngine(static_cast<at::QEngine>(qengine));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_qEngine(PyObject* _unused, PyObject* noargs) {
return THPUtils_packInt64(static_cast<int>(at::globalContext().qEngine()));
}
PyObject* THPModule_supportedQEngines(PyObject* _unused, PyObject* noargs) {
auto qengines = at::globalContext().supportedQEngines();
auto list = THPObjectPtr(PyList_New(qengines.size()));
if (!list)
return nullptr;
for (const auto i : c10::irange(qengines.size())) {
PyObject* i64 = THPUtils_packInt64(static_cast<int>(qengines[i]));
if (!i64)
return nullptr;
PyList_SET_ITEM(list.get(), i, i64);
}
return list.release();
}
PyObject* THPModule_isEnabledXNNPACK(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().isXNNPACKAvailable())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setDefaultMobileCPUAllocator(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
at::globalContext().setDefaultMobileCPUAllocator();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_unsetDefaultMobileCPUAllocator(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
at::globalContext().unsetDefaultMobileCPUAllocator();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_vmapmode_increment_nesting(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
return THPUtils_packInt64(at::impl::VmapMode::increment_nesting());
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_vmapmode_decrement_nesting(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
return THPUtils_packInt64(at::impl::VmapMode::decrement_nesting());
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_set_display_vmap_fallback_warnings_mode(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
THPUtils_assert(
PyBool_Check(arg),
"enabled must be a bool, "
"but got %s",
THPUtils_typename(arg));
at::globalContext().setDisplayVmapFallbackWarnings(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_are_vmap_fallback_warnings_enabled(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
if (at::globalContext().areVmapFallbackWarningsEnabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,
// cppcoreguidelines-avoid-non-const-global-variables, modernize-avoid-c-arrays)
static PyMethodDef TorchMethods[] = {
{"_initExtension", THPModule_initExtension, METH_O, nullptr},
{"_autograd_init", THPAutograd_initExtension, METH_NOARGS, nullptr},
{"_add_docstr", THPModule_addDocStr, METH_VARARGS, nullptr},
{"_init_names", THPModule_initNames, METH_O, nullptr},
{"_has_distributed", THPModule_hasDistributed, METH_NOARGS, nullptr},
{"_set_default_tensor_type",
THPModule_setDefaultTensorType,
METH_O,
nullptr},
{"_set_default_dtype", THPModule_setDefaultDtype, METH_O, nullptr},
{"_infer_size", THPModule_inferSize, METH_VARARGS, nullptr},
{"_crash_if_csrc_asan", THPModule_crashIfCsrcASAN, METH_O, nullptr},
{"_crash_if_csrc_ubsan", THPModule_crashIfCsrcUBSAN, METH_O, nullptr},
{"_crash_if_aten_asan", THPModule_crashIfATenASAN, METH_O, nullptr},
{"_show_config", THPModule_showConfig, METH_NOARGS, nullptr},
{"_cxx_flags", THPModule_cxxFlags, METH_NOARGS, nullptr},
{"_parallel_info", THPModule_parallelInfo, METH_NOARGS, nullptr},
{"_set_backcompat_broadcast_warn",
THPModule_setBackcompatBroadcastWarn,
METH_O,
nullptr},
{"_get_backcompat_broadcast_warn",
THPModule_getBackcompatBroadcastWarn,
METH_NOARGS,
nullptr},
{"_set_backcompat_keepdim_warn",
THPModule_setBackcompatKeepdimWarn,
METH_O,
nullptr},
{"_get_backcompat_keepdim_warn",
THPModule_getBackcompatKeepdimWarn,
METH_NOARGS,
nullptr},
{"get_num_threads", THPModule_getNumThreads, METH_NOARGS, nullptr},
{"set_num_threads", THPModule_setNumThreads, METH_O, nullptr},
{"get_num_interop_threads",
THPModule_getNumInteropThreads,
METH_NOARGS,
nullptr},
{"set_num_interop_threads",
THPModule_setNumInteropThreads,
METH_O,
nullptr},
{"_get_cudnn_enabled", THPModule_userEnabledCuDNN, METH_NOARGS, nullptr},
{"_set_cudnn_enabled", THPModule_setUserEnabledCuDNN, METH_O, nullptr},
{"_get_mkldnn_enabled", THPModule_userEnabledMkldnn, METH_NOARGS, nullptr},
{"_set_mkldnn_enabled", THPModule_setUserEnabledMkldnn, METH_O, nullptr},
{"_get_cudnn_allow_tf32", THPModule_allowTF32CuDNN, METH_NOARGS, nullptr},
{"_set_cudnn_allow_tf32", THPModule_setAllowTF32CuDNN, METH_O, nullptr},
{"_get_cudnn_benchmark", THPModule_benchmarkCuDNN, METH_NOARGS, nullptr},
{"_set_cudnn_benchmark", THPModule_setBenchmarkCuDNN, METH_O, nullptr},
{"_get_cudnn_deterministic",
THPModule_deterministicCuDNN,
METH_NOARGS,
nullptr},
{"_set_cudnn_deterministic",
THPModule_setDeterministicCuDNN,
METH_O,
nullptr},
{"_get_deterministic_algorithms",
THPModule_deterministicAlgorithms,
METH_NOARGS,
nullptr},
{"_get_deterministic_algorithms_warn_only",
THPModule_deterministicAlgorithmsWarnOnly,
METH_NOARGS,
nullptr},
{"_set_deterministic_algorithms",
castPyCFunctionWithKeywords(THPModule_setDeterministicAlgorithms),
METH_VARARGS | METH_KEYWORDS,
nullptr},
{"_get_warnAlways", THPModule_warnAlways, METH_NOARGS, nullptr},
{"_set_warnAlways", THPModule_setWarnAlways, METH_O, nullptr},
{"_get_cublas_allow_tf32", THPModule_allowTF32CuBLAS, METH_NOARGS, nullptr},
{"_set_cublas_allow_tf32", THPModule_setAllowTF32CuBLAS, METH_O, nullptr},
{"_get_float32_matmul_precision",
THPModule_float32MatmulPrecision,
METH_NOARGS,
nullptr},
{"_set_float32_matmul_precision",
THPModule_setFloat32MatmulPrecision,
METH_O,
nullptr},
{"_get_cublas_allow_fp16_reduced_precision_reduction",
THPModule_allowFP16ReductionCuBLAS,
METH_NOARGS,
nullptr},
{"_set_cublas_allow_fp16_reduced_precision_reduction",
THPModule_setAllowFP16ReductionCuBLAS,
METH_O,
nullptr},
{"_vmapmode_increment_nesting",
THPModule_vmapmode_increment_nesting,
METH_NOARGS,
nullptr},
{"_vmapmode_decrement_nesting",
THPModule_vmapmode_decrement_nesting,
METH_NOARGS,
nullptr},
{"_debug_only_display_vmap_fallback_warnings",
THPModule_set_display_vmap_fallback_warnings_mode,
METH_O,
nullptr},
{"_debug_only_are_vmap_fallback_warnings_enabled",
THPModule_are_vmap_fallback_warnings_enabled,
METH_NOARGS,
nullptr},
{"_to_dlpack", THPModule_toDLPack, METH_O, nullptr},
{"_from_dlpack", THPModule_fromDLPack, METH_O, nullptr},
{"set_flush_denormal", THPModule_setFlushDenormal, METH_O, nullptr},
{"get_default_dtype", THPModule_getDefaultDtype, METH_NOARGS, nullptr},
{"_get_default_device", THPModule_getDefaultDevice, METH_NOARGS, nullptr},
{"_get_qengine", THPModule_qEngine, METH_NOARGS, nullptr},
{"_set_qengine", THPModule_setQEngine, METH_O, nullptr},
{"_supported_qengines", THPModule_supportedQEngines, METH_NOARGS, nullptr},
{"_is_xnnpack_enabled", THPModule_isEnabledXNNPACK, METH_NOARGS, nullptr},
{"_set_default_mobile_cpu_allocator",
THPModule_setDefaultMobileCPUAllocator,
METH_NOARGS,
nullptr},
{"_unset_default_mobile_cpu_allocator",
THPModule_unsetDefaultMobileCPUAllocator,
METH_NOARGS,
nullptr},
{"_is_torch_function_enabled",
THPModule_isEnabledTorchFunction,
METH_NOARGS,
nullptr},
{"_disabled_torch_function_impl",
THPModule_disable_torch_function,
METH_VARARGS,
nullptr},
{"_disabled_torch_dispatch_impl",
THPModule_disable_torch_dispatch,
METH_VARARGS,
nullptr},
{"_has_torch_function", THPModule_has_torch_function, METH_O, nullptr},
{"_has_torch_function_unary",
THPModule_has_torch_function_unary,
METH_O,
nullptr},
{"_has_torch_function_variadic",
MAYBE_WRAP_FASTCALL(THPModule_has_torch_function_variadic),
MAYBE_METH_FASTCALL,
nullptr},
{nullptr, nullptr, 0, nullptr}};
void THCPStream_init(PyObject* module);
void THCPEvent_init(PyObject* module);
void THCPGraph_init(PyObject* module);
#ifdef USE_CUDA
PyMethodDef* THCPModule_methods();
namespace torch {
namespace cuda {
void initModule(PyObject* module);
}
} // namespace torch
#endif
#ifdef USE_ITT
namespace torch {
namespace profiler {
void initIttBindings(PyObject* module);
} // namespace profiler
} // namespace torch
#endif
namespace torch {
void initVerboseBindings(PyObject* module);
} // namespace torch
static std::vector<PyMethodDef> methods;
// In Python we can't use the trick of C10_LOG_API_USAGE_ONCE
// Guaranteed to be invoked from Python under GIL, no locking on map needed
static void LogAPIUsageOnceFromPython(const std::string& event) {
static std::unordered_set<std::string> seen;
if (!seen.count(event)) {
seen.insert(event);
c10::LogAPIUsage(event);
}
}
// Weak reference to tensor, used to test a tensor isn't leaked
class WeakTensorRef {
c10::weak_intrusive_ptr<c10::TensorImpl> weakref_;
public:
WeakTensorRef(const at::Tensor& t) : weakref_(t.getIntrusivePtr()) {}
bool expired() {
return weakref_.expired();
}
};
extern "C"
#ifdef _WIN32
__declspec(dllexport)
#endif
TORCH_API PyObject* initModule();
// separate decl and defn for msvc error C2491
PyObject* initModule() {
HANDLE_TH_ERRORS
c10::initLogging();
at::internal::lazy_init_num_threads();
C10_LOG_API_USAGE_ONCE("torch.python.import");
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define ASSERT_TRUE(cmd) \
if (!(cmd)) \
return nullptr
THPUtils_addPyMethodDefs(methods, TorchMethods);
THPUtils_addPyMethodDefs(methods, DataLoaderMethods);
THPUtils_addPyMethodDefs(methods, torch::autograd::python_functions());
THPUtils_addPyMethodDefs(methods, torch::multiprocessing::python_functions());
#ifdef USE_CUDA
THPUtils_addPyMethodDefs(methods, THCPModule_methods());
#endif
#if defined(USE_DISTRIBUTED) && defined(USE_C10D)
THPUtils_addPyMethodDefs(
methods, torch::distributed::c10d::python_functions());
#ifndef _WIN32
THPUtils_addPyMethodDefs(
methods, torch::distributed::rpc::python_functions());
THPUtils_addPyMethodDefs(
methods, torch::distributed::autograd::python_functions());
THPUtils_addPyMethodDefs(
methods, torch::distributed::rpc::testing::python_functions());
#endif
#endif
static struct PyModuleDef torchmodule = {
PyModuleDef_HEAD_INIT, "torch._C", nullptr, -1, methods.data()};
ASSERT_TRUE(module = PyModule_Create(&torchmodule));
ASSERT_TRUE(THPGenerator_init(module));
ASSERT_TRUE(THPException_init(module));
THPSize_init(module);
THPDtype_init(module);
THPDTypeInfo_init(module);
THPLayout_init(module);
THPMemoryFormat_init(module);
THPQScheme_init(module);
THPDevice_init(module);
THPStream_init(module);
ASSERT_TRUE(THPVariable_initModule(module));
ASSERT_TRUE(THPFunction_initModule(module));
ASSERT_TRUE(THPEngine_initModule(module));
// NOTE: We need to be able to access OperatorExportTypes from ONNX for use in
// the export side of JIT, so this ONNX init needs to appear before the JIT
// init.
torch::onnx::initONNXBindings(module);
torch::autograd::initEnumTag(module);
torch::jit::initJITBindings(module);
torch::monitor::initMonitorBindings(module);
torch::impl::dispatch::initDispatchBindings(module);
torch::throughput_benchmark::initThroughputBenchmarkBindings(module);
torch::autograd::initReturnTypes(module);
torch::autograd::initNNFunctions(module);
torch::autograd::initFFTFunctions(module);
torch::autograd::initLinalgFunctions(module);
torch::autograd::initSparseFunctions(module);
torch::autograd::initSpecialFunctions(module);
torch::autograd::init_legacy_variable(module);
torch::python::init_bindings(module);
torch::lazy::initLazyBindings(module);
#ifdef USE_ITT
torch::profiler::initIttBindings(module);
#endif
#ifdef USE_CUDA
torch::cuda::initModule(module);
#endif
torch::initVerboseBindings(module);
ASSERT_TRUE(THPStorage_init(module));
#ifdef USE_CUDA
// This will only initialise base classes and attach them to library namespace
// They won't be ready for real usage until importing cuda module, that will
// complete the process (but it defines Python classes before calling back
// into C, so these lines have to execute first)..
THCPStream_init(module);
THCPEvent_init(module);
THCPGraph_init(module);
#endif
auto set_module_attr =
[&](const char* name, PyObject* v, bool incref = true) {
// PyModule_AddObject steals reference
if (incref) {
Py_INCREF(v);
}
return PyModule_AddObject(module, name, v) == 0;
};
#if defined(USE_CUDNN) || defined(USE_ROCM)
PyObject* has_cudnn = Py_True;
#else
PyObject* has_cudnn = Py_False;
#endif
ASSERT_TRUE(set_module_attr("has_cudnn", has_cudnn));
#if AT_MKL_ENABLED() || AT_POCKETFFT_ENABLED()
PyObject* has_spectral = Py_True;
#else
PyObject* has_spectral = Py_False;
#endif
ASSERT_TRUE(set_module_attr("has_spectral", has_spectral));
// force ATen to initialize because it handles
// setting up TH Errors so that they throw C++ exceptions
at::init();
// Automatically translate errors thrown from pybind11 functions
py::register_exception_translator([](std::exception_ptr e) { // NOLINT
try {
if (e) {
std::rethrow_exception(e);
}
}
CATCH_TH_ERRORS()
});
auto py_module = py::reinterpret_borrow<py::module>(module);
py_module.def("_demangle", &c10::demangle);
py_module.def("_log_api_usage_once", &LogAPIUsageOnceFromPython);
py_module.def("vitals_enabled", &at::vitals::torchVitalEnabled);
py_module.def(
"set_vital",
[](const std::string& vital,
const std::string& attr,
const std::string value) {
return at::vitals::VitalsAPI.setVital(vital, attr, value);
});
py_module.def(
"read_vitals", []() { return at::vitals::VitalsAPI.readVitals(); });
py_module.def(
"init_num_threads",
torch::wrap_pybind_function(at::init_num_threads),
R"(
init_num_threads()
Initializes the number of parallel threads used on the current thread.
Call this whenever a new thread is created in order to propagate values from
:func:`torch.set_num_threads` onto the new thread.
)");
ASSERT_TRUE(
set_module_attr("has_openmp", at::hasOpenMP() ? Py_True : Py_False));
ASSERT_TRUE(set_module_attr("has_mkl", at::hasMKL() ? Py_True : Py_False));
ASSERT_TRUE(
set_module_attr("has_lapack", at::hasLAPACK() ? Py_True : Py_False));
py_module.def("_valgrind_supported_platform", []() {
#if defined(USE_VALGRIND)
return true;
#else
return false;
#endif
});
py_module.def("_valgrind_toggle", []() {
#if defined(USE_VALGRIND)
CALLGRIND_TOGGLE_COLLECT;
#else
TORCH_CHECK(false, "Valgrind is not supported.");
#endif
});
py_module.def("_valgrind_toggle_and_dump_stats", []() {
#if defined(USE_VALGRIND)
// NB: If we don't toggle collect around dump stats, callgrind_annotate
// won't process the results correctly. Specifically,
// `callgrind_annotate --inclusive=no` will be almost completely empty.
CALLGRIND_TOGGLE_COLLECT;
CALLGRIND_DUMP_STATS;
#else
TORCH_CHECK(false, "Valgrind is not supported.");
#endif
});
py::class_<WeakTensorRef>(py_module, "_WeakTensorRef")
.def(py::init([](py::object tensor) {
return WeakTensorRef(THPVariable_Unpack(tensor.ptr()));
}))
.def("expired", &WeakTensorRef::expired);
py::enum_<at::native::ConvBackend>(py_module, "_ConvBackend")
.value("CudaDepthwise2d", at::native::ConvBackend::CudaDepthwise2d)
.value("CudaDepthwise3d", at::native::ConvBackend::CudaDepthwise3d)
.value("Cudnn", at::native::ConvBackend::Cudnn)
.value("CudnnTranspose", at::native::ConvBackend::CudnnTranspose)
.value("Empty", at::native::ConvBackend::Empty)
.value("Miopen", at::native::ConvBackend::Miopen)
.value("MiopenDepthwise", at::native::ConvBackend::MiopenDepthwise)
.value("MiopenTranspose", at::native::ConvBackend::MiopenTranspose)
.value("Mkldnn", at::native::ConvBackend::Mkldnn)
.value("MkldnnEmpty", at::native::ConvBackend::MkldnnEmpty)
.value("NnpackSpatial", at::native::ConvBackend::NnpackSpatial)
.value("Overrideable", at::native::ConvBackend::Overrideable)
.value("Slow2d", at::native::ConvBackend::Slow2d)
.value("Slow3d", at::native::ConvBackend::Slow3d)
.value("SlowDilated2d", at::native::ConvBackend::SlowDilated2d)
.value("SlowDilated3d", at::native::ConvBackend::SlowDilated3d)
.value("SlowTranspose2d", at::native::ConvBackend::SlowTranspose2d)
.value("SlowTranspose3d", at::native::ConvBackend::SlowTranspose3d)
.value(
"Winograd3x3Depthwise", at::native::ConvBackend::Winograd3x3Depthwise)
.value("Xnnpack2d", at::native::ConvBackend::Xnnpack2d);
py_module.def(
"_select_conv_backend",
[](const at::Tensor& input,
const at::Tensor& weight,
const c10::optional<at::Tensor>& bias_opt,
at::IntArrayRef stride_,
at::IntArrayRef padding_,
at::IntArrayRef dilation_,
bool transposed_,
at::IntArrayRef output_padding_,
int64_t groups_) {
return at::native::select_conv_backend(
input,
weight,
bias_opt,
stride_,
padding_,
dilation_,
transposed_,
output_padding_,
groups_);
});
py::enum_<at::LinalgBackend>(py_module, "_LinalgBackend")
.value("Default", at::LinalgBackend::Default)
.value("Cusolver", at::LinalgBackend::Cusolver)
.value("Magma", at::LinalgBackend::Magma);
py_module.def("_set_linalg_preferred_backend", [](at::LinalgBackend b) {
at::globalContext().setLinalgPreferredBackend(b);
});
py_module.def("_get_linalg_preferred_backend", []() {
return at::globalContext().linalgPreferredBackend();
});
#ifdef USE_CUDA
PyObject* has_cuda = Py_True;
#else
PyObject* has_cuda = Py_False;
#endif
#ifdef USE_MPS
PyObject* has_mps = Py_True;
#else
PyObject* has_mps = Py_False;
#endif
ASSERT_TRUE(set_module_attr("has_cuda", has_cuda));
ASSERT_TRUE(set_module_attr("has_mps", has_mps));
py_module.def("_is_mps_available", []() { return at::hasMPS(); });
ASSERT_TRUE(
set_module_attr("has_mkldnn", at::hasMKLDNN() ? Py_True : Py_False));
#ifdef _GLIBCXX_USE_CXX11_ABI
ASSERT_TRUE(set_module_attr(
"_GLIBCXX_USE_CXX11_ABI", _GLIBCXX_USE_CXX11_ABI ? Py_True : Py_False));
#else
ASSERT_TRUE(set_module_attr("_GLIBCXX_USE_CXX11_ABI", Py_False));
#endif
// See note [Pybind11 ABI constants]
#define SET_STR_DEFINE(name) \
ASSERT_TRUE(set_module_attr("_" #name, THPUtils_packString(name)))
#ifdef PYBIND11_COMPILER_TYPE
SET_STR_DEFINE(PYBIND11_COMPILER_TYPE);
#else
ASSERT_TRUE(
set_module_attr("_" C10_STRINGIZE(PYBIND11_COMPILER_TYPE), Py_None));
#endif
#ifdef PYBIND11_STDLIB
SET_STR_DEFINE(PYBIND11_STDLIB);
#else
ASSERT_TRUE(set_module_attr("_" C10_STRINGIZE(PYBIND11_STDLIB), Py_None));
#endif
#ifdef PYBIND11_BUILD_ABI
SET_STR_DEFINE(PYBIND11_BUILD_ABI);
#else
ASSERT_TRUE(set_module_attr("_" C10_STRINGIZE(PYBIND11_BUILD_ABI), Py_None));
#endif
#undef SET_STR_DEFINE
py_module.def(
"_set_conj", [](const at::Tensor& x, bool conj) { x._set_conj(conj); });
py_module.def(
"_set_neg", [](const at::Tensor& x, bool neg) { x._set_neg(neg); });
py_module.def("_dispatch_key_set", [](const at::Tensor& x) {
return toString(x.key_set());
});
const auto& defaultGenerator = at::detail::getDefaultCPUGenerator();
THPDefaultCPUGenerator =
(THPGenerator*)THPGenerator_initDefaultGenerator(defaultGenerator);
// This reference is meant to be given away, so no need to incref here.
ASSERT_TRUE(set_module_attr(
"default_generator",
(PyObject*)THPDefaultCPUGenerator,
/* incref= */ false));
ASSERT_TRUE(set_module_attr(
"DisableTorchFunction",
(PyObject*)THPModule_DisableTorchFunctionType(),
/* incref= */ false));
torch::set_disabled_torch_function_impl(
PyObject_GetAttrString(module, "_disabled_torch_function_impl"));
ASSERT_TRUE(torch::disabled_torch_function_impl() != nullptr);
torch::set_disabled_torch_dispatch_impl(
PyObject_GetAttrString(module, "_disabled_torch_dispatch_impl"));
ASSERT_TRUE(torch::disabled_torch_dispatch_impl() != nullptr);
return module;
END_HANDLE_TH_ERRORS
}
// Checks that the _C shared library isn't initialized multiple times. This
// can happen if the same csrc files are compiled into multiple shared
// libraries.
inline void pytorch_duplicate_guard() {
static int initialized = 0;
if (initialized) {
fprintf(stderr, "pytorch: _C shared library re-initialized\n");
abort();
}
initialized = 1;
;
}
struct call_duplicate_guard {
call_duplicate_guard() {
pytorch_duplicate_guard();
}
};
static call_duplicate_guard _call_duplicate_guard;