Commit Graph

270 Commits

Author SHA1 Message Date
arkadip-maitra
d7491fb1c1 Fix tensor creation with empty names crash (#163957)
Partially fixes #148324

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163957
Approved by: https://github.com/malfet, https://github.com/janeyx99
2025-09-26 17:41:00 +00:00
zeshengzong
e3783a9575 Replace std::runtime_error with TORCH_CHECK (#159344)
Fixes part of #148114

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159344
Approved by: https://github.com/cyyever, https://github.com/albanD
2025-09-16 09:00:06 +00:00
Kaichao You
dae7710bf2 [cuda][cupy] Improve cupy device placement when device is provided with explicit index (#158529)
resubmit https://github.com/pytorch/pytorch/pull/158320 , fixing a potential bug when device index is not specified explicitly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158529
Approved by: https://github.com/ezyang
2025-08-15 00:27:42 +00:00
PyTorch MergeBot
944a140e90 Revert "[cuda][cupy] Improve cupy device placement when device is provided (#158320)"
This reverts commit 59f9b25f3c.

Reverted https://github.com/pytorch/pytorch/pull/158320 on behalf of https://github.com/wdvr due to reverting because most likely causing test/test_numba_integration.py::TestNumbaIntegration::test_from_cuda_array_interface_inferred_strides to fail ([comment](https://github.com/pytorch/pytorch/pull/158320#issuecomment-3079960616))
2025-07-16 19:15:33 +00:00
Kaichao You
59f9b25f3c [cuda][cupy] Improve cupy device placement when device is provided (#158320)
This is an improvement over https://github.com/pytorch/pytorch/pull/132595 . That PR improves the case where `device` is not given. This PR tries to improve the case where `device` is given but the first step of auto-infer device from `cudaPointerGetAttributes` can be wrong (undesired). See https://github.com/pytorch/pytorch/issues/158316 for more details on when this can happen.

I think this is a reasonable improvement, as people expect `torch.as_tensor` + cupy should be zero-copy as much as possible. However, it does change some behaviors, because previously it might incur a device-to-device copy.

I will leave it to pytorch developers to see if the improvement is worthwhile.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158320
Approved by: https://github.com/ezyang
2025-07-16 07:12:36 +00:00
cyy
b0556110e5 Remove unsafe PyTorchError constructor (#154961)
Use libfmt in call sites of PyTorchError.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154961
Approved by: https://github.com/albanD
2025-07-11 18:22:53 +00:00
Yukio Siraichi
b54eac2a5e Upgrade to DLPack 1.0. (#145000)
This PR makes the necessary changes in order to upgrade PyTorch DLPack
support to version 1.0. In summary, we add support for the following:

- Support both `DLManagedTensor` and `DLManagedTensorVersioned` when
  producing and consuming DLPack capsules
- New parameter for `__dlpack__` method: `max_version`
- Version checks:
    - Fallback to old implementation if no `max_version` or if version
      lower than 1.0
    - Check that the to-be-consumed capsule is of version up to 1.X

In order to accommodate these new specifications, this PR adds the
following main changes:

- `torch._C._to_dlpack_versioned` Python API (Module.cpp): new Python
API for creating a versioned DLPack capsule (called by `__dlpack__`
method)
- `DLPackTraits<T>` class (DLConvertor.h): select the correct
traits (e.g. capsule name, conversion functions) depending on which
DLPack tensor class is being used
- `toDLPackImpl<T>` function (DLConvertor.cpp): populates the
common fields of both classes
- `fromDLPackImpl<T>` function (DLConvertor.cpp): constructs a tensor
from a DLPAck capsule
- `fillVersion<T>` function (DLConvertor.cpp): populates the version
field for `DLManagedTensorVersioned` (no-op for `DLManagedTensor`)
- `tensor_fromDLPackImpl<T>` function (tensor_new.cpp): outer function
for constructing a tensor out of a DLPack capsule that also marks the
capsule as used

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145000
Approved by: https://github.com/albanD
2025-06-30 16:58:06 +00:00
Isalia20
a1282b1823 [MPS] Add boilerplate sparse code support (#157238)
This PR makes minimal changes to support sparse tensors on MPS. In the followup PRs I'll start adding different operations slowly so we can fix the issue of
https://github.com/pytorch/pytorch/issues/129842
which is highly requested(I assume because of whisper using sparse tensors)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157238
Approved by: https://github.com/malfet
2025-06-30 01:53:45 +00:00
Yuanyuan Chen
07bb097698 Fix clang-tidy bugprone* warnings (#148529)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148529
Approved by: https://github.com/ezyang
2025-06-23 23:09:56 +00:00
Xuehai Pan
ced90016c1 [BE][7/16] fix typos in torch/ (torch/csrc/) (#156317)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156317
Approved by: https://github.com/albanD
ghstack dependencies: #156313, #156314, #156315, #156316
2025-06-23 02:57:41 +00:00
PyTorch MergeBot
035a68d25a Revert "[BE][7/16] fix typos in torch/ (torch/csrc/) (#156317)"
This reverts commit ee72815f11.

Reverted https://github.com/pytorch/pytorch/pull/156317 on behalf of https://github.com/atalman due to export/test_torchbind.py::TestCompileTorchbind::test_compile_error_on_input_aliasing_contents_backend_aot_eager [GH job link](https://github.com/pytorch/pytorch/actions/runs/15804799771/job/44548489912) [HUD commit link](c95f7fa874) ([comment](https://github.com/pytorch/pytorch/pull/156313#issuecomment-2994171213))
2025-06-22 12:31:56 +00:00
Xuehai Pan
ee72815f11 [BE][7/16] fix typos in torch/ (torch/csrc/) (#156317)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156317
Approved by: https://github.com/albanD
ghstack dependencies: #156313, #156314, #156315, #156316
2025-06-22 08:43:41 +00:00
PyTorch MergeBot
b4442f42a9 Revert "Upgrade to DLPack 1.0. (#145000)"
This reverts commit 6e185c5312.

Reverted https://github.com/pytorch/pytorch/pull/145000 on behalf of https://github.com/atalman due to failing internal tests ([comment](https://github.com/pytorch/pytorch/pull/145000#issuecomment-2992055400))
2025-06-20 15:32:47 +00:00
Yukio Siraichi
6e185c5312 Upgrade to DLPack 1.0. (#145000)
This PR makes the necessary changes in order to upgrade PyTorch DLPack
support to version 1.0. In summary, we add support for the following:

- Support both `DLManagedTensor` and `DLManagedTensorVersioned` when
  producing and consuming DLPack capsules
- New parameter for `__dlpack__` method: `max_version`
- Version checks:
    - Fallback to old implementation if no `max_version` or if version
      lower than 1.0
    - Check that the to-be-consumed capsule is of version up to 1.X

In order to accommodate these new specifications, this PR adds the
following main changes:

- `torch._C._to_dlpack_versioned` Python API (Module.cpp): new Python
API for creating a versioned DLPack capsule (called by `__dlpack__`
method)
- `DLPackTraits<T>` class (DLConvertor.h): select the correct
traits (e.g. capsule name, conversion functions) depending on which
DLPack tensor class is being used
- `toDLPackImpl<T>` function (DLConvertor.cpp): populates the
common fields of both classes
- `fromDLPackImpl<T>` function (DLConvertor.cpp): constructs a tensor
from a DLPAck capsule
- `fillVersion<T>` function (DLConvertor.cpp): populates the version
field for `DLManagedTensorVersioned` (no-op for `DLManagedTensor`)
- `tensor_fromDLPackImpl<T>` function (tensor_new.cpp): outer function
for constructing a tensor out of a DLPack capsule that also marks the
capsule as used

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145000
Approved by: https://github.com/albanD
2025-06-19 16:27:42 +00:00
ILCSFNO
cf7451f279 Fix signature of torch.sparse_coo_tensor() (#152681)
Fixes #145371

@pearu Searched all and find these codes, wondering whether is the root cause of the issue, could you have a review? Thanks a lot!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152681
Approved by: https://github.com/Skylion007, https://github.com/pearu, https://github.com/nikitaved
2025-05-28 13:16:41 +00:00
Yuxin Wu
40ec9d2bfa avoid allocation when tensor_new from storage (#149797)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149797
Approved by: https://github.com/Skylion007
2025-03-24 20:02:45 +00:00
cyy
8fa81a6066 Enable misc-use-internal-linkage check and apply fixes (#148948)
Enables clang-tidy rule [`misc-use-internal-linkage`](https://clang.llvm.org/extra/clang-tidy/checks/misc/use-internal-linkage.html). This new check was introduced in Clang-Tidy 18 and is available due to recent update of Clang-Tidy 19.

The check marks functions and variables used only in the translation unit as static. Therefore undesired symbols are not leaked into other units, more link time optimisations are possible and the resulting binaries may be smaller.

The detected violations were mostly fixed by using static. In other cases, the symbols were indeed consumed by others files, then their declaring headers were included. Still some declarations were wrong and have been fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148948
Approved by: https://github.com/Skylion007
2025-03-12 14:22:56 +00:00
Yichen Yan
d4171b724e Let tensor_a.new_tensor() be on tensor_a.device by default (#144958)
Fixes #144957
Closes #73838 cc @albanD @ezyang

Currently, `tensor_a.new_tensor()` will return a on-cpu tensor no matter where is `tensor_a`. This differs from the document and is a side-effect of https://github.com/pytorch/pytorch/pull/41984.

See #144957 how current logic breaks dynamo.

This PR restore the documented behavior and add tests for `new_tensor`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144958
Approved by: https://github.com/ezyang
2025-01-24 22:12:31 +00:00
Aaron Gokaslan
bbec35f028 [BE]: Replace clone detach with detach clone to be more efficient (#144469)
Follow up to #144270 and fix some vulkan code
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144469
Approved by: https://github.com/awgu
2025-01-09 18:28:39 +00:00
Aaron Gokaslan
e4a05dec0f [BE][Ez]: Fix docs recommending inefficient tensor op order (#144270)
`detach().clone()` is faster than `.clone().detatch()` since the gradients are not cloned. Let's update all the documentation and tests so that users do not use the inefficient op ordering.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144270
Approved by: https://github.com/awgu, https://github.com/XuehaiPan
2025-01-07 17:31:32 +00:00
cyy
d91484509a [1/N] Apply bugprone-unchecked-optional-access (#140679)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140679
Approved by: https://github.com/ezyang
2024-11-20 04:04:41 +00:00
Yukio Siraichi
565a53d326 Use DLPack for creating tensors out of custom classes, when available. (#138697)
Fixes #120614
Takes over #120615

In summary, this PR:
- Adds a `__dlpack__` attribute check in the tensor creation path (i.e. [`internal_new_from_data` @ tensor_new.cpp](cdfe1bffd1/torch/csrc/utils/tensor_new.cpp (L266)))
    - Creates the tensor by using the DLPack machinery, instead of an element-by-element copy
    - No changes since #120615
- Adds a test, making sure the DLPack machinery is used
    - Wraps a tensor in a fresh `TensorDLPackWrapper` class that implements only the DLPack methods
    - Creates a new tensor from an instance of `TensorDLPackWrapper`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138697
Approved by: https://github.com/ezyang

Co-authored-by: Wenzel Jakob <wenzel.jakob@epfl.ch>
2024-10-26 01:27:05 +00:00
cyy
53e356a1c0 [2/N] Enable cppcoreguidelines-special-member-functions (#138670)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138670
Approved by: https://github.com/sraikund16
2024-10-24 04:35:18 +00:00
FFFrog
af0bc75460 Remove deprecated alias macro(1/3) (#137556)
**Detailed Descriptions:**
- Remove AT_ERROR Macro

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137556
Approved by: https://github.com/ezyang
2024-10-21 17:32:32 +00:00
imShZh
4ab232d0c4 Fix symbolic number's type and tensor's dtype mismatch bug in Tensor ctor (#135433)
Fixes #135432

In the current implementation, if we try to store a symbolic number in Tensor's constructor, it assumes that the tensor's dtype and the symbolic number's type are matched, which is not the case.

In other words, if we try to store a `SymInt`, current implementation assumes tensor's dtype is `torch.int32`, `torch.int64` or something. And if we try to store a `SymFloat`, it assumes tensor's dtype is `torch.float32` or `torch.float64`. However, the tensor's dtype could also be `torch.float32` or something else when we try to store `SymInt`, which would be wrong.

This PR stores symbolic numbers by tensor's scalar type by wrapping `SymInt` and `SymFoat`'s guarded number into a PyObject.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135433
Approved by: https://github.com/ezyang
2024-09-09 19:32:18 +00:00
Tobias Ringwald
441c1c03d5 Prevent an unnecessary device -> host copy for CuPy arrays when not explicitly setting a device in torch.as_tensor. (#132595)
See title. Until now, calling `torch.as_tensor` on a CuPy array would return a CPU tensor, when not providing a device. This is most likely not desired.

Fixes #132553

```python3
import torch
import cupy as cp

cupy_arr = cp.asarray([1, 2, 3])

# Default case
t = torch.as_tensor(cupy_arr)
# New behavior, same device as cupy_arr now, was cpu before
print(t.device)  # cuda:0

# Explicitly set device
t = torch.as_tensor(cupy_arr, device='cpu')
print(t.device)  # cpu

# Implicit default device
torch.set_default_device('cpu')
t = torch.as_tensor(cupy_arr)
print(t.device)  # cpu

# Default device via context manager
torch.set_default_device('cuda')
with torch.device('cpu'):
    t = torch.as_tensor(cupy_arr)
    print(t.device)  # cpu

# Unset default device
torch.set_default_device(None)
t = torch.as_tensor(cupy_arr)
# New behavior, same device as cupy_arr now, was cpu before
print(t.device)  # cuda:0
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132595
Approved by: https://github.com/ezyang
2024-08-08 00:26:58 +00:00
Pearu Peterson
a4ea776881 Add pinned memory support to sparse COO/CSR/CSC/BSR/BSC tensors (#129645)
As in the title:

To register indices/values of a sparse XYZ tensor with CUDA, the following methods are supported
- `sparse_xyz_tensor(indices, values, pin_memory=True)`
- `sparse_xyz_tensor(indices, values).pin_memory()`
- `sparse_xyz_tensor(indices.pin_memory(), values.pin_memory())`

Fixes https://github.com/pytorch/pytorch/issues/115330

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129645
Approved by: https://github.com/amjames, https://github.com/cpuhrsch, https://github.com/eqy
2024-08-02 08:55:55 +00:00
cyy
35d14d22a0 Fix some issues detected by static analysis tools (#131989)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131989
Approved by: https://github.com/ezyang
2024-08-02 04:18:57 +00:00
cyy
798b9652f7 [6/N] Replace c10::optional with std::optional (#130438)
Follows #130408

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130438
Approved by: https://github.com/janeyx99
2024-07-11 01:15:37 +00:00
cyy
f4dcf2ae93 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang, https://github.com/r-barnes
2024-07-08 07:03:53 +00:00
PyTorch MergeBot
846bb30e13 Revert "[1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)"
This reverts commit bd72e28314.

Reverted https://github.com/pytorch/pytorch/pull/128301 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it fails XLA build bd72e28314. Please rebase your PR before relanding because I think the failure is hidden by an unrelated broken trunk XLA failure from your current base commit ([comment](https://github.com/pytorch/pytorch/pull/128301#issuecomment-2169035822))
2024-06-15 01:58:20 +00:00
cyy
bd72e28314 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang
2024-06-14 23:21:01 +00:00
Richard Barnes
ed327876f5 [codemod] c10:optional -> std::optional (#126135)
Generated by running the following from PyTorch root:
```
find . -regex ".*\.\(cpp\|h\|cu\|hpp\|cc\|cxx\)$" | grep -v "build/" | xargs -n 50 -P 4 perl -pi -e 's/c10::optional/std::optional/'
```

`c10::optional` is just an alias for `std::optional`. This removes usages of that alias in preparation for eliminating it entirely.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126135
Approved by: https://github.com/Skylion007, https://github.com/malfet, https://github.com/albanD, https://github.com/aaronenyeshi
2024-05-14 19:35:51 +00:00
rzou
889e3eeed3 Avoid cuda init to FakeTensorMode (#124413)
Also partially fixes #122109

This PR:
- We add a C++ flag (only_lift_cpu_tensors) to toggle the
  torch.tensor(1, device='cuda') ctor strategy.
  When false (default), it does the current PyTorch behavior
  of unconditionally constructing a concrete CUDA tensor then calling
  lift_fresh on it. When true, we instead construct a concrete CPU
  tensor, call lift_fresh, and then call Tensor.to(device) (under any ambient
  modes).
- FakeTensorMode flips this flag depending on if CUDA is available or
  not. We don't unconditionally set the flag to True because that is
  likely BC-breaking.

Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124413
Approved by: https://github.com/eellison
2024-04-19 02:39:35 +00:00
Gao Tianlin
fc33bbf827 better support set_default_dtype(torch.float16), update doc (#121730)
1. Fixes #121300
2. Previously, calling `torch.tensor([2j])` after `torch.set_default_dtype(torch.float16)` will cause a runtime error. This PR also fixes it and enables test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121730
Approved by: https://github.com/peterbell10
2024-03-15 06:48:42 +00:00
Shan19900305
685d862c45 Add SparsePrivateUse1 in backend_to_string, layout_from_backend and check_base_legacy_new. (#119263)
1) Using items stored in torch._tensor_classes to check item passed from python side;
2) Add SparsePrivateUse1 in backend_to_string, layout_from_backend and check_base_legacy_new;
3) Using more general API to get python module name in get_storage_obj and get_name functions.

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119263
Approved by: https://github.com/ezyang
2024-02-26 01:54:30 +00:00
Yu, Guangye
5c46600f84 [RELAND] refactor lazy init to device-agnostic (#119248)
# Motivation
This PR intends to extend `cuda_lazy_init` to `device_lazy_init` which is a device-agnostic API that can support any backend. And change `maybe_initialize_cuda` to `maybe_initialize_device` to support lazy initialization for CUDA while maintaining scalability.

# Design
We maintain a flag for each backend to manage the lazy initialization state separately.

# Additional Context
No need more UTs.
This is a reland PR, the original PR is [refactor lazy init to device-agnostic](https://github.com/pytorch/pytorch/pull/118846).
This is a common PR, and does not trigger xpu ciflow.

Differential Revision: [D53478332](https://our.internmc.facebook.com/intern/diff/D53478332)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119248
Approved by: https://github.com/EikanWang, https://github.com/gujinghui, https://github.com/jgong5, https://github.com/atalman
2024-02-07 15:58:51 +00:00
PyTorch MergeBot
ab613a4019 Revert "refactor lazy init to device-agnostic (#118846)"
This reverts commit 520771d7b3.

Reverted https://github.com/pytorch/pytorch/pull/118846 on behalf of https://github.com/atalman due to Failing, tests https://github.com/pytorch/torchdistx/blob/main/src/python/torchdistx/_C/fake.cc#L11  ([comment](https://github.com/pytorch/pytorch/pull/118846#issuecomment-1927651305))
2024-02-05 18:06:30 +00:00
Yu, Guangye
520771d7b3 refactor lazy init to device-agnostic (#118846)
# Motivation
This PR intends to extend `cuda_lazy_init` to `device_lazy_init` which is a device-agnostic API that can support any backend. And change `maybe_initialize_cuda` to `maybe_initialize_device` to support lazy initialization for CUDA while maintaining scalability.

# Design
We maintain a flag for each backend to manage the lazy initialization state separately.

# Additional Context
No need more UTs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118846
Approved by: https://github.com/malfet
2024-02-02 12:10:39 +00:00
PyTorch MergeBot
dabb90f2a4 Revert "[Exception] [6/N] Remove use of torch::TypeError (#117964)"
This reverts commit 87335fabae.

Reverted https://github.com/pytorch/pytorch/pull/117964 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/117964#issuecomment-1913079096))
2024-01-27 08:44:34 +00:00
cyy
87335fabae [Exception] [6/N] Remove use of torch::TypeError (#117964)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117964
Approved by: https://github.com/albanD
2024-01-25 03:35:58 +00:00
cyy
396a5c3091 [Exception] [4/N] Replace torch::IndexError and torch::ValueError with C10 counterparts (#117317)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117317
Approved by: https://github.com/ezyang
2024-01-18 00:35:29 +00:00
Scott Wolchok
165f4f6ccf [PyTorch] Redirect c10::optional to std::optional (#101995)
We have C++17 now!

I am intentionally dropping the `c10::optional<c10::ArrayRef>` size optimization. It was intended to improve dispatch, but thanks to D34602980 / #70864 we don't use `optional<ArrayRef>` in function arguments anymore anyway.

Differential Revision: [D46079028](https://our.internmc.facebook.com/intern/diff/D46079028/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101995
Approved by: https://github.com/malfet, https://github.com/Skylion007, https://github.com/ezyang
2023-11-30 02:46:41 +00:00
cyy
bae61ecb96 [Reland 1] Cleanup header inclusions in torch_cpu by iwyu (#112311)
Reland https://github.com/pytorch/pytorch/pull/101178 to use IWYU on torch_cpu. The header file changes are excluded to avoid breaking internal jobs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112311
Approved by: https://github.com/ezyang
2023-11-19 04:06:36 +00:00
albanD
8edb561631 Fix use after free in tensor creation (#106707)
Fix https://github.com/pytorch/pytorch/issues/106534
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106707
Approved by: https://github.com/Skylion007, https://github.com/ezyang
2023-10-07 22:41:21 +00:00
PyTorch MergeBot
83deaa16ed Revert "[1/N] Cleanup header inclusions in torch_cpu by iwyu (#101178)"
This reverts commit b7a95f4fdb.

Reverted https://github.com/pytorch/pytorch/pull/101178 on behalf of https://github.com/atalman due to Break internal CI ([comment](https://github.com/pytorch/pytorch/pull/101178#issuecomment-1734384645))
2023-09-25 20:05:25 +00:00
cyy
b7a95f4fdb [1/N] Cleanup header inclusions in torch_cpu by iwyu (#101178)
Following our previous IWYU work  #100304 on C10, it makes more sense to try IWYU on torch_cpu. This PR does exactly that. Meanwhile, it fixes issue #48684.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101178
Approved by: https://github.com/ezyang
2023-09-24 05:01:20 +00:00
Edward Z. Yang
2c1554a032 Make SymFloat behave symmetrically with float in torch.tensor (#109513)
Previously, SymFloat would force double precision.  That's wrong;
instead, we must respect default dtype.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109513
Approved by: https://github.com/voznesenskym
2023-09-19 01:52:41 +00:00
cyy
51d2d825ab [3/N] apply clang-tidy in torch/csrc/autograd (#109368)
This PR applies clang-tidy fixes in torch/csrc/autograd/FunctionsManual.cpp. There are also other fixes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109368
Approved by: https://github.com/Skylion007
2023-09-17 07:26:59 +00:00
Kurt Mohler
4c5e43574c Reland 2: Add PyObject preservation for UntypedStorage (#109039)
Relands #103907 after it was reverted. This PR makes the new `ignore_hermetic_tls` argument of `check_pyobj` optional to avoid causing a compilation error in torchdistx

Part of #91395

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109039
Approved by: https://github.com/ezyang
2023-09-12 22:26:05 +00:00