[Exception] [6/N] Remove use of torch::TypeError (#117964)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117964
Approved by: https://github.com/albanD
This commit is contained in:
cyy 2024-01-25 03:35:53 +00:00 committed by PyTorch MergeBot
parent 67300a11cb
commit 87335fabae
12 changed files with 191 additions and 170 deletions

View File

@ -39,6 +39,7 @@
#include <ATen/core/Tensor.h>
#include <ATen/FuncTorchTLS.h>
#include "c10/util/Optional.h"
#include "c10/util/Exception.h"
#include "c10/core/Stream.h"
#include <stdexcept>
@ -370,9 +371,7 @@ static PyObject * THPVariable_index_scalar(PyObject* self, PyObject* args) {
auto& self_ = THPVariable_Unpack(self);
// TODO: change the condition to `self_.dim() != 0` once we expose scalars
// in PyTorch.
if (!isIntegralType(self_.scalar_type(), /*includeBool=*/true) || self_.sym_numel() != 1) {
throw TypeError("only integer tensors of a single element can be converted to an index");
}
TORCH_CHECK_TYPE(isIntegralType(self_.scalar_type(), /*includeBool=*/true) && self_.sym_numel() == 1, "only integer tensors of a single element can be converted to an index");
return wrap(dispatch_to<int64_t>(self_));
END_HANDLE_TH_ERRORS
}
@ -389,9 +388,7 @@ static PyObject * THPVariable_invert(PyObject* self, PyObject* args) {
return handle_torch_function(self, "__invert__", args);
}
auto& self_ = THPVariable_Unpack(self);
if (!isIntegralType(self_.scalar_type(), /*includeBool=*/true)) {
throw TypeError("~ (operator.invert) is only implemented on integer and Boolean-type tensors");
}
TORCH_CHECK_TYPE(isIntegralType(self_.scalar_type(), /*includeBool=*/true), "~ (operator.invert) is only implemented on integer and Boolean-type tensors");
return THPVariable_Wrap(dispatch_invert(self_));
END_HANDLE_TH_ERRORS
}
@ -1043,7 +1040,7 @@ static PyObject * THPVariable_type(PyObject* self, PyObject* args, PyObject* kwa
} else if (THPDtype_Check(obj)) {
is_dtype = true;
} else {
throw TypeError("dtype must be a type, str, or dtype object");
C10_THROW_ERROR(TypeError, "dtype must be a type, str, or dtype object");
}
ScalarType scalar_type;
Device device = self_.device();

View File

@ -142,9 +142,9 @@ PyObject* THPDevice_rc(PyObject* a, PyObject* b, int op) {
case Py_LE:
case Py_GT:
case Py_GE:
throw torch::TypeError("comparison not implemented");
C10_THROW_ERROR(TypeError, "comparison not implemented");
default:
throw torch::TypeError("unexpected comparison op");
C10_THROW_ERROR(TypeError, "unexpected comparison op");
}
END_HANDLE_TH_ERRORS
}

View File

@ -105,11 +105,10 @@ static PyObject* THPGenerator_setState(PyObject* _self, PyObject* _new_state) {
using namespace torch::autograd;
HANDLE_TH_ERRORS
if (!THPVariable_Check(_new_state)) {
throw torch::TypeError(
"expected a torch.ByteTensor, but got %s",
Py_TYPE(_new_state)->tp_name);
}
TORCH_CHECK_TYPE(
THPVariable_Check(_new_state),
"expected a torch.ByteTensor, but got ",
Py_TYPE(_new_state)->tp_name);
auto self = (THPGenerator*)_self;
auto& gen = self->cdata;
const auto& new_state_tensor = THPVariable_Unpack(_new_state);

View File

@ -29,7 +29,7 @@ inline Device py_object_to_device(py::object object) {
if (THPDevice_Check(obj)) {
return reinterpret_cast<THPDevice*>(obj)->device;
}
throw TypeError("Expected device");
TORCH_CHECK_TYPE(false, "Expected device");
}
inline Dtype py_object_to_dtype(py::object object) {
@ -37,7 +37,7 @@ inline Dtype py_object_to_dtype(py::object object) {
if (THPDtype_Check(obj)) {
return reinterpret_cast<THPDtype*>(obj)->scalar_type;
}
throw TypeError("Expected dtype");
TORCH_CHECK_TYPE(false, "Expected dtype");
}
template <typename ModuleType>

View File

@ -768,15 +768,15 @@ static void _get_tensors_to_save(
tensors_to_save.emplace_back(tensor);
}
} else {
if (is_executable) {
// TODO: We should really just ALWAYS throw an error here, but
// doing so will break some internal tests. We should fix those.
throw torch::TypeError(
"save_for_backward can only save variables, but argument %ld is of "
"type %s",
i,
Py_TYPE(obj)->tp_name);
}
// TODO: We should really just ALWAYS throw an error here, but
// doing so will break some internal tests. We should fix those.
TORCH_CHECK_TYPE(
!is_executable,
"save_for_backward can only save variables, but argument ",
i,
" is of "
"type ",
Py_TYPE(obj)->tp_name);
}
}
}

View File

@ -57,11 +57,10 @@ static PyObject* THPVariable_pynew(
TORCH_CHECK_VALUE(
!is_volatile || !requires_grad,
"Variable can't be volatile and require_grad at the same time!");
if (grad_fn && !THPFunction_Check(grad_fn)) {
throw TypeError(
"_grad_fn has to be a Function object or None, but got %s",
Py_TYPE(grad_fn)->tp_name);
}
TORCH_CHECK_TYPE(
!grad_fn || THPFunction_Check(grad_fn),
"_grad_fn has to be a Function object or None, but got ",
Py_TYPE(grad_fn)->tp_name);
Variable var;
if (!data || data == Py_None) {
// For legacy serialization code, create an empty tensor. This is also used
@ -75,8 +74,10 @@ static PyObject* THPVariable_pynew(
} else if (THPVariable_Check(data)) {
var = THPVariable_Unpack(data).detach();
} else {
throw torch::TypeError(
"Variable data has to be a tensor, but got %s", Py_TYPE(data)->tp_name);
TORCH_CHECK_TYPE(
false,
"Variable data has to be a tensor, but got ",
Py_TYPE(data)->tp_name);
}
// We set `tensor`'s `allow_tensor_metadata_change` to true here, because we
// want to allow the following use case for backward compatibility:

View File

@ -28,8 +28,6 @@
#include <c10/util/irange.h>
#include <c10/core/Layout.h>
#include <tuple>
#include <vector>
using namespace at;
using namespace torch::autograd::utils;
@ -129,10 +127,12 @@ inline Variable valueToTensor(
} else if (torch::is_symbool(value)) {
scalar = Scalar(py::cast<c10::SymBool>(py::handle(value)));
} else {
throw TypeError(
"can't assign a %s to a %s",
TORCH_CHECK_TYPE(
false,
"can't assign a ",
Py_TYPE(value)->tp_name,
torch::utils::options_to_string(options).c_str());
" to a ",
torch::utils::options_to_string(options));
}
// lift_fresh is supposed to be used in situations where you are guaranteed to
// get a plain Tensor which is not true for cpu device but not for non cpu
@ -437,9 +437,7 @@ void dispatch_set_item(
// indexing is needed, it calls C++ `at::indexing::dispatch_index_put_`.
int THPVariable_setitem(PyObject* self, PyObject* index, PyObject* py_value) {
HANDLE_TH_ERRORS
if (py_value == nullptr) {
throw TypeError("Tensor does not support deleting items");
}
TORCH_CHECK_TYPE(py_value, "Tensor does not support deleting items");
if ((!THPVariable_CheckExact(self) && check_has_torch_function(self)) ||
(!THPVariable_CheckExact(py_value) &&
check_has_torch_function(py_value))) {
@ -449,11 +447,11 @@ int THPVariable_setitem(PyObject* self, PyObject* index, PyObject* py_value) {
}
const auto& self_ = THPVariable_Unpack(self);
if (self_.layout() == kSparse || self_.layout() == kSparseCsr ||
self_.layout() == kSparseCsc || self_.layout() == kSparseBsr ||
self_.layout() == kSparseBsc) {
throw TypeError("Cannot assign to a sparse tensor");
}
TORCH_CHECK_TYPE(
self_.layout() != kSparse && self_.layout() != kSparseCsr &&
self_.layout() != kSparseCsc && self_.layout() != kSparseBsr &&
self_.layout() != kSparseBsc,
"Cannot assign to a sparse tensor");
OptionalDeviceGuard device_guard(device_of(self_));
at::Device self_device = self_.device();
Variable value;

View File

@ -209,8 +209,8 @@ PyObject* THPModule_disable_torch_function(PyObject* self, PyObject* a) {
} else if (PyTuple_Check(args)) {
py_args = py::reinterpret_borrow<py::tuple>(args);
} else {
throw torch::TypeError(
"expected List or Tuple (got %s)", Py_TYPE(args)->tp_name);
TORCH_CHECK_TYPE(
false, "expected List or Tuple (got ", Py_TYPE(args)->tp_name, ")");
}
// These are all C-API calls so no exceptions will be raised
@ -243,8 +243,8 @@ PyObject* THPModule_disable_torch_dispatch(PyObject* self, PyObject* a) {
} else if (PyTuple_Check(args)) {
py_args = py::reinterpret_borrow<py::tuple>(args);
} else {
throw torch::TypeError(
"expected List or Tuple (got %s)", Py_TYPE(args)->tp_name);
TORCH_CHECK_TYPE(
false, "expected List or Tuple (got ", Py_TYPE(args)->tp_name, ")");
}
// This implementation is not completely correct. The moral

View File

@ -12,6 +12,7 @@
#include <ATen/ATen.h>
#include <ATen/PythonTorchFunctionTLS.h>
#include <ATen/TracerMode.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <sstream>
@ -1307,20 +1308,28 @@ std::string FunctionSignature::toString() const {
const auto max_pos_args = signature.max_pos_args;
const auto min_args = signature.min_args;
const long nargs_ = nargs;
if (min_args != max_pos_args) {
throw TypeError(
"%s() takes from %zu to %zu positional arguments but %ld were given",
signature.name.c_str(),
min_args,
max_pos_args,
nargs_);
}
throw TypeError(
"%s() takes %zu positional argument%s but %ld %s given",
signature.name.c_str(),
TORCH_CHECK_TYPE(
min_args == max_pos_args,
signature.name,
"() takes from ",
min_args,
" to ",
max_pos_args,
max_pos_args == 1 ? "" : "s",
" positional arguments but ",
nargs_,
" were given");
TORCH_CHECK_TYPE(
false,
signature.name,
"() takes ",
max_pos_args,
" positional argument",
max_pos_args == 1 ? "" : "s",
" but ",
nargs_,
" ",
nargs == 1 ? "was" : "were",
" given",
nargs == 1 ? "was" : "were");
}
@ -1340,13 +1349,15 @@ std::string FunctionSignature::toString() const {
num_missing++;
}
}
throw TypeError(
"%s() missing %d required positional argument%s: %s",
signature.name.c_str(),
TORCH_CHECK_TYPE(
false,
signature.name,
"() missing ",
num_missing,
" required positional argument",
num_missing == 1 ? "s" : "",
ss.str().c_str());
": ",
ss.str());
}
static Py_ssize_t find_param(FunctionSignature& signature, PyObject* name) {
@ -1372,28 +1383,26 @@ static Py_ssize_t find_param(FunctionSignature& signature, PyObject* name) {
Py_ssize_t pos = 0;
while (PyDict_Next(kwargs, &pos, &key, &value)) {
if (!THPUtils_checkString(key)) {
throw TypeError("keywords must be strings");
}
TORCH_CHECK_TYPE(THPUtils_checkString(key), "keywords must be strings");
auto param_idx = find_param(signature, key);
if (param_idx < 0) {
throw TypeError(
"%s() got an unexpected keyword argument '%s'",
signature.name.c_str(),
THPUtils_unpackString(key).c_str());
}
TORCH_CHECK_TYPE(
param_idx >= 0,
signature.name,
"() got an unexpected keyword argument '",
THPUtils_unpackString(key),
"'");
if (param_idx < num_pos_args) {
throw TypeError(
"%s() got multiple values for argument '%s'",
signature.name.c_str(),
THPUtils_unpackString(key).c_str());
}
TORCH_CHECK_TYPE(
param_idx >= num_pos_args,
signature.name,
"() got multiple values for argument '",
THPUtils_unpackString(key),
"'");
}
// this should never be hit
throw TypeError("invalid keyword arguments");
TORCH_CHECK_TYPE(false, "invalid keyword arguments");
}
bool FunctionSignature::parse(
@ -1476,42 +1485,51 @@ bool FunctionSignature::parse(
arg_pos = nargs;
continue;
} else if (raise_exception) {
if (is_kwd) {
// foo(): argument 'other' must be str, not int
throw TypeError(
"%s(): argument '%s' must be %s, not %s",
name.c_str(),
param.name.c_str(),
param.type_name().c_str(),
Py_TYPE(obj)->tp_name);
} else {
// foo(): argument 'other' (position 2) must be str, not int
if (failed_idx != -1) {
if (!(PyTuple_Check(obj) || PyList_Check(obj))) {
TORCH_INTERNAL_ASSERT(varargs_eligible);
obj = args;
}
TORCH_INTERNAL_ASSERT(failed_idx < PySequence_Size(obj));
throw TypeError(
"%s(): argument '%s' (position %ld) must be %s, but found element of type %s at pos %ld",
name.c_str(),
param.name.c_str(),
static_cast<long>(arg_pos + 1),
param.type_name().c_str(),
Py_TYPE(py::reinterpret_steal<py::object>(
PySequence_GetItem(obj, failed_idx))
.ptr())
->tp_name,
static_cast<long>(failed_idx));
// foo(): argument 'other' must be str, not int
TORCH_CHECK_TYPE(
!is_kwd,
name,
"(): argument '",
param.name,
"' must be ",
param.type_name(),
", not ",
Py_TYPE(obj)->tp_name);
// foo(): argument 'other' (position 2) must be str, not int
if (failed_idx != -1) {
if (!(PyTuple_Check(obj) || PyList_Check(obj))) {
TORCH_INTERNAL_ASSERT(varargs_eligible);
obj = args;
}
throw TypeError(
"%s(): argument '%s' (position %ld) must be %s, not %s",
name.c_str(),
param.name.c_str(),
static_cast<long>(arg_pos + 1),
param.type_name().c_str(),
Py_TYPE(obj)->tp_name);
TORCH_INTERNAL_ASSERT(failed_idx < PySequence_Size(obj));
TORCH_CHECK_TYPE(
false,
name,
"(): argument '",
param.name,
"' (position ",
arg_pos + 1,
") must be ",
param.type_name(),
", but found element of type ",
Py_TYPE(py::reinterpret_steal<py::object>(
PySequence_GetItem(obj, failed_idx))
.ptr())
->tp_name,
" at pos ",
failed_idx);
}
TORCH_CHECK_TYPE(
false,
name,
"(): argument '",
param.name,
"' (position ",
arg_pos + 1,
") must be ",
param.type_name(),
", not ",
Py_TYPE(obj)->tp_name);
} else {
return false;
}
@ -1632,7 +1650,7 @@ void PythonArgParser::print_error(
auto options = get_signatures();
auto msg =
torch::format_invalid_args(args, kwargs, function_name + "()", options);
throw TypeError("%s", msg.c_str());
TORCH_CHECK_TYPE(false, msg);
}
std::vector<std::string> PythonArgParser::get_signatures() const {
@ -1699,8 +1717,12 @@ at::Tensor PythonArgs::tensor_slow(int i) {
// a test for Py_None here; instead, you need to mark the argument
// as *allowing none*; you can do this by writing 'Tensor?' instead
// of 'Tensor' in the ATen metadata.
throw TypeError(
"expected Tensor as argument %d, but got %s", i, Py_TYPE(obj)->tp_name);
TORCH_CHECK_TYPE(
false,
"expected Tensor as argument ",
i,
", but got ",
Py_TYPE(obj)->tp_name);
}
at::AutoDispatchBelowADInplaceOrView guard; // TODO: remove
at::tracer::impl::NoTracerDispatchMode tracer_guard;

View File

@ -486,9 +486,8 @@ inline std::array<at::Tensor, N> PythonArgs::tensorlist_n(int i) {
THPObjectPtr arg = six::maybeAsTuple(args[i]);
// NOLINTNEXTLINE(bugprone-branch-clone)
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
if (size != N) {
throw TypeError("expected tuple of %d elements but got %d", N, (int)size);
}
TORCH_CHECK_TYPE(
size == N, "expected tuple of ", N, " elements but got ", size);
for (const auto idx : c10::irange(size)) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx)
: PyList_GET_ITEM(arg.get(), idx);
@ -524,12 +523,16 @@ inline void throw_intlist_exception(
? e.what()
: std::string("type must be ") + args->signature.params[i].type_name() +
",but got " + Py_TYPE(obj)->tp_name;
throw TypeError(
"%s(): argument '%s' failed to unpack the object at pos %zu with error \"%s\"",
args->signature.name.c_str(),
args->signature.params[i].name.c_str(),
TORCH_CHECK_TYPE(
false,
args->signature.name,
"(): argument '",
args->signature.params[i].name,
"' failed to unpack the object at pos ",
idx + 1,
error.c_str());
" with error \"",
error,
"\"");
}
inline std::vector<c10::SymInt> PythonArgs::symintlist(int i) {
@ -703,12 +706,16 @@ inline std::vector<double> PythonArgs::getDoublelist(int i) {
try {
res[idx] = THPUtils_unpackDouble(obj);
} catch (const std::exception& e) {
throw TypeError(
"%s(): argument '%s' must be %s, but found element of type %s at pos %zu",
signature.name.c_str(),
signature.params[i].name.c_str(),
signature.params[i].type_name().c_str(),
TORCH_CHECK_TYPE(
false,
signature.name,
"(): argument '",
signature.params[i].name,
"' must be ",
signature.params[i].type_name(),
", but found element of type ",
Py_TYPE(obj)->tp_name,
" at pos ",
idx + 1);
}
}
@ -1101,10 +1108,11 @@ inline c10::Stream PythonArgs::stream(int i) {
if (!args[i])
return c10::Stream(
c10::Stream::Default::DEFAULT, c10::Device(c10::DeviceType::CPU, -1));
if (!THPStream_Check(args[i])) {
throw TypeError(
"expected Stream object. Got '%s'", Py_TYPE(args[i])->tp_name);
}
TORCH_CHECK_TYPE(
THPStream_Check(args[i]),
"expected Stream object. Got '",
Py_TYPE(args[i])->tp_name,
"'");
return c10::Stream::unpack3(
((THPStream*)args[i])->stream_id,
static_cast<c10::DeviceIndex>(((THPStream*)args[i])->device_index),

View File

@ -643,11 +643,13 @@ Tensor legacy_sparse_tensor_generic_ctor_new(
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
if (ctor_or_new == CtorOrNew::CTOR) {
throw TypeError(
TORCH_CHECK_TYPE(
false,
"torch.sparse.SparseTensor(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() "
"or construct a strided tensor and convert it to sparse via to_sparse.");
} else {
throw TypeError(
TORCH_CHECK_TYPE(
false,
"SparseTensor.new(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() "
"or construct a strided tensor and convert it to sparse via to_sparse.");
}

View File

@ -107,9 +107,7 @@ static std::vector<int64_t> to_aten_shape(int ndim, npy_intp* values) {
static std::vector<int64_t> seq_to_aten_shape(PyObject* py_seq) {
int ndim = PySequence_Length(py_seq);
if (ndim == -1) {
throw TypeError("shape and strides must be sequences");
}
TORCH_CHECK_TYPE(ndim != -1, "shape and strides must be sequences");
auto result = std::vector<int64_t>(ndim);
for (const auto i : c10::irange(ndim)) {
auto item = THPObjectPtr(PySequence_GetItem(py_seq, i));
@ -301,7 +299,8 @@ int aten_to_numpy_dtype(const ScalarType scalar_type) {
case kBool:
return NPY_BOOL;
default:
throw TypeError("Got unsupported ScalarType %s", toString(scalar_type));
TORCH_CHECK_TYPE(
false, "Got unsupported ScalarType ", toString(scalar_type));
}
}
@ -353,10 +352,12 @@ ScalarType numpy_dtype_to_aten(int dtype) {
auto pytype = THPObjectPtr(PyArray_TypeObjectFromType(dtype));
if (!pytype)
throw python_error();
throw TypeError(
"can't convert np.ndarray of type %s. The only supported types are: "
"float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint64, uint32, uint16, uint8, and bool.",
((PyTypeObject*)pytype.get())->tp_name);
TORCH_CHECK_TYPE(
false,
"can't convert np.ndarray of type ",
((PyTypeObject*)pytype.get())->tp_name,
". The only supported types are: "
"float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint64, uint32, uint16, uint8, and bool.");
}
bool is_numpy_int(PyObject* obj) {
@ -382,17 +383,15 @@ at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
THPObjectPtr(PyObject_GetAttrString(obj, "__cuda_array_interface__"));
TORCH_INTERNAL_ASSERT(cuda_dict);
if (!PyDict_Check(cuda_dict.get())) {
throw TypeError("`__cuda_array_interface__` must be a dict");
}
TORCH_CHECK_TYPE(
PyDict_Check(cuda_dict.get()),
"`__cuda_array_interface__` must be a dict");
// Extract the `obj.__cuda_array_interface__['shape']` attribute
std::vector<int64_t> sizes;
{
PyObject* py_shape = PyDict_GetItemString(cuda_dict, "shape");
if (py_shape == nullptr) {
throw TypeError("attribute `shape` must exist");
}
TORCH_CHECK_TYPE(py_shape, "attribute `shape` must exist");
sizes = seq_to_aten_shape(py_shape);
}
@ -403,9 +402,7 @@ at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
int dtype_size_in_bytes;
{
PyObject* py_typestr = PyDict_GetItemString(cuda_dict, "typestr");
if (py_typestr == nullptr) {
throw TypeError("attribute `typestr` must exist");
}
TORCH_CHECK_TYPE(py_typestr, "attribute `typestr` must exist");
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
PyArray_Descr* descr;
TORCH_CHECK_VALUE(
@ -420,12 +417,10 @@ at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
void* data_ptr;
{
PyObject* py_data = PyDict_GetItemString(cuda_dict, "data");
if (py_data == nullptr) {
throw TypeError("attribute `shape` data exist");
}
if (!PyTuple_Check(py_data) || PyTuple_GET_SIZE(py_data) != 2) {
throw TypeError("`data` must be a 2-tuple of (int, bool)");
}
TORCH_CHECK_TYPE(py_data, "attribute `shape` data exist");
TORCH_CHECK_TYPE(
PyTuple_Check(py_data) && PyTuple_GET_SIZE(py_data) == 2,
"`data` must be a 2-tuple of (int, bool)");
data_ptr = PyLong_AsVoidPtr(PyTuple_GET_ITEM(py_data, 0));
if (data_ptr == nullptr && PyErr_Occurred()) {
throw python_error();
@ -434,10 +429,9 @@ at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
if (read_only == -1) {
throw python_error();
}
if (read_only) {
throw TypeError(
"the read only flag is not supported, should always be False");
}
TORCH_CHECK_TYPE(
!read_only,
"the read only flag is not supported, should always be False");
}
// Extract the `obj.__cuda_array_interface__['strides']` attribute
@ -445,11 +439,11 @@ at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
{
PyObject* py_strides = PyDict_GetItemString(cuda_dict, "strides");
if (py_strides != nullptr && py_strides != Py_None) {
if (PySequence_Length(py_strides) == -1 ||
static_cast<size_t>(PySequence_Length(py_strides)) != sizes.size()) {
throw TypeError(
"strides must be a sequence of the same length as shape");
}
TORCH_CHECK_TYPE(
PySequence_Length(py_strides) != -1 &&
static_cast<size_t>(PySequence_Length(py_strides)) ==
sizes.size(),
"strides must be a sequence of the same length as shape");
strides = seq_to_aten_shape(py_strides);
// __cuda_array_interface__ strides use bytes. Torch strides use element