The header files needed for the C++ extensions were copied to
torch/lib/include under install. In case of bdist_wheel or build develop
for example, the files are not copied and cpp_extensions test is failing:
```
Running test_cpp_extensions.py ...
running install
running build
running build_ext
/home/moni/src/ibm/AI/pytorch/torch/utils/cpp_extension.py:79: UserWarning:
Your compiler (g++) may be ABI-incompatible with PyTorch.
Please use a compiler that is ABI-compatible with GCC 4.9 and above.
See https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html.
warnings.warn(ABI_INCOMPATIBILITY_WARNING.format(compiler))
building 'torch_test_cpp_extension' extension
creating build
creating build/temp.linux-x86_64-3.6
gcc -pthread -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/home/moni/src/ibm/AI/pytorch/torch/lib/include -I/home/moni/src/ibm/AI/pytorch/torch/lib/include/TH -I/home/moni/src/ibm/AI/pytorch/torch/lib/include/THC -I/home/moni/miniconda3/envs/pytorch/include/python3.6m -c extension.cpp -o build/temp.linux-x86_64-3.6/extension.o -g -DTORCH_EXTENSION_NAME=torch_test_cpp_extension -std=c++11
cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
extension.cpp:1:25: fatal error: torch/torch.h: No such file or directory
#include <torch/torch.h>
^
compilation terminated.
error: command 'gcc' failed with exit status 1
```
* PyObject* <--> at::Tensor no longer unwraps variables, instead we expect end uses to always work with variable types, and we will only unwrap the variables when we optimize.
* Add torch::CPU, torch::CUDA and torch::getType
* at::CPU -> torch::CPU in extensions
* Revert "Fix wrong argument name (#5366)"
This reverts commit cc9d3b265d.
* Fix wrong argument naming
* Revert "Wrap torch::cuda::lazy_init with WITH_CUDA flag"
This reverts commit a8fa37f8fac5aef09eb7fe54d84de6126618c262.
* Revert "Solves the linking error related to lazy_init for MSVC"
This reverts commit 63913a102f274865a76e7c40ffdf6b40c277d5ff.
* better solution for the linking error related to lazy_init for MSVC
* Naming changes
* Namespace changes and further comment
* Rebasing onto current master
* Remove code that is useless
* Fix linting
* Remove rebasing bugs
This deletes most of the dead Tensor code paths, including the TensorMethods cwrap and generic/Tensor.cpp.
This also moves the THNN.cwrap/.cpp generation to generate_code which can use ninja if installed.
This replaces the torch.Tensor constructors with factories that produce
Variables. Similarly, functions on the torch module (e.g. torch.randn)
now return Variables.
To keep the PR to a reasonable size, I've left most of the unused tensor
code. Subsequent PRs will remove the dead code, clean-up calls to
torch.autograd.Variable, and rename Variable to Tensor everywhere.
There are some breaking changes because Variable and Tensors had
slightly different semantics. There's a list of those changes here:
https://github.com/pytorch/pytorch/wiki/Breaking-Changes-from-Variable-and-Tensor-merge
* Revert "Fix wrong argument name (#5366)"
This reverts commit cc9d3b265d.
* Solves the linking error related to lazy_init for MSVC
* Fix wrong argument naming
* Wrap torch::cuda::lazy_init with WITH_CUDA flag
* Also pass torch includes to nvcc build
* Export ATen/cuda headers with install
* Refactor flags common to C++ and CUDA
* Improve tests for C++/CUDA extensions
* Export .cuh files under THC
* Refactor and clean cpp_extension.py slightly
* Include ATen in cuda extension test
* Clarifying comment in cuda_extension.cu
* Replace cuda_extension.cu with cuda_extension_kernel.cu in setup.py
* Copy compile args in C++ extension and add second kernel
* Conditionally add -std=c++11 to cuda_flags
* Also export cuDNN headers
* Add comment about deepcopy
* Various dtype improvements.
1) Add dtypes to the new data-based constructors: Variable.new_tensor and torch.autograd.variable.
2) In the python signatures, use Type instead of Dtype to match the C++ signatures; the error messages still print as dtype.
3) Handle / add a better error message when a dtype is used when ATen was not compiled with that type (e.g. cuda types).
4) Move cuda_lazy_init to its own file.
A later commit will add support to the legacy constructors as well.
* Move implementation of lazy_init to cpp.
* Fix parsed_arg size.
* Document env vars and properly propagate MAX_JOBS down.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Apply CFLAGS and LDFLAGS environment variables to cmake builds.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Test that running built program works; fixes#5151.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* CMake CR.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Add numpy-style dtypes to Variable factories.
1) Add numpy-style dtypes corresponding to torch tensor types. These are:
torch.float16, torch.float32, torch.float64, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64
as well as torch.cuda, torch.sparse, and torch.cuda.sparse equivalents.
2) Adds "legacy" names for the above dtypes that correspond more closely to existing tensor names. These are:
torch.half, torch.float, torch.double, torch.short, torch.int, torch.long.
torch.byte and torch.char don't exist because they either don't match numpy semantics or differ on different architectures.
3) Adds a "dtype" parameter to Variable factories (e.g. zeros, ones) that allows the user to specify the type without changing the default tensor type.
4) Adds a "dtype" getter to Variables that return the canonical dtype from 1)
This PR is missing the following useful features that should be added in the future:
A) We only add the "dtype" parameter to auto-generated factories; hand-written factories like in tensor_new.cpp don't support this yet.
B) We don't allow type conversions to use dtypes; that should be added to type(param) or a new function.
C) We don't yet have a "device" parameter for these factories; right now, they will only create Variables on the default device.
* backend_to_string can be private.
* Define python binding argument indexes in a more simple way.
* add all_declared_types, still need to hook it up to THPDType.
* Fix all_declared_types for missing types (it's Sparse + Half).
* Ensure cuda dtypes are created even if compiled with NO_CUDA=1.
* Fix case where dtype is provided but dispatch is via namespace.
This happens in ones_like, empty_like, randn_like.
There is some question if we should do:
1) at::ones_like(tensor).toType(dtype)
2) at::ones_like(tensor.toType(dtype))
I did the former because this matches with the numpy documentation, i.e.:
"Overrides the data type of the result." and it's easier to implement.
Note that the above causes an extra copy, either of the input or output.
Here's a better implementation:
1) Make zeros_like, ones_like native functions that take an optional type (named dtype?).
2) Match the type argument with the dtype, so we don't have two different parameters.
3) Call at::zeros_like(input, type) -> at::native::zeros_like(input, type) -> type.zeros(input.sizes())
* Don't return from maybe_initialize_cuda.
* Don't leak DType name.
* Address cpp review comments.
* Share code between sparse and non-sparse test_dtypes.
* Rewrite _like functions as native function with explicit type parameter.
* Use type 'Type' instead of 'dtype' for consistency.
* Address review comments.
* Handle arg_idx when there is requires_grad but no dtype in python_binding_arguments.
* Improve Variable interface
* Address comments from @apaszke and @colesbury
* string ::operator= is not noexcept
* Remove ir.h from tracer_state.h to improve build times
* Make Variable a struct and pack SavedVariable fields
* Implement as_variable_ref
* grad_fn_ptr() -> grad_fn_unsafe()
* Reduce hackiness of set_type hack
* Include variable.h and edge.h in tracer_state.h because it uses them
* class Variable -> struct Variable because Windows cant even
* Make Variable::output_nr uint32_t instead of int
* Add comment about tracing state
* Replaced more static_cast<Variable&> and improve docs
* Remove SavedVariable destructor and construct members in init list
* Clarify docs for Variable
* Variable::set_version -> set_version_counter
This adds the initial implementation of graph executor for the new JIT design. It includes a few python tests ensuring that nograd, backward, and double-backward cases work for simple examples and some corner cases. More work needs to be done to performance optimize as there are many extra copies and places where we hold onto variables longer than we should. These are noted in the comments.
Suppose you are given a list of arguments, each of which may be Tensor or
TensorList. How can you write a function that can treat these arguments
uniformly as a list of tensors? This patch solves the problem using
variadic templates.
Why variadic templates? Use of variadic templates means anyone working
with this code has to understand universal references, perfect
forwarding, parameter packs and some idioms of C++ template design.
However, I argue that variadic templates are the *right* tool for
supporting the implementation of functions which must take an
arbitrarily heterogenous set of inputs. We were able to limp by
in old code because, for the most part, tensor inputs were homogenous,
but this is no longer the case for some non-primitively differentiable
functions; and with the upcoming cuDNN RNN in ATen PR, will no longer be
the case for primitively differentiable functions too.
There are two parts to the PR.
First, we add torch/csrc/utils/variadic.h, which defines a mix-in
IterArgs that takes any class which supports operator(), and augments
with a new variadic function apply() which calls operator() on each
argument passed to it. In an original draft of the patch, I wrote the
recursion for each parameter pack from scratch for each function;
however, it turns out there are no fewer than seven instances where we
need this idiom, and the mix-in reduces the lines of code, and also
helps centralize the most important (and easy to forget) boilerplate
for perfect forwarding.
To verify that IterArgs is compiled away into an unrolled form per
call site, I inspected the assembly on some synthetic examples.
Next, we modify the following functions to make use of IterArgs:
- compute_requires_grad
- Function::flags (Variable and Tensor variants)
- flatten
- isTracing
- count_tensors / count_variables
Finally, the tuple packer is rewritten to be variadic, although we
cannot make use of IterArgs (since we are given a tuple). It might
make sense to refactor the code into a generic piece which invokes
a function with the arguments specified by a tuple, and then an
appropriate IterArgs, but we leave this for future work.
One thing to note: we cannot write a function with overloads for both
Tensor and Variable, because both ArrayRef<Variable> and Tensor have
implicit conversions from Variable, making such an overload ambiguous.
It may be interesting to remove the implicit conversion from ArrayRef.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
This pass splits differentiable subgraphs into their own Node,
similar to a fusion group.
This initial implementation does not create optimal subgraphs, but
it works well in the case where most things are differentiable,
and has the building blocks (`mergeNodes`) to extend to the
better implementation.
* Enable scalars if compiled with WITH_SCALAR environment variable.
We are pretty close to enabling scalars (0-dimensional arrays); this allows turning them on
for development purposes and to be able to write code that works both with and without scalars enabled.
WITH_SCALARS is currently broken with distributions, but should work for test_torch, test_autograd, test_nn.
* Fix unsqueeze.
* Fix wrap dim, wrapping with Scalar.
This adds overrides in VariableType for the xxx_out ATen functions and
implements Python bindings. There is no support for automatic
differentiation. If any of the inputs (or outputs) requires grad, then the
function will throw an exception unless it's running in "no-grad" mode.
The bindings for calling torch.xxx functions on Variables are moved to a
different object. Previously, they were static method on VariableBase.
This change prevents users from accidentally calling static methods as if
they were instance methods.
Implement MM fusion (MM with add reduction tree)
A tree where leaves are matrix multiplies and inner
vertices are adds can be computed as a single mm.
Such subgraph often appear in backward if a single weight
is reused multiple times (e.g. in RNNs).
NOTE: this seems to be slightly slower on the GPU than the
naive implementation, but it's a huge win on the CPU
(think 100x lower overhead)
* Delete obsolete basic ops.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* More deletion.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Delete some unused utilities.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Delete dead apply_fn
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Delete CppFunction symbolic support.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Delete ForwardFunction
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Batchnorm is 'working'
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Batchnorm in ATen
This commit moves BatchNorm derivatives into ATen, eliminating
torch/csrc/autograd/functions/batch_normalization.cpp
Some refactoring along the way:
- Functions got renamed to remove _forward from their names
- CuDNN batchnorm forward was modified to return save_mean/save_std instead of
take it as parameters. To avoid returning undefined Variables, these return
(small) uninitialized tensors when they are not used.
- THNN batch normalization takes care of resizing save_mean and save_std on
forward.
- There are some shenanigans re batchnorm backwards in eval mode. I'm tracking
that in #4284
- I decided not to introduce buffers as a proper concept in ATen, which means
that tensors like running_mean/running_var are variables in ATen. This meant
there needed to be some adjustments to how we *trace* such variables; the
new strategy is if we can't find a Value for a variable, we look and see
if we have a Value for the buffer pointed to by the variable, before
finally falling back on constant.
- This PR finally reliably triggered OOM on Travis builds; I fixed this by reducing
the number of parallel jobs.
- Stop using std::string when it's not necessary.
- Remove training parameter from cudnn_batch_norm_backward, because it
doesn't make sense; cuDNN doesn't implement the math for evaluation mode
batchnorm backwards.
- batchnorm_double_backward is now in an anonymous namespace, as it
no longer needs to be called from torch/csrc
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Convolution derivatives in ATen
This PR introduces ATen implementation of convolution, which dispatches to
THNN/CuDNN/nnpack based on input parameters. The general strategy is to compose
this function out of the various forward-backward pairs of specific
implementations, rather than write a monolithic function with backwards (which
is what we did before because the boilerplate of doing it otherwise would have
been very high.) The new API provides the following functions:
- _convolution, which is a fully generic, native convolution implementation
that dispatches to various other convolution implementations depending on
input characteristics. This is prefixed with an underscore because it
explicitly takes benchmark, deterministic and cudnn_enabled which are
implementation details for CuDNN. The intent is to eventually provide a
convolution that reads these parameters out of the context using #4104.
- _convolution_nogroup is a convolution implementation for non-CuDNN
algorithms which don't support group convolution natively.
- _convolution_double_backward is the generic double-backwards implementation
for convolution.
In more detail:
- Most functionality from torch/csrc/autograd/functions/convolution.cpp has been
moved into aten/src/ATen/native/Convolution.cpp
- We continue to make use of ConvParams, but we now construct the parameters
upon entry to a function from the function signature (which does not use
ConvParams; having convolution take ConvParams directly would require teaching
the code generator how to accept these as parameters, complicating ATen's API
model) and destruct them when making subprocedure calls.
- I introduce a new idiom, input_r, which represents a const Tensor& reference,
which will subsequently be assigned to a local Tensor input. This is helpful
because a lot of the existing algorithms relied on being able to assign to
locals, which is not permitted with a const reference.
- The native argument parser now supports std::array<bool,2> inputs (NB: there
MUST NOT be a space; this is the same hack as is applied to derivatives.yaml)
- Native parser now supports Tensor? arguments, which indicates a nullable
tensor. Previously this function was only used by NN methods.
- Documentation updates on THNN library
- I added an extra fgradInput argument to VolumetricConvolutionMM_updateOutput
and VolumetricConvolutionMM_accGradParameters so that its buffer list lines up
with the backward argument list. This makes it possible to write derivative
for conv3d which previously was not supported (commented out in
derivatives.yaml)
- Extra double_backward declarations for all convolution backwards functions was
added.
- You can now use the syntax Tensor? in native_functions.yaml to indicate that a
tensor argument is nullable. There are adjustments to propagate this to the
Python argument parser.
- NNPACK was ported to ATen, and ATen now builds and links against ATen if
possible. New AT_NNPACK_ENABLED macro. The nnpack functions are
nnpack_spatial_convolution.
- Some modest CuDNN convolution refactoring to remove _forward from names.
- There's a new cudnn_convolution_backward function to deal with the fact that
CuDNN convolution double backward requires you to have computed all gradients
in one go.
- Variable set_flags now checks if the tensor is undefined, fixing a silent memory
corruption.
- checkSameType updated to not raise an exception if called with Variable arguments
- "no ATen declaration found for" error message is improved to say what available declarations are
- make_variable now accepts undefined tensors, and returns an undefined tensor in this case.
This removes volatile from Variable. The functionality is mostly
replaced by a global (thread-local) flag, which is controlled by
torch.set_grad_enabled() and the context manager torch.no_grad().
In C++, the flag is exposed through GradMode::is_enabled() and GradMode::set_enabled()
Fixes#3627
* Implement Variable.cuda using ATen
This adds an optional async flag to Tensor::copy_, which attempts to do
a non-blocking copy if the one of the tensors is in pinned memory and
the other is a CUDA tensor.
* Perform cross-device copy in CopyBackwards
Also call torch.cuda._lazy_init() from Variable.cuda()
* Implement Variable.type via ATen
* Changes from review:
- remove copy_out
- remove unnecessary include
- fix default device for .cuda()
* Combine if statements in dispatch_type
* Trace ATen non-primitive functions as themselves, not their implementations.
Previously, if I invoked an ATen non-primitive function foo, which in turn
called subfoo, I would always see 'subfoo' in the trace (e.g., tracing
'inlines' all of these operations.) Such inlining is bad for ONNX
(and can be bad for optimization) as it prevents high-level
optimizations from taking advantage of the structure. It might
be right to inline, but give the optimizer a chance to work before
inlining happens!
The implementation here is surprisingly simple, because it uses
the "DCE trick". Essentially, it doesn't matter if the constituent
calls perform tracing, because you can always trace it again, and
override the trace nodes associated with the returned variables.
The original trace becomes dead and can be DCE'd.
While implementing this, I also refactored how 'isTracing' and
'trace_outputs' works:
- isTracing was previously a single function with overloads for
both Tensor and Variable arguments. Unfortunately, such overloads
are not safe, because of how C++ implicit conversions work. You
would think that C++ should never confuse an overload for
Variable with ArrayRef<Tensor>, but this is exactly what can
happen: Tensor is convertible to both Variable and ArrayRef<Tensor>,
thus it's ambiguous and C++ doesn't like it. The last time I ran
into this problem, I applied initializer lists to everything and
called it a day. A more robust fix is to separate out the
Variable and Tensor overloads, which I have done in this patch.
- trace_outputs was fed as an initializer list, which doesn't work
when you have heterogenous inputs. So instead we first feed
everything through 'flatten', which has overloads for each of the
argument patterns in ATen, which then goes on to the recordTrace
(which takes an ArrayRef). This is *no less efficient*, because
we were allocating a vector anyway (to do the conversion from
vector of Tensor to vector of Variable).
This fixes mean that 'index' can properly be traced... although the
JIT still does not support it. A failing test case has been added to
this effect.
Some knock-on effects:
- The fuser now knows about chunk as well as split. They're pretty
similar so there is no problem.
- There is a new 'canonicalize' pass in the JIT which renumbers a graph
so that all structurally equivalent graphs render the same.
- We run DCE before the fuser tests, to make sure dead nodes don't
block fusion.
- There are new ONNX exports for the newly introduced higher level ATen
operations. This includes type_as (no-op case only), chunk, select.
Zach didn't like the extra use of 'native' in the new codegen, so
we've introduced a new concept, 'abstract'. An abstract function
is one that is implemented in derived types (e.g., CPUDoubleType),
where as a concrete one is implemented in the base type (Type).
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Implements from_numpy using ATen tensors. Variable.from_numpy is a
convenient placeholder for the variant that returns Variables until we
merge Tensor and Variable.
The behavior is slightly changed:
- from_numpy() on an empty array now returns an empty tensor instead of
throwing an exception. The shape may not be preserved.
- CharTensor(ndarray) used to throw an exception. It now copies the
ndarray. Copying is implemented via ATen toType.
This adds a simple fusion backend for the CPU.
* Refactors CompiledFusionFunction to have two subclasses that handle
the compilation details of each backend.
* emit-compile-link-run cycle for the CPU
* simple single core loop to run the operation
* lift CUDA-only restrictions in the fuser, checks that fusion groups
are only on a single backend.
* Comprehensive rewrite of Torch CuDNN bindings / a bit of ATen infra
The executive summary is that this moves the torch/csrc/cudnn
library into ATen, adding a number of new cudnn_ methods to ATen
for batchnorm, convolution, affine grid generator and grid sampler.
ATen infra changes:
- TensorGeometry was moved to ATen
- TensorGeometry was modified to make its interface resemble that of
Tensor; in particular, sizes is no longer a field, it's a method.
- AT_CUDA_ENABLED macro is set via ATen/Config.h header which is
generated at cmake configure time.
Fixes https://github.com/zdevito/ATen/issues/168
- Change AT_CUDA_ENABLED macro to be a function macro, so that we
error if it is not defined
- Introduce a new TensorArg class, which is a Tensor plus a little
metadata. This helps us give good error messages when checking
dimensions/shapes of tensors.
Fixes https://github.com/zdevito/ATen/issues/169
- Also introduce a TensorGeometryArg class, for when you don't
need the actual tensor data (which is most of the time.)
- Add ATen/Check.h, which contains a number of utility functions
for testing shapes, types and devices of input tensors. This
will be particulary useful for native methods, which don't get
code generated input testing code. These functions take a
'CheckedFrom' argument, at the moment just a string, which
specifies some extra information about what function was
doing the actual checking; this greatly improves error messages.
- Many check functions take initializer lists, which let you
test that all tensors have some property. This API is
peculiar, in that we IGNORE undefined tensors in this case.
This is handled by filterDefined.
- Add AT_CUDNN_ENABLED macro
- CuDNN linking from ATen was improved; for example, we now actually
add the CuDNN headers to our include path.
- Add some missing override specifiers to some methods
- We now actually build tests with CUDA functionality accessible
(previously, AT_CUDA_ENABLED was not defined, meaning that
the headers were missing all CUDA-only functionality.)
- Native functions now support giving explicit names to return
outputs in yaml. This makes it possible to hook into the NN
autogenerated derivatives codepath using native functions.
CuDNN rewrite changes:
- torch/csrc/cudnn now uses ATen (rather than passing around
THVoidTensor) and lives in ATen. This lets us remove tensorPointer
shenanigans. The functions are exposed to ATen as native functions
described in aten/src/ATen/cudnn/cuDNN.yaml
- ATen now builds and links against CuDNN when enabled. The cmake
package script was taken from Caffe2.
- Some header reorganization was done to help reduce dependencies
on headers (this reorg is no longer used but I've kept it)
- Rename CHECK to CUDNN_CHECK
- Rip out old shape/type testing code in favor of modern ATen/Check.h
interface using TensorArg. In many cases, increase the robustness of
the checking code.
- Change the inputs of the public facing functions, so that they can
be bound by ATen
- Delete THCState*; this is retrieved from the global ATen context
- Delete cudnnHandle_t, this is retrieved from the global Handles.h
- Delete cudnnDataType_t, this is retrieved from the Tensor type
- Delete Convolution class, instead its constituent arguments are
passed individually
- Change functions to return tensors, rather than take an appropriately
sized output tensor as an input.
- Redo how transposed convolution / backward convolution is implemented
(knock on effect of returning tensors). Previously it was assumed
that you would always pass an appropriately sized output tensor, but
we don't want to do this anymore. For backwards, we instead give
the desired output tensor (input, really) size, because that is
readily available. For *transposed* convolution, however, we take
output_padding, and otherwise do the shape calculation.
- Redo how legacy group convolution is implemented (knock on effect from
porting cudnn to ATen.) Previously, group convolution was implemented
by manually constructing sizes and strides and then outputting
appropriate, with macros switching between individual groups and
all-at-once based on CuDNN version. Now, the code looks exactly what
you'd expect: there's a top-level wrapping function that supports
group convolution no matter the version of CuDNN, and a low-level
wrapper which supports only what CuDNN supports. The top-level
function conditions on CuDNN version, and invokes the low-level
interface 1 or n times.
- There is now a debugging printer for tensor descriptors.
- Convolution struct is replaced with ConvolutionArgs, which is not
part of the public API but is used internally to conveniently
pass around all of the arguments needed for Convolution.
- Add some constexprs for well-known dimensions, reduce amount of
magic numbers in code.
- Put 'deterministic' in to ConvParams. Fixes#3659
- Lots more comments.
- Some pessimizations, in the name of code clarity:
- The descriptors are initialized on every invocation of convolution
forward/backward. Previously, the descriptors were cached, so that
you didn't have to initialize them again on backwards. This is
difficult to support in the ATen interface so I didn't support it.
- Legacy group convolution initializes its workspace for *every* group
it performs. I did not feel motivated to fix this because the
legacy codepath is already quite slow.
- Affine grid generator and grid sampler automatically call contiguous
on their arguments as necessary.
- Batchnorm input checking is greatly beefed up, it now checks for
the following input characteristics:
- Definedness
- GPU location
- Type
- Contiguity
- Size
PyTorch binding code changes
- batchnorm now uses consistent var/data naming
- batchnorm and convolution make use of new ATen bindings
- Affine grid generator and grid sampler make use of ATen CuDNN
bindings via derivatives.yaml. This means I had to restructure
the code a little, since the THNN bindings still go through
a legacy Python class.
- I fixed some warnings:
- s/friend class/friend struct/ on InterpreterStateImpl
- Removed pessimizing move 'detached' in torch/csrc/autograd/variable.cpp
- Removed unused pack_list on Scalar
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
GCC 4.8 buildfix
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Add TensorGeometry to ATen.h
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
CUDNN_CHECK
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Update TODO comment
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Delete return in cudnn_grid_sampler
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
s/cudnnSetStreamToCurrent/setCuDNNStreamToCurrent/g
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Don't allocate a new vector when filtering defined.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Remove Check overloads, convert to pass references.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Some more microbenchmarking.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
This commit adds code to setup.py to use ninja to manage
C++ and code generator dependencies rather than use raw setuptools.
This is based on similar code added to ONNX.
Enabled optionally when ninja is installed.
On my computer speed for a do-nothing build drops from 10s to 1.5 seconds.
Speed of other compilation steps is significantly improved as well.
Dependencies are tracked correctly so the need for ccache is reduced.
* Add interpreter support for Handles/PythonOp/CppOp
This treats Handles as a first-class type in the interpreter
since this turned out to be conceptually simpler than treating
them as a separate concept, which requires a second channel for
register allocating and moving data from one op to the next.
Notes:
* The refcounting nature of tensors is factored into its own base type
so that it can be shared with other refcounted types such as handle.
* Some methods redundant with TensorBase have been deleted from Tensor
* The interpreter uses raw refcounted handles. In addition to being
able to treat Tensors and Handles as the same base object, it removes
a lot of redundant refcounting as objects moved from tensors to input/
output lists.
* aten_dispatch has been updated to work directly on the raw refcounted
lists to avoid refcounting and duplicate lists.
* Removing jit_closure.cpp, The interpreter can now handle all pathways.
* Functions like `unsafeToTensorShare` describe how
ownership transfers in the interpreter. The `Steal` variants
take rvalue references as arguments, and invalidate those
arguments to prevent potential problems.
* Make TensorTemporary is not a subtype relationship because it is too easy to
do something horribly unsafe:
```
void foo(at::Tensor bar) {
// bar destructor call release on a temporary!
}
foo(TensorTemporary(retainable)); // structure slicing!
```
Implements basic and advanced indexing using ATen tensors/variables.
Basic indexing is translated at the Python-binding level
(python_variable_indexing.cpp) to slice/squeeze/unsqueeze/select calls.
Advanced indexing is implemented in ATen in terms of take() and put()
calls.
* Add cudaEvent support to the profiler
This adds the ability to record cuda timings using cudaEventRecord
in the profiler. Since it doesn't require nvprof it is easier
to run than the nvprof path.
This also records a thread id for each event, which will make
tracing results easier to understand
* Add flow arrows from cpu to cuda event
* Fix no cuda build
* Review comments
* Move CUDA checks to one place
* Add a JIT interpreter
The separate interpreter is used to graphs with a lower overhead than
converting them to autograd graphs. Some notes:
* does not support Handles/PythonOp/CppOp, these will be in a future commit
* jit_closure.cpp still exists and we fall back to it for now when
cannot handle something because of PythonOp/CppOp
* In order to support retain_graph=True, the interpreter can be cloned,
creating a copy that can be run with different arguments. This is
assumed to be the non-standard case so cloning is not particularly optimized.
No tensor _data_ is copied, but the at::Tensor list in the interpreter is.
If we hit problems, there is a lot we could do (such as register allocation)
to minimize the stuff that needs to be copied.
* Uses a pImpl pattern to keep implementation details out of its header file.
* Modifies the way getTensorOp works so that it reads/writes to already-existing
vectors, this prevents needing to realloc these buffers each time.
* Timings are here: https://gist.github.com/zdevito/5a20ac29fb1b9e449e693b67dc478127
This reduces overhead to about the same as running it in python.
It is about 10us faster to run the same thing using ATen directly.
* Code Mod
Interpreter -> InterpreterState
Function -> Code
Add other requested comments.
* RegList -> ListHandle<T>
Change the RegList functions to be safer by identifying the type of
each argument list, and checking that list insert does not try
to add to two different lists at once.
* Use exactly equal for interp tests
Allow in-place operations on views
Adds VariableViewImpl, a subclass of VariableImpl which has a pointer to
the base Variable on which it is a view. In-place operations on views
change the grad_fn of the base.
Note that in-place operations only work on views that are the first output of the function that created them. All C++/ATen implemented functions have this behavior, but it's possible to write Python-implemented autograd functions that do not. In-place operations on these view will raise an exception.
Fixes#3313
* enable size from ATen type
* temp commit aten thd
* port copy, math
* port random
* changes after rebase
* lapack bind
* thd and csrc compile
* fix min/max reductions in DataChannelTCP
* clean up changes
* re-enable tensor constructors
* port MPI to at::Tensor
* fix storage methods to not cast to thpp storage ptrs
This breaks a lot of the onnx-pytorch tests because the abstraction
barriers are not respected. I'll spin up a patch for that separately.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
The pieces:
- I improved the lint / asserts to catch some bugs which I
committed while working on my export. There are two new
properties which the linter checks now:
(1) "Anticipated uses". If a node says that is used by
M, M better appear later in the topsort. Previously,
we only checked if it was in all_nodes.
(2) If you are a select node, you better be a multi-type node;
if you're not a select node, you better not be! And you
should never have an input that is multi-type.
- There is a new peephole optimization pass, for simple, local
transformations to graphs. Right now, it implements a simple
optimization: remove 'expand' invocations that are no-ops
(the size before matches the size after), but we can add other
things to it later. I needed this for ONNX because no-op expands
show up in the left-hand argument, which we don't support.
- There is now a broadcast fuser, which fuses ATen expand ops
into broadcastable ONNX ops (Add, Div, Mul, Pow, Sub, Gemm.)
It only fuses when the original size is a suffix of the new
size, as per the ONNX spec.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
- Cleaned up THNN and THCUNN code and kernels
- Improved THCUNN kernel performance 5x, making it match cuDNN performance
- Added support for computing softmax over arbitrary dims
NOTE: The default dim for 3D inputs is now 1 (used to be 0)
- Both functions now accept inputs with arbitrarily many dimensions
- Autograd functions no longer save the input (it's unnecessary)
- Added cuDNN bindings for softmax, but they are unused as THCUNN
matches or even exceeds cuDNN performance
* skeleton commit for building and linking nnpack library in PyTorch
* first stab at conv forward binding + integration
* bind NNPACK gradient kernels
* move nnpack forward, input gradient calls deeper
* nnpack conv api mimics nn
* fix symbol error; use memory across calls
* clean up warnings, add shape checking, thread safety, configurable thread specification
* add batch size threshold, also bind for single-element batch for the future
This adds some generated autograd functions implemented in C++, which
are generated from derivatives.yaml. It also generates Python bindings
for the Variable methods. The generated files are:
Functions.cpp/h: subclasses of torch::autograd::Function
VariableType.cpp/h: The at::Type for autograd Variables
python_variable_methods.cpp: Python bindings to torch::autograd::Variable
python_variable_methods_dispatch.h: wrapper which releases GIL and sets the
CUDA device
python_functions.cpp/h: exposes generated autograd functions as Python
objects
The generated functions are mostly shadowed by the definitions in
variable.py. We'll remove the Python implementations in favor of the
generated C++ implementations in a subsequent commit.
Variable is now a subclass of at::Tensor backed by a VariableImpl* pImpl. The implementation of the ATen functions is defined in the auto-generated VariableType.h/cpp file.
Currently, only functions which fall through to the base type, such as sizes() and isCuda() are implemented. Differentiable ops like add() and mul() will be added in a subsequent PR.
- Reduce setup.py diff.
- Expunge WITH_TOFFEE from codebase.
- Elaborate on a comment.
- Move gen_toffee.sh to tools
- Delete densenet test.
- Use 'using' to inherit a constructor.
- Delete outdated comment.
- Comment about why primspecs can return fewer outputs.
- Remove dead, commented out includes.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
If it's not set, CMAKE_DEBUG_POSTFIX sets it to 'd' which means the
static library gets named something different when built in debug mode.
This is annoying because it means if you build in debug mode, the
library is in a different place. Rather than teach the build system
to find the correct name, just set this POSTFIX so names don't change.
Also, update setup.py to look for the non-debug archive.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
General strategy:
- nanopb is statically linked into PyTorch. It must be built
with -fPIC.
- Generated nanopb files for toffee.proto are checked into
our repo.
- Because nanopb generated protobufs are C only, we wrote a
wrapper around it to give a Google C++ style interface.
More on this shortly.
How does the wrapper work?
- It's called "micropb" becaues it is less small than nanopb :)
- nanopb requires all variable-length fields to be written out
using a "callbacks" mechanism.
- We wrote pre-canned callbacks for all of the types ToffeeIR
writes out and lists; these are micropb_callback and
micropb_callback_list. These operate simply by dynamically
allocating and storing the data to be written out in
data (this defeats the purpose of the callback mechanism,
but it's easy to implement)
- Finally some boilerplate to actually implement the wrapper
classes and have owning pointers to the actual data.
Testing strategy:
- Take the serialized protobuf from nanopb, parse it again
with ToffeeIR and print it. Worked with all of test_jit.py!
These tests don't run without 'toffee' being installed.
TODO:
- Update CI to install ToffeeIR, so we can run the Toffee tests
in CI
- Update E2E with Caffe2 tests so that they work with new stuff.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
The general strategy:
- We put all the toffee files in torch/csrc/toffee; they will only be
added when toffee is enabled
- Toffee is enabled if torch/lib/ToffeeIR is present (since we
don't have a submodule/subtree thing going on)
- The most prevalant place you will need to use WITH_TOFFEE is for
primspec definitions on C++ autograd functions. There is a
macro HAS_PRIMSPEC to ameliorate optionally defining primspec()
virtual overrides on Function classes. HasPrimspec is always
available but will be a zero field class when Toffee is disabled.
NB: We might revert this commit in the future if we figure out a way
to unconditionally enable Toffee that everyone likes.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
We want all the conversion code to live in one place. Away it goes!
This means that alexnet protobuf no longer works. It will start working
again when we port changes.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
This commit adds a new exporter pass which takes a graph and returns
a string of the human-readable protobuf representation of a model.
We have two strategies for how conversions are implemented:
- If a Python autograd function has a primspec static method, we invoke
it to get the Toffee conversion. Use torch.toffee.op to generate the
format expected to be returned. The particular data representation is opaque
and subject to change in the future.
- Otherwise, there's a giant if statement in the exporter, which manually
uses the JIT IR C++ API and Toffee IR C++ protobuf API to convert.
You must check out a copy of the ToffeeIR repo
https://github.com/ProjectToffee/ToffeeIR at torch/lib; at the moment
we don't have a subtree/submodule set up.
Technical debt in this commit:
- To get protobuf headers in scope, we unconditionally add $CONDA_PREFIX/include
to the include path. This needs to be replaced with a more robust mechanism.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Approach is based on the approach of THC's pointwiseApply{1,2,3} family of kernels,
but doesn't have any dependencies on that code.
Adjacent contiguous dimensions of input tensors are compressed to reduce the complexity of indexing math.
For the completely contiguous case, the indexing logic simplifies to just the linear index.
In simple tests, this code matched or beat the equivalent from THC.
Previously, our AST was a DAG, where shared Nodes indicated a computation
should be reused. This commit rewrites the IR into a new functional
representation which represents sharing explicitly using variable
bindings.
We offer a few justifications for this new style:
1. The new representation is not all that different from the
old one; it is about as easy to construct, and the lack of an
explicit graph doesn't negatively impact our ability to interpret
the graph, since we've chosen, as a matter of design, to NOT have
the IR participate in the actual execution of a graph.
2. The new let-binding representation has an implicit ordering,
which we can use to conveniently keep track of the original order
the trace showed up as. This automatically gives us a topsort,
and gives us an easier to read textual representation of our
IR:
%14 = Embedding %11, %0, -1, None, 2, False, False
%15 = Dropout %14, 0.2, True, False
%16 = Index %12, 0
%17 = Index %12, 1
%18 = Index %13, 0
%19 = Index %13, 1
%20 = Index %15, 0
%21 = Linear %20, %1, %3
%22 = Linear %16, %2, %4
3. It moves us closer to a Futhark style language
(http://futhark-lang.org/publications/pldi17.pdf).
Major aspects of the diff
- Node is replaced with Expr and Arg, a pair of mutually recursive
structures which represent our new language. In BNF, the language
looks like this:
a ::= c | %i
e ::= %i, ... = e
| PyOp e, ...
| Ret %i, ...
Technically, Ret is not actually a return (no control flow is involved),
it just tuples up a series of tensors (identified by variables).
One important invariant is that locals are always tensors; they
are never constants (this is asymmetric with Args.)
- Arguments support Python constants. This is an important piece because
many operators take extra Python literals like integers and tuples in
order to specify extra parameters about how an operator operates. Adding
this was essential to getting word_language_model to work.
- As both Expr and Arg have multiple variants, there is new infrastructure
for doing case on the variants using ExprVisitor and ArgVisitor. The
strategy here is adapted from WebAssembly's visitors, although we have
generalized to permit arbitrary argument forwarding, which is necessary
to support tail-recursive visitor calls. TCO is important because our
interpreter may recurse arbitrarily deep into a stack of nested lets.
If users wish, they can also manually case on the type tag.
- Tracing is now turned on and off using _tracer_enter/_tracer_exit in
torch._C. _tracer_enter accepts a list of variables which are to be
treated as arguments; _tracer_exit accepts the list of traced variables
which should be returned when you reexecute the trace, and returns
the trace expression which can be reexecuted. GlobalTracingState
is a global variable which tracks whether or not we are tracing or not.
- You use run_forward to execute a trace on some set of parameters.
- When under tracing, variables keep track, via trace_local, what the
name of their variables in the IR are.
Here is a simple runner which leaks memory but can be used to JIT models:
import torch.autograd.function as F
import torch._C
def jit(model):
import types
real_forward = model.forward
def forward(self, *args):
def flatten(x):
return tuple(F._iter_variables(x))
if not hasattr(self, "saved_trace"):
torch._C._tracer_enter(tuple(self.parameters()) + flatten(args))
out = real_forward(*args)
self.saved_trace = torch._C._tracer_exit(flatten(out))
self.saved_outs = out
return out
else:
flat_out = Variable._execution_engine.run_forward(self.saved_trace, tuple(self.parameters()) + flatten(args))
return F._unflatten(flat_out, self.saved_outs)
Major problems:
- Sanity checking is spotty at best, especially when users pass in variables.
- The interpreter leaks tensor memory from the store. When we add back def-use
we should be able to deallocate tensors as soon as we know they are no longer
necessary.
- The interpreter needs to reach feature parity with the old execution engine.
From there, we need to see if backwards can be subsumed as well.
- I still have no confidence in having memory managed everything correctly.
This requires a close look.
- Rather than return an *open* expression as a trace, we should return a
*lambda* instead, which knows about how many formal parameters it
requires.
- The IR is not introspectable from Python at the moment, but this is simply a
matter of implementing all the binding code.
- The tracer is NOT reentrant (you can't trace while you're inside a trace.)
Furthermore, no sanity checking is done if you try to incorrectly reuse
things from one trace in another.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
When working on PyTorch dependencies we often want to rebuild only that
dependency and the Python extension. You can now do that by running:
python setup.py build_thc
to only re-build THC
Primary things I had to fix:
- Suppress _XOPEN_SOURCE warnings by ensuring that Python.h is included
first, because it always unconditionally defines this macro.
- Turn off strict aliasing, because Python 2 doesn't work with strict
aliasing.
- Workaround setuptools bug, where it's incorrectly passing
-Wstrict-prototypes to C++ compilers (where this doesn't make
any sense)
To compile csrc with -Werror, run `CFLAGS="-Werror" python setup.py build_ext`
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Because of this Variables can no longer appear in the graph.
Every usage of a leaf Variable will leave an AccumulateGrad
function that has no outputs, but modifies var.grad as a side
effect.
This ensures that we use the same library at the C++ level and with
Python ctypes. It moves the searching for the correct library from
run-time to compile-time.
The core autograd Variable, Function, and Engine no longer depend on the
Python API. This let's us implement functions in C++. In the future, we
can also multithread engine and release the GIL for most of the
non-Python backwards.
See issue #20
The torch.Size class is a tuple subclass which distinguishes sizes from
other tuples so that torch.Tensor(size) is interpreted as size instead
of data.
The from_buffer is similar to numpy's frombuffer. It decodes a Python
buffer object into a Storage object. For byte and char storages, it
simply copies the bytes.