mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
* Add cudaEvent support to the profiler This adds the ability to record cuda timings using cudaEventRecord in the profiler. Since it doesn't require nvprof it is easier to run than the nvprof path. This also records a thread id for each event, which will make tracing results easier to understand * Add flow arrows from cpu to cuda event * Fix no cuda build * Review comments * Move CUDA checks to one place
736 lines
26 KiB
Python
736 lines
26 KiB
Python
from setuptools import setup, Extension, distutils, Command, find_packages
|
|
import setuptools.command.build_ext
|
|
import setuptools.command.install
|
|
import setuptools.command.develop
|
|
import setuptools.command.build_py
|
|
import distutils.unixccompiler
|
|
import distutils.command.build
|
|
import distutils.command.clean
|
|
import platform
|
|
import subprocess
|
|
import shutil
|
|
import sys
|
|
import os
|
|
|
|
from tools.setup_helpers.env import check_env_flag
|
|
from tools.setup_helpers.cuda import WITH_CUDA, CUDA_HOME, CUDA_VERSION
|
|
from tools.setup_helpers.cudnn import WITH_CUDNN, CUDNN_LIB_DIR, CUDNN_INCLUDE_DIR
|
|
from tools.setup_helpers.nccl import WITH_NCCL, WITH_SYSTEM_NCCL, NCCL_LIB_DIR, \
|
|
NCCL_INCLUDE_DIR, NCCL_ROOT_DIR, NCCL_SYSTEM_LIB
|
|
from tools.setup_helpers.nnpack import WITH_NNPACK, NNPACK_LIB_PATHS, \
|
|
NNPACK_INCLUDE_DIRS
|
|
from tools.setup_helpers.nvtoolext import NVTOOLEXT_HOME
|
|
from tools.setup_helpers.split_types import split_types
|
|
|
|
DEBUG = check_env_flag('DEBUG')
|
|
|
|
IS_WINDOWS = (platform.system() == 'Windows')
|
|
IS_DARWIN = (platform.system() == 'Darwin')
|
|
IS_LINUX = (platform.system() == 'Linux')
|
|
|
|
WITH_DISTRIBUTED = not check_env_flag('NO_DISTRIBUTED') and not IS_WINDOWS
|
|
WITH_DISTRIBUTED_MW = WITH_DISTRIBUTED and check_env_flag('WITH_DISTRIBUTED_MW')
|
|
|
|
|
|
################################################################################
|
|
# Workaround setuptools -Wstrict-prototypes warnings
|
|
# I lifted this code from https://stackoverflow.com/a/29634231/23845
|
|
################################################################################
|
|
import distutils.sysconfig
|
|
cfg_vars = distutils.sysconfig.get_config_vars()
|
|
for key, value in cfg_vars.items():
|
|
if type(value) == str:
|
|
cfg_vars[key] = value.replace("-Wstrict-prototypes", "")
|
|
|
|
################################################################################
|
|
# Monkey-patch setuptools to compile in parallel
|
|
################################################################################
|
|
original_link = distutils.unixccompiler.UnixCCompiler.link
|
|
|
|
|
|
def parallelCCompile(self, sources, output_dir=None, macros=None,
|
|
include_dirs=None, debug=0, extra_preargs=None,
|
|
extra_postargs=None, depends=None):
|
|
# those lines are copied from distutils.ccompiler.CCompiler directly
|
|
macros, objects, extra_postargs, pp_opts, build = self._setup_compile(
|
|
output_dir, macros, include_dirs, sources, depends, extra_postargs)
|
|
cc_args = self._get_cc_args(pp_opts, debug, extra_preargs)
|
|
|
|
# compile using a thread pool
|
|
import multiprocessing.pool
|
|
|
|
def _single_compile(obj):
|
|
src, ext = build[obj]
|
|
self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts)
|
|
num_jobs = multiprocessing.cpu_count()
|
|
max_jobs = os.getenv("MAX_JOBS")
|
|
if max_jobs is not None:
|
|
num_jobs = min(num_jobs, int(max_jobs))
|
|
multiprocessing.pool.ThreadPool(num_jobs).map(_single_compile, objects)
|
|
|
|
return objects
|
|
|
|
|
|
def patched_link(self, *args, **kwargs):
|
|
_cxx = self.compiler_cxx
|
|
self.compiler_cxx = None
|
|
result = original_link(self, *args, **kwargs)
|
|
self.compiler_cxx = _cxx
|
|
return result
|
|
|
|
|
|
distutils.ccompiler.CCompiler.compile = parallelCCompile
|
|
distutils.unixccompiler.UnixCCompiler.link = patched_link
|
|
|
|
################################################################################
|
|
# Custom build commands
|
|
################################################################################
|
|
|
|
dep_libs = [
|
|
'nccl', 'ATen',
|
|
'libshm', 'libshm_windows', 'gloo', 'THD', 'nanopb',
|
|
]
|
|
|
|
|
|
def build_libs(libs):
|
|
for lib in libs:
|
|
assert lib in dep_libs, 'invalid lib: {}'.format(lib)
|
|
if IS_WINDOWS:
|
|
build_libs_cmd = ['torch\\lib\\build_libs.bat']
|
|
else:
|
|
build_libs_cmd = ['bash', 'torch/lib/build_libs.sh']
|
|
my_env = os.environ.copy()
|
|
my_env["PYTORCH_PYTHON"] = sys.executable
|
|
if WITH_SYSTEM_NCCL:
|
|
my_env["NCCL_ROOT_DIR"] = NCCL_ROOT_DIR
|
|
if WITH_CUDA:
|
|
my_env["CUDA_BIN_PATH"] = CUDA_HOME
|
|
build_libs_cmd += ['--with-cuda']
|
|
if WITH_CUDNN:
|
|
my_env["CUDNN_LIB_DIR"] = CUDNN_LIB_DIR
|
|
my_env["CUDNN_INCLUDE_DIR"] = CUDNN_INCLUDE_DIR
|
|
|
|
if subprocess.call(build_libs_cmd + libs, env=my_env) != 0:
|
|
sys.exit(1)
|
|
|
|
if 'ATen' in libs:
|
|
from tools.nnwrap import generate_wrappers as generate_nn_wrappers
|
|
generate_nn_wrappers()
|
|
|
|
|
|
class build_deps(Command):
|
|
user_options = []
|
|
|
|
def initialize_options(self):
|
|
pass
|
|
|
|
def finalize_options(self):
|
|
pass
|
|
|
|
def run(self):
|
|
libs = []
|
|
if WITH_NCCL and not WITH_SYSTEM_NCCL:
|
|
libs += ['nccl']
|
|
libs += ['ATen', 'nanopb']
|
|
if IS_WINDOWS:
|
|
libs += ['libshm_windows']
|
|
else:
|
|
libs += ['libshm']
|
|
if WITH_DISTRIBUTED:
|
|
if sys.platform.startswith('linux'):
|
|
libs += ['gloo']
|
|
libs += ['THD']
|
|
build_libs(libs)
|
|
|
|
|
|
build_dep_cmds = {}
|
|
|
|
for lib in dep_libs:
|
|
# wrap in function to capture lib
|
|
class build_dep(build_deps):
|
|
description = 'Build {} external library'.format(lib)
|
|
|
|
def run(self):
|
|
build_libs([self.lib])
|
|
build_dep.lib = lib
|
|
build_dep_cmds['build_' + lib.lower()] = build_dep
|
|
|
|
|
|
class build_module(Command):
|
|
user_options = []
|
|
|
|
def initialize_options(self):
|
|
pass
|
|
|
|
def finalize_options(self):
|
|
pass
|
|
|
|
def run(self):
|
|
self.run_command('build_py')
|
|
self.run_command('build_ext')
|
|
|
|
|
|
class build_py(setuptools.command.build_py.build_py):
|
|
|
|
def run(self):
|
|
self.create_version_file()
|
|
setuptools.command.build_py.build_py.run(self)
|
|
|
|
@staticmethod
|
|
def create_version_file():
|
|
global version, cwd
|
|
print('-- Building version ' + version)
|
|
version_path = os.path.join(cwd, 'torch', 'version.py')
|
|
with open(version_path, 'w') as f:
|
|
f.write("__version__ = '{}'\n".format(version))
|
|
# NB: This is not 100% accurate, because you could have built the
|
|
# library code with DEBUG, but csrc without DEBUG (in which case
|
|
# this would claim to be a release build when it's not.)
|
|
f.write("debug = {}\n".format(repr(DEBUG)))
|
|
f.write("cuda = {}\n".format(repr(CUDA_VERSION)))
|
|
|
|
|
|
class develop(setuptools.command.develop.develop):
|
|
|
|
def run(self):
|
|
build_py.create_version_file()
|
|
setuptools.command.develop.develop.run(self)
|
|
|
|
|
|
def monkey_patch_THD_link_flags():
|
|
'''
|
|
THD's dynamic link deps are not determined until after build_deps is run
|
|
So, we need to monkey-patch them in later
|
|
'''
|
|
# read tmp_install_path/THD_deps.txt for THD's dynamic linkage deps
|
|
with open(tmp_install_path + '/THD_deps.txt', 'r') as f:
|
|
thd_deps_ = f.read()
|
|
thd_deps = []
|
|
# remove empty lines
|
|
for l in thd_deps_.split(';'):
|
|
if l != '':
|
|
thd_deps.append(l)
|
|
|
|
C.extra_link_args += thd_deps
|
|
|
|
|
|
class build_ext(setuptools.command.build_ext.build_ext):
|
|
|
|
def run(self):
|
|
|
|
# Print build options
|
|
if WITH_NUMPY:
|
|
print('-- Building with NumPy bindings')
|
|
else:
|
|
print('-- NumPy not found')
|
|
if WITH_CUDNN:
|
|
print('-- Detected cuDNN at ' + CUDNN_LIB_DIR + ', ' + CUDNN_INCLUDE_DIR)
|
|
else:
|
|
print('-- Not using cuDNN')
|
|
if WITH_CUDA:
|
|
print('-- Detected CUDA at ' + CUDA_HOME)
|
|
else:
|
|
print('-- Not using CUDA')
|
|
if WITH_NCCL and WITH_SYSTEM_NCCL:
|
|
print('-- Using system provided NCCL library at ' +
|
|
NCCL_SYSTEM_LIB + ', ' + NCCL_INCLUDE_DIR)
|
|
elif WITH_NCCL:
|
|
print('-- Building NCCL library')
|
|
else:
|
|
print('-- Not using NCCL')
|
|
if WITH_DISTRIBUTED:
|
|
print('-- Building with distributed package ')
|
|
monkey_patch_THD_link_flags()
|
|
else:
|
|
print('-- Building without distributed package')
|
|
|
|
# Do we actually need this here?
|
|
if WITH_NNPACK:
|
|
nnpack_dir = NNPACK_LIB_PATHS[0]
|
|
print('-- Detected NNPACK at ' + nnpack_dir)
|
|
else:
|
|
print('-- Not using NNPACK')
|
|
# cwrap depends on pyyaml, so we can't import it earlier
|
|
from tools.cwrap import cwrap
|
|
from tools.cwrap.plugins.THPPlugin import THPPlugin
|
|
from tools.cwrap.plugins.ArgcountSortPlugin import ArgcountSortPlugin
|
|
from tools.cwrap.plugins.AutoGPU import AutoGPU
|
|
from tools.cwrap.plugins.BoolOption import BoolOption
|
|
from tools.cwrap.plugins.KwargsPlugin import KwargsPlugin
|
|
from tools.cwrap.plugins.NullableArguments import NullableArguments
|
|
|
|
from tools.cwrap.plugins.CuDNNPlugin import CuDNNPlugin
|
|
from tools.cwrap.plugins.WrapDim import WrapDim
|
|
from tools.cwrap.plugins.AssertNDim import AssertNDim
|
|
|
|
from tools.cwrap.plugins.Broadcast import Broadcast
|
|
from tools.cwrap.plugins.ProcessorSpecificPlugin import ProcessorSpecificPlugin
|
|
from tools.autograd.gen_variable_type import gen_variable_type
|
|
from tools.jit.gen_jit_dispatch import gen_jit_dispatch
|
|
thp_plugin = THPPlugin()
|
|
|
|
cwrap('torch/csrc/generic/TensorMethods.cwrap', plugins=[
|
|
ProcessorSpecificPlugin(), BoolOption(), thp_plugin,
|
|
AutoGPU(condition='IS_CUDA'), ArgcountSortPlugin(), KwargsPlugin(),
|
|
AssertNDim(), WrapDim(), Broadcast()
|
|
])
|
|
cwrap('torch/csrc/cudnn/cuDNN.cwrap', plugins=[
|
|
CuDNNPlugin(), NullableArguments()
|
|
])
|
|
# Build ATen based Variable classes
|
|
autograd_gen_dir = 'torch/csrc/autograd/generated'
|
|
jit_gen_dir = 'torch/csrc/jit/generated'
|
|
for d in (autograd_gen_dir, jit_gen_dir):
|
|
if not os.path.exists(d):
|
|
os.mkdir(d)
|
|
gen_variable_type(
|
|
'torch/lib/tmp_install/share/ATen/Declarations.yaml',
|
|
autograd_gen_dir)
|
|
gen_jit_dispatch(
|
|
'torch/lib/tmp_install/share/ATen/Declarations.yaml',
|
|
jit_gen_dir)
|
|
|
|
if IS_WINDOWS:
|
|
build_temp = self.build_temp
|
|
build_dir = 'torch/csrc'
|
|
|
|
ext_filename = self.get_ext_filename('_C')
|
|
lib_filename = '.'.join(ext_filename.split('.')[:-1]) + '.lib'
|
|
|
|
_C_LIB = os.path.join(build_temp, build_dir, lib_filename).replace('\\', '/')
|
|
|
|
THNN.extra_link_args += [_C_LIB]
|
|
if WITH_CUDA:
|
|
THCUNN.extra_link_args += [_C_LIB]
|
|
else:
|
|
# To generate .obj files for AutoGPU for the export class
|
|
# a header file cannot build, so it has to be copied to someplace as a source file
|
|
if os.path.exists("torch/csrc/generated/AutoGPU_cpu_win.cpp"):
|
|
os.remove("torch/csrc/generated/AutoGPU_cpu_win.cpp")
|
|
shutil.copyfile("torch/csrc/cuda/AutoGPU.h", "torch/csrc/generated/AutoGPU_cpu_win.cpp")
|
|
|
|
# It's an old-style class in Python 2.7...
|
|
setuptools.command.build_ext.build_ext.run(self)
|
|
|
|
|
|
class build(distutils.command.build.build):
|
|
sub_commands = [
|
|
('build_deps', lambda self: True),
|
|
] + distutils.command.build.build.sub_commands
|
|
|
|
|
|
class install(setuptools.command.install.install):
|
|
|
|
def run(self):
|
|
if not self.skip_build:
|
|
self.run_command('build_deps')
|
|
setuptools.command.install.install.run(self)
|
|
|
|
|
|
class clean(distutils.command.clean.clean):
|
|
|
|
def run(self):
|
|
import glob
|
|
with open('.gitignore', 'r') as f:
|
|
ignores = f.read()
|
|
for wildcard in filter(bool, ignores.split('\n')):
|
|
for filename in glob.glob(wildcard):
|
|
try:
|
|
os.remove(filename)
|
|
except OSError:
|
|
shutil.rmtree(filename, ignore_errors=True)
|
|
|
|
# It's an old-style class in Python 2.7...
|
|
distutils.command.clean.clean.run(self)
|
|
|
|
|
|
################################################################################
|
|
# Configure compile flags
|
|
################################################################################
|
|
|
|
include_dirs = []
|
|
library_dirs = []
|
|
extra_link_args = []
|
|
|
|
if IS_WINDOWS:
|
|
extra_compile_args = ['/Z7', '/EHa', '/DNOMINMAX'
|
|
# /Z7 turns on symbolic debugging information in .obj files
|
|
# /EHa is about native C++ catch support for asynchronous
|
|
# structured exception handling (SEH)
|
|
# /DNOMINMAX removes builtin min/max functions
|
|
]
|
|
else:
|
|
extra_compile_args = ['-std=c++11', '-Wno-write-strings',
|
|
# Python 2.6 requires -fno-strict-aliasing, see
|
|
# http://legacy.python.org/dev/peps/pep-3123/
|
|
'-fno-strict-aliasing',
|
|
# Clang has an unfixed bug leading to spurious missing
|
|
# braces warnings, see
|
|
# https://bugs.llvm.org/show_bug.cgi?id=21629
|
|
'-Wno-missing-braces']
|
|
|
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
|
lib_path = os.path.join(cwd, "torch", "lib")
|
|
|
|
|
|
# Check if you remembered to check out submodules
|
|
def check_file(f):
|
|
if not os.path.exists(f):
|
|
print("Could not find {}".format(f))
|
|
print("Did you run 'git submodule update --init'?")
|
|
sys.exit(1)
|
|
check_file(os.path.join(lib_path, "gloo", "CMakeLists.txt"))
|
|
check_file(os.path.join(lib_path, "nanopb", "CMakeLists.txt"))
|
|
check_file(os.path.join(lib_path, "pybind11", "CMakeLists.txt"))
|
|
|
|
tmp_install_path = lib_path + "/tmp_install"
|
|
include_dirs += [
|
|
cwd,
|
|
os.path.join(cwd, "torch", "csrc"),
|
|
lib_path + "/pybind11/include",
|
|
tmp_install_path + "/include",
|
|
tmp_install_path + "/include/TH",
|
|
tmp_install_path + "/include/THNN",
|
|
tmp_install_path + "/include/ATen",
|
|
]
|
|
|
|
library_dirs.append(lib_path)
|
|
|
|
# we specify exact lib names to avoid conflict with lua-torch installs
|
|
ATEN_LIB = os.path.join(lib_path, 'libATen.so.1')
|
|
THD_LIB = os.path.join(lib_path, 'libTHD.a')
|
|
NCCL_LIB = os.path.join(lib_path, 'libnccl.so.1')
|
|
|
|
# static library only
|
|
NANOPB_STATIC_LIB = os.path.join(lib_path, 'libprotobuf-nanopb.a')
|
|
|
|
if IS_DARWIN:
|
|
ATEN_LIB = os.path.join(lib_path, 'libATen.1.dylib')
|
|
NCCL_LIB = os.path.join(lib_path, 'libnccl.1.dylib')
|
|
|
|
if IS_WINDOWS:
|
|
ATEN_LIB = os.path.join(lib_path, 'ATen.lib')
|
|
NANOPB_STATIC_LIB = os.path.join(lib_path, 'protobuf-nanopb.lib')
|
|
|
|
main_compile_args = ['-D_THP_CORE']
|
|
main_libraries = ['shm']
|
|
main_link_args = [ATEN_LIB, NANOPB_STATIC_LIB]
|
|
main_sources = [
|
|
"torch/csrc/PtrWrapper.cpp",
|
|
"torch/csrc/Module.cpp",
|
|
"torch/csrc/Generator.cpp",
|
|
"torch/csrc/Size.cpp",
|
|
"torch/csrc/Exceptions.cpp",
|
|
"torch/csrc/Storage.cpp",
|
|
"torch/csrc/DynamicTypes.cpp",
|
|
"torch/csrc/assertions.cpp",
|
|
"torch/csrc/byte_order.cpp",
|
|
"torch/csrc/utils.cpp",
|
|
"torch/csrc/expand_utils.cpp",
|
|
"torch/csrc/utils/invalid_arguments.cpp",
|
|
"torch/csrc/utils/object_ptr.cpp",
|
|
"torch/csrc/utils/python_arg_parser.cpp",
|
|
"torch/csrc/utils/tensor_geometry.cpp",
|
|
"torch/csrc/utils/tuple_parser.cpp",
|
|
"torch/csrc/allocators.cpp",
|
|
"torch/csrc/serialization.cpp",
|
|
"torch/csrc/jit/init.cpp",
|
|
"torch/csrc/jit/interpreter.cpp",
|
|
"torch/csrc/jit/ir.cpp",
|
|
"torch/csrc/jit/python_ir.cpp",
|
|
"torch/csrc/jit/test_jit.cpp",
|
|
"torch/csrc/jit/tracer.cpp",
|
|
"torch/csrc/jit/python_tracer.cpp",
|
|
"torch/csrc/jit/interned_strings.cpp",
|
|
"torch/csrc/jit/type.cpp",
|
|
"torch/csrc/jit/export.cpp",
|
|
"torch/csrc/jit/python_arg_flatten.cpp",
|
|
"torch/csrc/jit/python_compiled_function.cpp",
|
|
"torch/csrc/jit/passes/graph_fuser.cpp",
|
|
"torch/csrc/jit/passes/onnx.cpp",
|
|
"torch/csrc/jit/passes/dead_code_elimination.cpp",
|
|
"torch/csrc/jit/passes/common_subexpression_elimination.cpp",
|
|
"torch/csrc/jit/passes/peephole.cpp",
|
|
"torch/csrc/jit/passes/inplace_check.cpp",
|
|
"torch/csrc/jit/passes/onnx/peephole.cpp",
|
|
"torch/csrc/jit/generated/aten_dispatch.cpp",
|
|
"torch/csrc/autograd/init.cpp",
|
|
"torch/csrc/autograd/engine.cpp",
|
|
"torch/csrc/autograd/function.cpp",
|
|
"torch/csrc/autograd/variable.cpp",
|
|
"torch/csrc/autograd/saved_variable.cpp",
|
|
"torch/csrc/autograd/input_buffer.cpp",
|
|
"torch/csrc/autograd/profiler.cpp",
|
|
"torch/csrc/autograd/python_function.cpp",
|
|
"torch/csrc/autograd/python_cpp_function.cpp",
|
|
"torch/csrc/autograd/python_variable.cpp",
|
|
"torch/csrc/autograd/python_engine.cpp",
|
|
"torch/csrc/autograd/python_hook.cpp",
|
|
"torch/csrc/autograd/functions/jit_closure.cpp",
|
|
"torch/csrc/autograd/generated/VariableType.cpp",
|
|
"torch/csrc/autograd/generated/Functions.cpp",
|
|
"torch/csrc/autograd/generated/python_variable_methods.cpp",
|
|
"torch/csrc/autograd/generated/python_functions.cpp",
|
|
"torch/csrc/autograd/generated/python_nn_functions.cpp",
|
|
"torch/csrc/autograd/functions/batch_normalization.cpp",
|
|
"torch/csrc/autograd/functions/convolution.cpp",
|
|
"torch/csrc/autograd/functions/basic_ops.cpp",
|
|
"torch/csrc/autograd/functions/tensor.cpp",
|
|
"torch/csrc/autograd/functions/accumulate_grad.cpp",
|
|
"torch/csrc/autograd/functions/special.cpp",
|
|
"torch/csrc/autograd/functions/utils.cpp",
|
|
"torch/csrc/autograd/functions/init.cpp",
|
|
"torch/csrc/autograd/functions/onnx/convolution.cpp",
|
|
"torch/csrc/autograd/functions/onnx/batch_normalization.cpp",
|
|
"torch/csrc/autograd/functions/onnx/basic_ops.cpp",
|
|
"torch/csrc/onnx/onnx.pb.cpp",
|
|
"torch/csrc/onnx/onnx.cpp",
|
|
]
|
|
main_sources += split_types("torch/csrc/Tensor.cpp")
|
|
|
|
try:
|
|
import numpy as np
|
|
include_dirs += [np.get_include()]
|
|
extra_compile_args += ['-DWITH_NUMPY']
|
|
WITH_NUMPY = True
|
|
except ImportError:
|
|
WITH_NUMPY = False
|
|
|
|
if WITH_DISTRIBUTED:
|
|
extra_compile_args += ['-DWITH_DISTRIBUTED']
|
|
main_sources += [
|
|
"torch/csrc/distributed/Module.cpp",
|
|
]
|
|
if WITH_DISTRIBUTED_MW:
|
|
main_sources += [
|
|
"torch/csrc/distributed/Tensor.cpp",
|
|
"torch/csrc/distributed/Storage.cpp",
|
|
]
|
|
extra_compile_args += ['-DWITH_DISTRIBUTED_MW']
|
|
include_dirs += [tmp_install_path + "/include/THD"]
|
|
main_link_args += [THD_LIB]
|
|
|
|
if IS_WINDOWS and not WITH_CUDA:
|
|
main_sources += ["torch/csrc/generated/AutoGPU_cpu_win.cpp"]
|
|
|
|
if WITH_CUDA:
|
|
nvtoolext_lib_name = None
|
|
if IS_WINDOWS:
|
|
cuda_lib_path = CUDA_HOME + '/lib/x64/'
|
|
nvtoolext_lib_path = NVTOOLEXT_HOME + '/lib/x64/'
|
|
nvtoolext_include_path = os.path.join(NVTOOLEXT_HOME, 'include')
|
|
|
|
library_dirs.append(nvtoolext_lib_path)
|
|
include_dirs.append(nvtoolext_include_path)
|
|
|
|
nvtoolext_lib_name = 'nvToolsExt64_1'
|
|
|
|
# MSVC doesn't support runtime symbol resolving, `nvrtc` and `cuda` should be linked
|
|
main_libraries += ['nvrtc', 'cuda']
|
|
else:
|
|
cuda_lib_dirs = ['lib64', 'lib']
|
|
|
|
for lib_dir in cuda_lib_dirs:
|
|
cuda_lib_path = os.path.join(CUDA_HOME, lib_dir)
|
|
if os.path.exists(cuda_lib_path):
|
|
break
|
|
extra_link_args.append('-Wl,-rpath,' + cuda_lib_path)
|
|
|
|
nvtoolext_lib_name = 'nvToolsExt'
|
|
|
|
library_dirs.append(cuda_lib_path)
|
|
cuda_include_path = os.path.join(CUDA_HOME, 'include')
|
|
include_dirs.append(cuda_include_path)
|
|
include_dirs.append(tmp_install_path + "/include/THCUNN")
|
|
extra_compile_args += ['-DWITH_CUDA', '-DAT_CUDA_ENABLED']
|
|
extra_compile_args += ['-DCUDA_LIB_PATH=' + cuda_lib_path]
|
|
main_libraries += ['cudart', nvtoolext_lib_name]
|
|
main_sources += [
|
|
"torch/csrc/cuda/Module.cpp",
|
|
"torch/csrc/cuda/Storage.cpp",
|
|
"torch/csrc/cuda/Stream.cpp",
|
|
"torch/csrc/cuda/AutoGPU.cpp",
|
|
"torch/csrc/cuda/utils.cpp",
|
|
"torch/csrc/cuda/expand_utils.cpp",
|
|
"torch/csrc/cuda/serialization.cpp",
|
|
"torch/csrc/jit/fusion_compiler.cpp",
|
|
]
|
|
main_sources += split_types("torch/csrc/cuda/Tensor.cpp")
|
|
|
|
if WITH_NCCL:
|
|
if WITH_SYSTEM_NCCL:
|
|
main_link_args += [NCCL_SYSTEM_LIB]
|
|
include_dirs.append(NCCL_INCLUDE_DIR)
|
|
else:
|
|
main_link_args += [NCCL_LIB]
|
|
extra_compile_args += ['-DWITH_NCCL']
|
|
main_sources += [
|
|
"torch/csrc/cuda/nccl.cpp",
|
|
]
|
|
if WITH_CUDNN:
|
|
main_libraries += ['cudnn']
|
|
library_dirs.append(CUDNN_LIB_DIR)
|
|
# NOTE: these are at the front, in case there's another cuDNN in CUDA path
|
|
include_dirs.insert(0, CUDNN_INCLUDE_DIR)
|
|
if not IS_WINDOWS:
|
|
extra_link_args.insert(0, '-Wl,-rpath,' + CUDNN_LIB_DIR)
|
|
main_sources += [
|
|
"torch/csrc/cudnn/BatchNorm.cpp",
|
|
"torch/csrc/cudnn/Conv.cpp",
|
|
"torch/csrc/cudnn/cuDNN.cpp",
|
|
"torch/csrc/cudnn/GridSampler.cpp",
|
|
"torch/csrc/cudnn/AffineGridGenerator.cpp",
|
|
"torch/csrc/cudnn/Types.cpp",
|
|
"torch/csrc/cudnn/Handles.cpp",
|
|
]
|
|
extra_compile_args += ['-DWITH_CUDNN']
|
|
|
|
if WITH_NNPACK:
|
|
include_dirs.extend(NNPACK_INCLUDE_DIRS)
|
|
main_link_args.extend(NNPACK_LIB_PATHS)
|
|
main_sources += [
|
|
"torch/csrc/nnpack/NNPACK.cpp",
|
|
]
|
|
extra_compile_args += ['-DWITH_NNPACK']
|
|
|
|
if DEBUG:
|
|
if IS_WINDOWS:
|
|
extra_link_args.append('/DEBUG:FULL')
|
|
else:
|
|
extra_compile_args += ['-O0', '-g']
|
|
extra_link_args += ['-O0', '-g']
|
|
|
|
if os.getenv('PYTORCH_BINARY_BUILD') and platform.system() == 'Linux':
|
|
print('PYTORCH_BINARY_BUILD found. Static linking libstdc++ on Linux')
|
|
# get path of libstdc++ and link manually.
|
|
# for reasons unknown, -static-libstdc++ doesn't fully link some symbols
|
|
CXXNAME = os.getenv('CXX', 'g++')
|
|
STDCPP_LIB = subprocess.check_output([CXXNAME, '-print-file-name=libstdc++.a'])
|
|
STDCPP_LIB = STDCPP_LIB[:-1]
|
|
if type(STDCPP_LIB) != str: # python 3
|
|
STDCPP_LIB = STDCPP_LIB.decode(sys.stdout.encoding)
|
|
main_link_args += [STDCPP_LIB]
|
|
version_script = os.path.abspath("tools/pytorch.version")
|
|
extra_link_args += ['-Wl,--version-script=' + version_script]
|
|
|
|
|
|
def make_relative_rpath(path):
|
|
if IS_DARWIN:
|
|
return '-Wl,-rpath,@loader_path/' + path
|
|
elif IS_WINDOWS:
|
|
return ''
|
|
else:
|
|
return '-Wl,-rpath,$ORIGIN/' + path
|
|
|
|
################################################################################
|
|
# Declare extensions and package
|
|
################################################################################
|
|
|
|
extensions = []
|
|
packages = find_packages(exclude=('tools', 'tools.*',))
|
|
C = Extension("torch._C",
|
|
libraries=main_libraries,
|
|
sources=main_sources,
|
|
language='c++',
|
|
extra_compile_args=main_compile_args + extra_compile_args,
|
|
include_dirs=include_dirs,
|
|
library_dirs=library_dirs,
|
|
extra_link_args=extra_link_args + main_link_args + [make_relative_rpath('lib')],
|
|
)
|
|
extensions.append(C)
|
|
|
|
if not IS_WINDOWS:
|
|
DL = Extension("torch._dl",
|
|
sources=["torch/csrc/dl.c"],
|
|
language='c',
|
|
)
|
|
extensions.append(DL)
|
|
|
|
THNN = Extension("torch._thnn._THNN",
|
|
sources=['torch/csrc/nn/THNN.cpp'],
|
|
language='c++',
|
|
extra_compile_args=extra_compile_args,
|
|
include_dirs=include_dirs,
|
|
extra_link_args=extra_link_args + [
|
|
ATEN_LIB,
|
|
make_relative_rpath('../lib'),
|
|
]
|
|
)
|
|
extensions.append(THNN)
|
|
|
|
if WITH_CUDA:
|
|
thnvrtc_link_flags = extra_link_args + [make_relative_rpath('lib')]
|
|
if IS_LINUX:
|
|
thnvrtc_link_flags = thnvrtc_link_flags + ['-Wl,--no-as-needed']
|
|
# these have to be specified as -lcuda in link_flags because they
|
|
# have to come right after the `no-as-needed` option
|
|
if IS_WINDOWS:
|
|
thnvrtc_link_flags += ['cuda.lib', 'nvrtc.lib']
|
|
else:
|
|
thnvrtc_link_flags += ['-lcuda', '-lnvrtc']
|
|
cuda_stub_path = [cuda_lib_path + '/stubs']
|
|
if IS_DARWIN:
|
|
# on OSX this is where the CUDA stub is installed according to the manual
|
|
cuda_stub_path = ["/usr/local/cuda/lib"]
|
|
THNVRTC = Extension("torch._nvrtc",
|
|
sources=['torch/csrc/nvrtc.cpp'],
|
|
language='c++',
|
|
include_dirs=include_dirs,
|
|
library_dirs=library_dirs + cuda_stub_path,
|
|
extra_link_args=thnvrtc_link_flags,
|
|
)
|
|
extensions.append(THNVRTC)
|
|
|
|
THCUNN = Extension("torch._thnn._THCUNN",
|
|
sources=['torch/csrc/nn/THCUNN.cpp'],
|
|
language='c++',
|
|
extra_compile_args=extra_compile_args,
|
|
include_dirs=include_dirs,
|
|
extra_link_args=extra_link_args + [
|
|
ATEN_LIB,
|
|
make_relative_rpath('../lib'),
|
|
]
|
|
)
|
|
extensions.append(THCUNN)
|
|
|
|
version = '0.4.0a0'
|
|
if os.getenv('PYTORCH_BUILD_VERSION'):
|
|
assert os.getenv('PYTORCH_BUILD_NUMBER') is not None
|
|
version = os.getenv('PYTORCH_BUILD_VERSION') \
|
|
+ '_' + os.getenv('PYTORCH_BUILD_NUMBER')
|
|
else:
|
|
try:
|
|
sha = subprocess.check_output(['git', 'rev-parse', 'HEAD'], cwd=cwd).decode('ascii').strip()
|
|
version += '+' + sha[:7]
|
|
except Exception:
|
|
pass
|
|
|
|
cmdclass = {
|
|
'build': build,
|
|
'build_py': build_py,
|
|
'build_ext': build_ext,
|
|
'build_deps': build_deps,
|
|
'build_module': build_module,
|
|
'develop': develop,
|
|
'install': install,
|
|
'clean': clean,
|
|
}
|
|
cmdclass.update(build_dep_cmds)
|
|
|
|
|
|
setup(name="torch", version=version,
|
|
description="Tensors and Dynamic neural networks in Python with strong GPU acceleration",
|
|
ext_modules=extensions,
|
|
cmdclass=cmdclass,
|
|
packages=packages,
|
|
package_data={'torch': [
|
|
'lib/*.so*', 'lib/*.dylib*', 'lib/*.dll',
|
|
'lib/torch_shm_manager',
|
|
'lib/*.h',
|
|
'lib/include/TH/*.h', 'lib/include/TH/generic/*.h',
|
|
'lib/include/THC/*.h', 'lib/include/THC/generic/*.h',
|
|
'lib/include/ATen/*.h',
|
|
]},
|
|
install_requires=['pyyaml', 'numpy'],
|
|
)
|