Finally we have this PR to merge allow_in_graph/inline/skip trace rules into ```trace_rules.lookup_inner```, where we can define and lookup trace rules at both function level and file level. Going forward, this is the central place that we define and consulte Dynamo trace rule for any function.
* ```trace_rules.looup``` is the API can return allow_in_graph, inline or skip.
* ```skipfiles.check``` is the API can return inline or skip, since we have multiple places that only do inline/skip check.
* I'll move ```skipfiles.check``` to ```trace_rules.check``` as one of the follow-ups.
* Both functions consulte ```trace_rules.lookup_inner``` to get the tracing rule.
To avoid a single big PR, I left a few items as the follow-ups:
* Remove ```skipfiles.py``` and merge the code into ```trace_rules.py```.
* We do double check in ```symbolic_convert.check_inlineable```, will refactor and simplify it. We should only do inline/skip check before generating ```SkipFilesVariable``` and ```UserFunctionVariable```.
* Rename ```SkipFilesVariable``` as ```SkipFunctionVariable```, since we only handle functions.
* The inline/skip reasons are not logged for some cases, since the new lookup framework doesn't always return inline/skip reasons. I'll refactor loggings to record the inline/skip reason in next step.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118971
Approved by: https://github.com/jansel
Make variables in dict lazy and remove DICT_KEYS guard.
We build the keys of a dict depth-first and we rely on the guards of
each element in the dict to create the correct guards. This allows us to
remove the rather buggy DICT_KEYS guard and make the guard lazy.
The guards are not completely lazy yet, as we instantiate them in
`_HashableTracker._eq_impl` but it should be possible to make them
truly lazy.
Also, adding new types to the supported types within keys should be less
error prone.
This is marginally less efficient when we graph break, but in turn we
should graph break much less. It also makes the dicts code easier to maintain
(removes `is_hashable_python_var`).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117625
Approved by: https://github.com/jansel, https://github.com/peterbell10, https://github.com/anijain2305
ghstack dependencies: #117982, #118098, #117983
The original motivation for MYPYINDUCTOR was a faster type checking configuration that only checked a subset of files. With the removal of `follow_imports = ignore`, we are now able to use dmypy to do fast incremental typechecking, eliminating the need for this.
Perhaps erroneously, when I tee'ed up this PR I elected to delete the `follow_imports = skip` designations in the mypy-inductor.ini. This lead to a number of extra type error suppressions that I manually edited. You will need to review.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118432
Approved by: https://github.com/Skylion007
ghstack dependencies: #118414, #118418
We split install_global_once into two APIs:
- `install_global_by_id(prefix, value) -> name`: installs a global if it hasn't
been installed yet
- `install_global(prefix, value) -> name`: always installs the global (and
generates a unique name for it)
Then, we refactor most callsites of `install_global_unsafe` to one of
the previous. Some callsites cannot be refactored because we create the
global name first, do a lot of stuff with it, and then install it.
This fixes more test flakiness.
Test Plan:
- Existing tests; I can't reliably repro the flakiness
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118100
Approved by: https://github.com/ezyang, https://github.com/mlazos
Fixes https://github.com/pytorch/pytorch/issues/117851
In tests, we ran into an issue where:
- In frame A, Dynamo would install a global
- We call reset()
- reset() did not delete the installed global due to a refcycle
- In frame B, Dynamo would re-use the same global
- Python gc ran, deleting the installed global, leading to the compiled
version of frame B raising NameNotFound
This PR changes the following:
- module globals are now installed at a per-frame basis.
- renames install_global to install_global_unsafe: if the names are not
unique and end up being re-used across frames, then we've got trouble.
Test Plan:
- I tested that this got rid of the test flakiness locally. I'm not sure
how to easily write a test for this, because I don't actually know
what the refcycle in the above is.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117998
Approved by: https://github.com/ezyang, https://github.com/anijain2305
For training graphs (when inputs require grad), previously, we would speculate the forward and backward graph to determine if there are any graph breaks, side effect and etc but would not actually use these speculated graphs. We would just insert a call function node on the graph and later rely on autograd's tracing.
This approach does not work for more generalized graphs like graphs that include user defined triton kernels because autograd is not able to do the higher order function conversation.
This PR speculates the forward and backward functions and emits them in a HOF that later gets used via templating mechanism.
While working on this PR, I have exposed some bugs in the current tracing due to trampoline functions losing the source information resulting in incorrect graphs being produced. I have fixed these source information bugs and killed the trampolines.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116897
Approved by: https://github.com/Skylion007, https://github.com/jansel, https://github.com/voznesenskym
## Motivation
The current code of `value in [torch.backends.cudnn, torch.ops]` requires `value` to have the implementation of `__eq__`. If the value is a custom object and does not implement `__eq__`, dynamo will throw error. For example, ConvolutionOpContext, the custom 'torch._C.ScriptClass' object registered in IPEX, dynamo will throw the following error:
**torch._dynamo.exc.InternalTorchDynamoError: '__eq__' is not implemented for __torch__.torch.classes.ipex_prepack.ConvolutionOpContext**
I think this is a common issue, To avoid this issue, the PR replaces the current code `value in [torch.backends.cudnn, torch.ops]`with `isinstance(value, (torch.backends.cudnn.CudnnModule, torch._ops._Ops)`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116856
Approved by: https://github.com/jansel
This is a placeholder implementation for reconstructing streams via global storage to unblock FSDP, pending proper stream support design
This PR does a few things:
1) fixes registration for devices with indices. We were only supporting "cuda", we now support "cuda:k" interfaces where k is # of gpu
2) Changes the stream objects in dynamo to take devices as device types, instead of strings, and updates the string based device APIs to gracefully take device types.
3) Introduces a reconstruct-by-global (using existing cleanup hook structures) to streams as a placeholder impl for now
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117386
Approved by: https://github.com/jansel
This prepares the PR where we implement sets in terms of dicts.
To do so, rather than storing internally a dictionary that maps literals
to VariableTrackers, it stores (pretty much) a dictionary from VTs to VTs.
To do so, keys are wrapped in an opaque internal class _Hashable.
The Hashable class is opaque on purpose so that it fails hard if
if it inadvertently leaks back into user code.
We also found and fixed a number of latent bugs and inconsistencies
in the way dynamo checked what can be a dict key. More generally, we
make much clearer what are the things that need to be modified to add
a new supported key type to Dicts.
Fixes [#107595](https://www.internalfb.com/tasks?t=107595)
Fixes [#111603](https://www.internalfb.com/tasks?t=111603)
Re-PR of https://github.com/pytorch/pytorch/pull/111196 sadly due to reverts, we could not reuse @lezcano's original PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116785
Approved by: https://github.com/mlazos
For training graphs (when inputs require grad), previously, we would speculate the forward and backward graph to determine if there are any graph breaks, side effect and etc but would not actually use these speculated graphs. We would just insert a call function node on the graph and later rely on autograd's tracing.
This approach does not work for more generalized graphs like graphs that include user defined triton kernels because autograd is not able to do the higher order function conversation.
This PR speculates the forward and backward functions and emits them in a HOF that later gets used via templating mechanism.
While working on this PR, I have exposed some bugs in the current tracing due to trampoline functions losing the source information resulting in incorrect graphs being produced. I have fixed these source information bugs and killed the trampolines.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116358
Approved by: https://github.com/jansel
After this refactor:
* ```TorchVariable``` definition and all references are removed.
* All ```is_allowed``` references except one are removed.
- The only left one is in ```torch/_dynamo/decorators:_disallow_in_graph_helper```. It was called when users put ```disallow_in_graph``` decorator on a function. Since we use the lists in ```trace_rules``` to decide the function's trace rule, so the decorator would only be used as customer function rather than torch functions. I'll defer this to a separate decorator refactor PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116312
Approved by: https://github.com/jansel
After this refactor:
* ```TorchVariable``` definition and all references are removed.
* All ```is_allowed``` references except one are removed.
- The only left one is in ```torch/_dynamo/decorators:_disallow_in_graph_helper```. It was called when users put ```disallow_in_graph``` decorator on a function. Since we use the lists in ```trace_rules``` to decide the function's trace rule, so the decorator would only be used as customer function rather than torch functions. I'll defer this to a separate decorator refactor PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116312
Approved by: https://github.com/jansel
Make ```SkipFilesVariable``` only handle function type, and route skipped classes to ```UserDefinedClassVariable```. The reasons behind this are:
* We'd like to remove ```is_allowed```, so the allowed/disallowed torch classes should have a proper place to handle. We can put them in either ```SkipFilesVariable``` and ```UserDefinedClassVariable``` under the current architecture, but it's confusing to have two places do one thing.
- Going forward, let's make ```SkipFilesVariable``` only handle functions, and probably I'll rename it to ```SkippedFunctionVariable``` in the following PRs.
- Let's do dispatch by value's type, all torch classes stuff would go to ```UserDefinedClassVariable``` in the next PR.
* We'd merge in_graph/skip/inline trace decision into the same API ```trace_rule.lookup```, so probably we have to limit the input to only function for better organizing ```VariableBuilder._wrap``` logics.
- Next step, I'll merge ```skipfiles.check``` into ```trace_rules.lookup```, and do the skipfile check before wrapping them into correct variable tracker.
- Though the ```TorchCtxManagerClassVariable``` is decided by ```trace_rules.lookup```, I'll refactor it out in the following PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115963
Approved by: https://github.com/jansel
Make ```SkipFilesVariable``` only handle function type, and route skipped classes to ```UserDefinedClassVariable```. The reasons behind this are:
* We'd like to remove ```is_allowed```, so the allowed/disallowed torch classes should have a proper place to handle. We can put them in either ```SkipFilesVariable``` and ```UserDefinedClassVariable``` under the current architecture, but it's confusing to have two places do one thing.
- Going forward, let's make ```SkipFilesVariable``` only handle functions, and probably I'll rename it to ```SkippedFunctionVariable``` in the following PRs.
- Let's do dispatch by value's type, all torch classes stuff would go to ```UserDefinedClassVariable``` in the next PR.
* We'd merge in_graph/skip/inline trace decision into the same API ```trace_rule.lookup```, so probably we have to limit the input to only function for better organizing ```VariableBuilder._wrap``` logics.
- Next step, I'll merge ```skipfiles.check``` into ```trace_rules.lookup```, and do the skipfile check before wrapping them into correct variable tracker.
- Though the ```TorchCtxManagerClassVariable``` is decided by ```trace_rules.lookup```, I'll refactor it out in the following PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115963
Approved by: https://github.com/jansel
1. Removes calls to `replace_all` and `clone` and makes VTs mutable.
2. Properly handles Tuple Iterator mutation. Previously TupleIterator variables would only be properly reconstructed if they were advanced at least once in a frame. On calls to `next`, the source information would be lost (due to constructing a new iterator without using builder), which would ensure that during codegen the variable would be reconstructed from scratch. Now that VTs are mutated, the source is never lost, so we need to properly track mutation and handle it by replaying calls to `next` at the end of the modified bytecode.
3. Added test for checking iadd side effects, this was missing in our unit test coverage.
4. Fixed two incorrect sources, DelayGraphBreakVariable, and UserMethodVariable both relied on setting the source to AttrSource(parent, name) at the callsite of `var_getattr`.
5. Fixed a bug in inplace adding for lists, it would set the resulting VariableTracker's source to `None` which would utilize a different reconstruct path in codegen. Now this is handled explicitly by reconstructing vars when allow_cache=`False`, so that during side effect replay, the mutated var is correctly updated.
In subsequent PRs:
* Refactoring side effect tracking to be significantly simpler (I think we only need an `is_modified` flag)
* Refactor `next_variables` iterator to match the signature of `next`
* Remove all references to `options` in the code
* Refactor VTs representing mutable collections to implement their own mutation update handling
* Remove clone and/or make it specific to lists for creating slices
* Add mutation tracking/replay for sets
* Add mutation tracking/replay for iter.py
* Removing setting source in builder (it's set at the top level after a var is returned)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113725
Approved by: https://github.com/jansel
*
Context:
Joel sees that unless he manually writes to the fake tensor memo, fakification seems to produce spurious symbols! Voz (me) objects, saying that not only is directly writing to memo a bad pattern, recursively invoking fakification on tensor subclass elements in dynamo should suffice! Joel says that while he morally agrees, he has a test proving otherwise, a most perplexing situation.
Digging in, I figured out that while *we were* making fake tensors correctly, with properly cached symbols and the like, we were *also* incorrectly creating spurious symbols, leading the test to fail.
Before this PR, we would only cache source->symint. This was generally fine, but meant that you would create a symbol, then potentially throw it out due to symint cache. For example, the cache hit flow was:
make a symbol (ex: s2) -> use it to make a symint -> hit the cache (my_source-s1)
Now, in this example, you have a symbol in your val_to_var/var_to_val (s2) that is unused. This is sound, but wasteful, and furthermore, misleading.
This was causing a test added in a PR in this stack to fail, specifically, because the test was using
```
curr_var_to_val = {
str(k): v for k, v in context.fake_mode.shape_env.var_to_val.items()
}
````
To validate that no new symbols were being created (that is, that recursively creating fake tensors for subclasses was working).
The test is correct, but the implementation of caching would make (by this method of observation) cache hits look like cache misses.
So, the fix here is to move the cache up to be a general symbol cache, rather than only a cache for symints.
The initial implementation did that! But then, it ran into some interesting errors when it came to replay. When replaying symbol creation, behaviors would diverge in the new shape env! How could that be? The answer is because creating a new shape_env resulted in us replaying symbol creation... but with a cache from a different shape env! This was short circuiting symbol creation - and so, adding an extra layer to the cache for id(shape_env) fixes the problem.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115396
Approved by: https://github.com/mlazos