mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This work rewrites vmap support in torch.compile by inlining most of the frames into the existing FX graph. It also unlocks to PyTorch to support features that were previously missing, such as keyword args. Fixes: https://github.com/pytorch/pytorch/issues/114306 Pull Request resolved: https://github.com/pytorch/pytorch/pull/116050 Approved by: https://github.com/zou3519
1878 lines
77 KiB
Python
1878 lines
77 KiB
Python
import abc
|
|
import collections
|
|
import contextlib
|
|
import dataclasses
|
|
import enum
|
|
import functools
|
|
import inspect
|
|
import itertools
|
|
import logging
|
|
import operator
|
|
import re
|
|
import sys
|
|
import types
|
|
from typing import List, NamedTuple, Optional, Union
|
|
|
|
try:
|
|
import numpy as np
|
|
except ModuleNotFoundError:
|
|
np = None
|
|
|
|
import torch
|
|
|
|
from torch import SymInt
|
|
from torch._guards import GuardSource, TracingContext
|
|
from torch._ops import HigherOrderOperator
|
|
from torch._streambase import _EventBase, _StreamBase
|
|
from torch._subclasses.fake_tensor import FakeTensor, is_fake, maybe_get_fake_mode
|
|
from torch.fx.experimental.symbolic_shapes import (
|
|
_constrain_range_for_size,
|
|
DimDynamic,
|
|
RelaxedUnspecConstraint,
|
|
StatefulSymbolicContext,
|
|
SubclassSymbolicContext,
|
|
SymbolicContext,
|
|
)
|
|
from torch.fx.immutable_collections import immutable_list
|
|
from torch.nested._internal.nested_tensor import NestedTensor
|
|
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
|
|
from torch.utils.weak import TensorWeakRef
|
|
from .. import config, mutation_guard, replay_record, skipfiles, trace_rules
|
|
|
|
from ..device_interface import get_registered_device_interfaces
|
|
from ..exc import InternalTorchDynamoError, unimplemented
|
|
from ..guards import GuardBuilder, install_guard, make_dupe_guard
|
|
from ..side_effects import SideEffects
|
|
from ..source import (
|
|
AttrSource,
|
|
ConstantSource,
|
|
ConstDictKeySource,
|
|
ConvertIntSource,
|
|
GetItemSource,
|
|
is_constant_source,
|
|
LocalSource,
|
|
NumpyTensorSource,
|
|
RandomValueSource,
|
|
Source,
|
|
TupleIteratorGetItemSource,
|
|
)
|
|
from ..trace_rules import is_builtin_callable, is_callable_allowed, is_numpy
|
|
from ..utils import (
|
|
build_checkpoint_variable,
|
|
clone_input,
|
|
common_constant_types,
|
|
get_fake_value,
|
|
get_static_address_type,
|
|
is_function,
|
|
is_namedtuple,
|
|
is_typing,
|
|
is_utils_checkpoint,
|
|
istype,
|
|
odict_values,
|
|
preserve_rng_state,
|
|
tensor_always_has_static_shape,
|
|
tuple_iterator,
|
|
tuple_iterator_getitem,
|
|
tuple_iterator_len,
|
|
wrap_fake_exception,
|
|
)
|
|
|
|
from .base import MutableLocal, typestr, VariableTracker
|
|
from .builtin import BuiltinVariable
|
|
from .constant import ConstantVariable, EnumVariable
|
|
from .ctx_manager import (
|
|
AutocastModeVariable,
|
|
EventVariable,
|
|
NullContextVariable,
|
|
StreamContextVariable,
|
|
StreamVariable,
|
|
)
|
|
from .dicts import (
|
|
ConstDictVariable,
|
|
DataClassVariable,
|
|
DefaultDictVariable,
|
|
HFPretrainedConfigVariable,
|
|
is_hashable_python_var,
|
|
PythonSysModulesVariable,
|
|
SetVariable,
|
|
)
|
|
from .distributed import (
|
|
DeviceMeshVariable,
|
|
PlacementClassVariable,
|
|
PlacementVariable,
|
|
ProcessGroupVariable,
|
|
)
|
|
from .functions import (
|
|
CollectiveFunctionRewriteVariable,
|
|
FunctoolsPartialVariable,
|
|
TritonKernelVariable,
|
|
UserFunctionVariable,
|
|
UserMethodVariable,
|
|
)
|
|
from .higher_order_ops import TorchHigherOrderOperatorVariable
|
|
from .iter import ItertoolsVariable
|
|
from .lazy import LazyVariableTracker
|
|
from .lists import (
|
|
BaseListVariable,
|
|
ListVariable,
|
|
NamedTupleVariable,
|
|
RangeVariable,
|
|
RestrictedListSubclassVariable,
|
|
SizeVariable,
|
|
SliceVariable,
|
|
TupleIteratorVariable,
|
|
TupleVariable,
|
|
)
|
|
from .misc import (
|
|
AutogradFunctionContextVariable,
|
|
AutogradFunctionVariable,
|
|
ComptimeVariable,
|
|
GetAttrVariable,
|
|
GetSetDescriptorVariable,
|
|
InspectSignatureVariable,
|
|
LambdaVariable,
|
|
MethodWrapperVariable,
|
|
NumpyVariable,
|
|
PythonModuleVariable,
|
|
SavedTensorBox,
|
|
SkipFilesVariable,
|
|
TypingVariable,
|
|
)
|
|
from .nn_module import FSDPManagedNNModuleVariable, UnspecializedNNModuleVariable
|
|
from .optimizer import OptimizerVariable
|
|
|
|
from .sdpa import SDPAParamsVariable
|
|
from .tensor import (
|
|
NumpyNdarrayVariable,
|
|
SymNodeVariable,
|
|
TensorSubclassVariable,
|
|
TensorVariable,
|
|
UnspecializedPythonVariable,
|
|
)
|
|
from .torch import TorchInGraphFunctionVariable
|
|
from .torch_function import build_torch_function_fn, TensorWithTFOverrideVariable
|
|
from .user_defined import (
|
|
KeyedJaggedTensorVariable,
|
|
UserDefinedClassVariable,
|
|
UserDefinedObjectVariable,
|
|
)
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
DimList = List
|
|
|
|
|
|
class _missing:
|
|
pass
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class GraphArg:
|
|
source: Source
|
|
# TODO: storing a SymInt here but not a FakeTensor is a pretty strange
|
|
# thing to do. Probably should have example (which stores an int) and
|
|
# fake_example
|
|
_example: Union[TensorWeakRef, torch.SymInt]
|
|
is_unspecialized: bool
|
|
fake_tensor: Optional[torch._subclasses.fake_tensor.FakeTensor]
|
|
# UnspecializedPythonVariable often masquerades as a tensor.
|
|
# We MUST NOT generate shape guard code
|
|
# that actually tries to access tensor properties on these values.
|
|
# is_tensor lets us tell if this graph arg actually is a tensor
|
|
# or not.
|
|
is_tensor: bool = True
|
|
# Sometimes, the Tensor we pass to example is freshly allocated (smh).
|
|
# Then we cannot only keep a weak reference to it. This lets you
|
|
# stash a strong reference too.
|
|
example_strong_ref: Optional[torch.Tensor] = None
|
|
|
|
@property
|
|
def example(self):
|
|
if isinstance(self._example, TensorWeakRef):
|
|
r = self._example()
|
|
assert r is not None
|
|
return r
|
|
else:
|
|
return self._example
|
|
|
|
def __post_init__(self):
|
|
if isinstance(self._example, torch.Tensor):
|
|
self._example = TensorWeakRef(self._example)
|
|
assert is_fake(self.fake_tensor)
|
|
|
|
def load(self, tx):
|
|
return self.source.reconstruct(tx)
|
|
|
|
def erase(self):
|
|
self._example = None
|
|
self.example_strong_ref = None
|
|
|
|
def __eq__(self, other):
|
|
return self.source.name() == other.source.name()
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class FrameStateSizeEntry:
|
|
scalar: Optional[int]
|
|
size: Optional[List[int]]
|
|
|
|
|
|
class VariableBuilder:
|
|
"""Wrap a python value in a VariableTracker() instance"""
|
|
|
|
def __init__(
|
|
self,
|
|
tx,
|
|
source: Source,
|
|
):
|
|
assert (
|
|
source is not None
|
|
), "Consider SourcelessBuilder for ephemeral objects, usually objects created locally."
|
|
assert TracingContext.try_get() is not None, "Expected active TracingContext"
|
|
super().__init__()
|
|
self.tx = tx
|
|
self.source = source
|
|
self.name = source.name()
|
|
|
|
def __call__(self, value):
|
|
if value in self.tx.output.side_effects:
|
|
side_effect_result = self.tx.output.side_effects[value]
|
|
dup_guard = make_dupe_guard(self.source, side_effect_result.source)
|
|
if dup_guard:
|
|
self.install_guards(dup_guard)
|
|
return side_effect_result
|
|
vt = self._wrap(value)
|
|
vt.source = self.source
|
|
if self._can_lift_attrs_to_inputs(vt):
|
|
vt = self.tx.output.side_effects.track_object_existing(value, vt)
|
|
return vt
|
|
|
|
def _can_lift_attrs_to_inputs(self, vt):
|
|
if type(vt) in [
|
|
TensorVariable,
|
|
TensorWithTFOverrideVariable,
|
|
UserDefinedObjectVariable,
|
|
NumpyNdarrayVariable,
|
|
]:
|
|
return True
|
|
return False
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _common_constants():
|
|
return {
|
|
# We zero-one specialize shapes, so specialize these constants
|
|
# too
|
|
0,
|
|
1,
|
|
# NB: There used to be more constants here, but honestly it was
|
|
# pretty confusing. Note we specialize floats by default, and
|
|
# DON'T specialize ints by default. This all only matters with
|
|
# dynamic_shapes
|
|
}
|
|
|
|
def get_source(self):
|
|
return self.source
|
|
|
|
def install_guards(self, *guards):
|
|
source = self.get_source()
|
|
if (
|
|
isinstance(source, ConstantSource)
|
|
or source.guard_source() == GuardSource.CONSTANT
|
|
):
|
|
return None
|
|
install_guard(*[source.make_guard(guard) for guard in guards], skip=1)
|
|
return {}
|
|
|
|
def set_source_and_track_mutable(self, value, var):
|
|
assert isinstance(var, VariableTracker)
|
|
var.source = self.source
|
|
return self.tx.output.side_effects.track_mutable(value, var)
|
|
|
|
@classmethod
|
|
@functools.lru_cache(None)
|
|
def _type_dispatch(cls):
|
|
# NB: Careful not to close over self to avoid ref cycle from lru_cache
|
|
entries = [
|
|
(
|
|
(
|
|
torch.Tensor,
|
|
torch.nn.Parameter,
|
|
torch._subclasses.FakeTensor,
|
|
torch._subclasses.functional_tensor.FunctionalTensor,
|
|
),
|
|
cls.wrap_tensor,
|
|
),
|
|
(
|
|
(tuple, list, odict_values, collections.deque, torch.Size),
|
|
cls.wrap_listlike,
|
|
),
|
|
(tuple_iterator, cls.wrap_tuple_iterator),
|
|
((slice, range), cls.wrap_slice_range),
|
|
(tuple(common_constant_types), cls.wrap_literal),
|
|
]
|
|
|
|
if config.trace_numpy and np:
|
|
entries.append((np.ndarray, cls.wrap_numpy_ndarray))
|
|
|
|
result = {}
|
|
for ts, fn in entries:
|
|
for t in ts if isinstance(ts, tuple) else (ts,):
|
|
assert t not in result
|
|
result[t] = fn
|
|
|
|
return result
|
|
|
|
@classmethod
|
|
@functools.lru_cache(None)
|
|
def _id_dispatch(cls):
|
|
from ..comptime import comptime
|
|
|
|
entries = [
|
|
(
|
|
inspect.signature,
|
|
lambda self, value: LambdaVariable(
|
|
InspectSignatureVariable.create,
|
|
source=self.source,
|
|
**self.install_guards(GuardBuilder.CLOSURE_MATCH),
|
|
),
|
|
),
|
|
(comptime, lambda self, value: ComptimeVariable()),
|
|
(
|
|
dataclasses.fields,
|
|
lambda self, value: LambdaVariable(
|
|
_dataclasses_fields_lambda,
|
|
source=self.source,
|
|
**self.install_guards(GuardBuilder.FUNCTION_MATCH),
|
|
),
|
|
),
|
|
]
|
|
|
|
result = {}
|
|
for ts, fn in entries:
|
|
for t in ts if isinstance(ts, (tuple, list)) else (ts,):
|
|
assert t not in result
|
|
result[id(t)] = fn
|
|
|
|
return result
|
|
|
|
def _wrap(self, value):
|
|
# import here to avoid circular dependencies
|
|
from torch.utils._triton import has_triton
|
|
|
|
if has_triton():
|
|
from triton.runtime.autotuner import Autotuner
|
|
from triton.runtime.jit import JITFunction
|
|
else:
|
|
|
|
class JITFunction:
|
|
pass
|
|
|
|
class Autotuner:
|
|
pass
|
|
|
|
# Handle exact type() match
|
|
type_dispatch = self._type_dispatch().get(type(value))
|
|
if type_dispatch is not None:
|
|
return type_dispatch(self, value)
|
|
|
|
# Handle exact id() match
|
|
id_dispatch = self._id_dispatch().get(id(value))
|
|
if id_dispatch is not None:
|
|
return id_dispatch(self, value)
|
|
|
|
# Note - There are some nested values where types mismatch!
|
|
# We want to get those out and wrap those.
|
|
value = inspect.getattr_static(value, "_torchdynamo_inline", value)
|
|
|
|
# Everything else (NB: order matters!)
|
|
if is_traceable_wrapper_subclass(value) or istype(
|
|
value, config.traceable_tensor_subclasses
|
|
):
|
|
return self.wrap_tensor(value)
|
|
elif is_namedtuple(value):
|
|
return self.wrap_listlike(value)
|
|
|
|
elif value is torch.utils._pytree.SUPPORTED_NODES:
|
|
# For SUPPORTED_NODES, we guard on the dictionary version (PEP509)
|
|
# under the assumption that the values themselves don't change.
|
|
self.install_guards(GuardBuilder.DICT_VERSION)
|
|
result = {
|
|
ConstantVariable.create(k): UserDefinedObjectVariable(
|
|
v,
|
|
source=GetItemSource(self.get_source(), k),
|
|
)
|
|
for k, v in value.items()
|
|
}
|
|
return ConstDictVariable(result, type(value))
|
|
elif value is sys.modules:
|
|
return PythonSysModulesVariable(source=self.source)
|
|
elif istype(
|
|
value, (dict, collections.defaultdict, collections.OrderedDict)
|
|
) and all(is_hashable_python_var(k) for k in value.keys()):
|
|
if not value and self.get_source().is_nn_module():
|
|
# It is faster to guard on 'false' property than to guard
|
|
# on actual dict keys, but we can't do this fast guard in general because
|
|
# it omits a crucial type check that ensures the value is actually still a dict at runtime.
|
|
|
|
# Why is this OK for (specialized) nnmodules? We set up a setattr hook
|
|
# to check for module property mutations, which does a reasonable,
|
|
# but not completely secure job ensuring a property wasn't changed.
|
|
self.install_guards(GuardBuilder.BOOL_FALSE)
|
|
else:
|
|
self.install_guards(GuardBuilder.DICT_KEYS)
|
|
|
|
idx = 0
|
|
|
|
def build_key_value(k, v):
|
|
nonlocal idx
|
|
if ConstantVariable.is_literal(k):
|
|
key = ConstantVariable.create(k)
|
|
source_key = k
|
|
else:
|
|
source_key = ConstDictKeySource(self.get_source(), idx)
|
|
key = VariableBuilder(self.tx, source_key)(k)
|
|
|
|
source_value = GetItemSource(self.get_source(), source_key)
|
|
value = LazyVariableTracker.create(v, source_value)
|
|
|
|
idx += 1
|
|
return key, value
|
|
|
|
result = dict(build_key_value(k, v) for k, v in value.items())
|
|
|
|
if istype(value, collections.defaultdict):
|
|
result = DefaultDictVariable(
|
|
result,
|
|
type(value),
|
|
default_factory=self._wrap(value.default_factory),
|
|
source=self.source,
|
|
)
|
|
else:
|
|
result = ConstDictVariable(result, type(value), source=self.source)
|
|
|
|
return self.set_source_and_track_mutable(value, result)
|
|
elif isinstance(value, torch.nn.Module):
|
|
return self.wrap_module(value)
|
|
elif ConstantVariable.is_literal(value): # non-atomic literals
|
|
return self.wrap_literal(value)
|
|
elif istype(value, frozenset) and (
|
|
ConstantVariable.is_literal(x) for x in value
|
|
):
|
|
# For frozenset, we can guard by object ID instead of value
|
|
# equality, this allows us to handle non-literal values
|
|
self.install_guards(GuardBuilder.ID_MATCH)
|
|
return ConstantVariable.create(value=value, source=self.source)
|
|
elif isinstance(value, enum.Enum):
|
|
self.install_guards(GuardBuilder.ID_MATCH)
|
|
return EnumVariable(value=value, source=self.source)
|
|
elif is_builtin_callable(value):
|
|
self.install_guards(GuardBuilder.BUILTIN_MATCH)
|
|
return BuiltinVariable(value, source=self.source)
|
|
elif is_utils_checkpoint(value):
|
|
return build_checkpoint_variable(source=self.source)
|
|
elif isinstance(value, functools.partial):
|
|
func_src = AttrSource(self.get_source(), "func")
|
|
func_obj = VariableBuilder(self.tx, func_src)(value.func)
|
|
|
|
args = []
|
|
args_source = AttrSource(self.get_source(), "args")
|
|
for i, arg in enumerate(value.args):
|
|
args.append(
|
|
VariableBuilder(self.tx, GetItemSource(args_source, i))(arg)
|
|
)
|
|
|
|
keywords = {}
|
|
keywords_source = AttrSource(self.get_source(), "keywords")
|
|
for k, v in value.keywords.items():
|
|
keywords[k] = VariableBuilder(
|
|
self.tx, GetItemSource(keywords_source, k)
|
|
)(v)
|
|
|
|
install_guard(
|
|
self.get_source().make_guard(GuardBuilder.TYPE_MATCH),
|
|
keywords_source.make_guard(GuardBuilder.DICT_KEYS),
|
|
args_source.make_guard(GuardBuilder.LIST_LENGTH),
|
|
)
|
|
return FunctoolsPartialVariable(func_obj, args, keywords, original=value)
|
|
elif is_typing(value):
|
|
# typing.List, typing.Mapping, etc.
|
|
self.install_guards(GuardBuilder.ID_MATCH)
|
|
return TypingVariable(
|
|
value,
|
|
source=self.source,
|
|
)
|
|
elif np is not None and isinstance(value, np.generic):
|
|
# numpy array scalars: convert to 0D arrays
|
|
return self.wrap_numpy_ndarray(np.asarray(value))
|
|
elif is_numpy(value):
|
|
assert np
|
|
self.install_guards(
|
|
GuardBuilder.FUNCTION_MATCH
|
|
if callable(value)
|
|
else GuardBuilder.TYPE_MATCH
|
|
)
|
|
return NumpyVariable(value, source=self.source)
|
|
# NB: These can't be put in type_dispatch, they have to run later
|
|
elif CollectiveFunctionRewriteVariable.can_rewrite(value):
|
|
self.install_guards(GuardBuilder.FUNCTION_MATCH)
|
|
return CollectiveFunctionRewriteVariable.create(
|
|
self.tx,
|
|
value,
|
|
source=self.source,
|
|
)
|
|
elif istype(value, torch.autograd.function.FunctionMeta):
|
|
self.install_guards(GuardBuilder.FUNCTION_MATCH)
|
|
return AutogradFunctionVariable(
|
|
value,
|
|
source=self.source,
|
|
)
|
|
elif isinstance(value, torch.autograd.function.FunctionCtx):
|
|
saved_tensors_source = AttrSource(self.source, "saved_tensors")
|
|
install_guard(
|
|
self.source.make_guard(GuardBuilder.TYPE_MATCH),
|
|
saved_tensors_source.make_guard(GuardBuilder.LIST_LENGTH),
|
|
)
|
|
saved_tensors = [
|
|
VariableBuilder(self.tx, GetItemSource(saved_tensors_source, n))(v)
|
|
for n, v in enumerate(value.saved_tensors)
|
|
]
|
|
return self.tx.output.side_effects.track_object_existing(
|
|
value,
|
|
AutogradFunctionContextVariable(
|
|
value,
|
|
source=self.source,
|
|
saved_tensors=SavedTensorBox(saved_tensors),
|
|
),
|
|
)
|
|
elif (
|
|
isinstance(value, types.MethodType)
|
|
and istype(
|
|
getattr(value, "__self__", None), torch.autograd.function.FunctionMeta
|
|
)
|
|
and getattr(value, "__name__", "") == "apply"
|
|
and value == getattr(value.__self__, "apply", None)
|
|
):
|
|
# handle aliased autograd function `apply` calls
|
|
self.install_guards(GuardBuilder.FUNCTION_MATCH)
|
|
return GetAttrVariable(
|
|
AutogradFunctionVariable(
|
|
value.__self__, source=AttrSource(self.source, member="__self__")
|
|
),
|
|
"apply",
|
|
)
|
|
elif np and isinstance(value, np.number):
|
|
return self.wrap_unspecialized_primitive(value)
|
|
elif DataClassVariable.is_matching_object(value):
|
|
self.install_guards(GuardBuilder.TYPE_MATCH)
|
|
return DataClassVariable.wrap(self, value)
|
|
elif HFPretrainedConfigVariable.is_matching_object(value):
|
|
self.install_guards(GuardBuilder.TYPE_MATCH)
|
|
return HFPretrainedConfigVariable(value)
|
|
elif isinstance(value, HigherOrderOperator):
|
|
self.install_guards(GuardBuilder.TYPE_MATCH, GuardBuilder.NAME_MATCH)
|
|
return TorchHigherOrderOperatorVariable.make(value, source=self.source)
|
|
elif isinstance(value, torch.cuda.StreamContext):
|
|
self.install_guards(GuardBuilder.ID_MATCH)
|
|
stream_source = AttrSource(self.source, "stream")
|
|
stream_var = VariableBuilder(self.tx, stream_source)(value.stream)
|
|
return StreamContextVariable.create(self.tx, stream_var)
|
|
elif isinstance(value, _StreamBase):
|
|
self.install_guards(GuardBuilder.ID_MATCH)
|
|
return StreamVariable(
|
|
None,
|
|
value,
|
|
value.device,
|
|
source=self.source,
|
|
)
|
|
elif isinstance(value, torch._C._SDPAParams):
|
|
self.install_guards(GuardBuilder.TYPE_MATCH)
|
|
return SDPAParamsVariable.create(self.tx, value, self.source)
|
|
elif isinstance(value, _EventBase):
|
|
self.install_guards(GuardBuilder.ID_MATCH)
|
|
return EventVariable(
|
|
None,
|
|
value,
|
|
source=self.source,
|
|
)
|
|
elif (
|
|
isinstance(value, torch._C._TensorMeta)
|
|
and value in config.traceable_tensor_subclasses
|
|
):
|
|
return TensorSubclassVariable(value, source=self.source)
|
|
elif (
|
|
istype(value, contextlib.nullcontext)
|
|
and inspect.getattr_static(value, "enter_result", None) is None
|
|
):
|
|
self.install_guards(GuardBuilder.TYPE_MATCH)
|
|
return NullContextVariable(source=self.source)
|
|
elif KeyedJaggedTensorVariable.is_matching_object(value):
|
|
self.install_guards(GuardBuilder.TYPE_MATCH)
|
|
result = KeyedJaggedTensorVariable(value, source=self.source)
|
|
# TODO: this doing it manually is bad
|
|
return self.tx.output.side_effects.track_object_existing(value, result)
|
|
elif isinstance(value, torch.optim.Optimizer):
|
|
self.install_guards(GuardBuilder.TYPE_MATCH)
|
|
return OptimizerVariable(value, source=self.source)
|
|
elif ProcessGroupVariable.is_process_group(value):
|
|
self.install_guards(GuardBuilder.ID_MATCH)
|
|
return ProcessGroupVariable(value, source=self.source)
|
|
elif DeviceMeshVariable.is_device_mesh(value):
|
|
# TODO: see if we need to add custom guard instead of a simple ID_MATCH
|
|
self.install_guards(GuardBuilder.ID_MATCH)
|
|
return DeviceMeshVariable(value, source=self.source)
|
|
elif PlacementClassVariable.is_placement_type(value):
|
|
# TODO: see if we need to add custom guard instead of a simple ID_MATCH
|
|
self.install_guards(GuardBuilder.ID_MATCH)
|
|
return PlacementClassVariable(value, source=self.source)
|
|
elif PlacementVariable.is_placement(value):
|
|
# TODO: see if we need to add custom guard instead of a simple ID_MATCH
|
|
self.install_guards(GuardBuilder.ID_MATCH)
|
|
return PlacementVariable(
|
|
value,
|
|
source=self.source,
|
|
)
|
|
elif istype(value, type) and value in itertools.__dict__.values():
|
|
self.install_guards(GuardBuilder.FUNCTION_MATCH)
|
|
return ItertoolsVariable(value, source=self.source)
|
|
elif isinstance(value, torch.SymBool):
|
|
# Note: the idea here is to re-use the infra we've built for SymInt by simulating the
|
|
# user provided SymBool with a SymInt in dynamo.
|
|
|
|
# Concretely,
|
|
# 1. We create a SymInt in dynamo's shape_env, whose source is constructed as ConvertIntSource(self.source).
|
|
# so that guards on the SymInts can be effectively applied on the original SymBool in user program.
|
|
# 2. We create a SymBool based on the SymInt in dynamo's ShapeEnv. Because the original user program
|
|
# depends on the value being a SymBool. This allows dynamo to interpret the user's program correctly.
|
|
|
|
value_hint = value.node.require_hint()
|
|
new_source = ConvertIntSource(self.source)
|
|
|
|
new_symint = self.tx.output.shape_env.create_unspecified_symint_and_symbol(
|
|
int(value_hint),
|
|
new_source,
|
|
dynamic_dim=DimDynamic.DYNAMIC,
|
|
)
|
|
|
|
sym_node_proxy = self.tx.output.root_tracer.create_graph_input(
|
|
re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
|
|
type(new_symint),
|
|
source=new_source,
|
|
)
|
|
|
|
sym_node_proxy.node.meta["grapharg"] = GraphArg(
|
|
new_source,
|
|
new_symint,
|
|
False,
|
|
None,
|
|
is_tensor=False,
|
|
example_strong_ref=new_symint,
|
|
)
|
|
self.tx.output.bound_symbols.add(new_symint.node.expr)
|
|
self.tx.output.tracked_fakes.append(
|
|
TrackedFake(new_symint, new_source, None)
|
|
)
|
|
return SymNodeVariable(
|
|
sym_node_proxy,
|
|
new_symint == 1,
|
|
)
|
|
elif isinstance(value, (JITFunction, Autotuner)):
|
|
self.install_guards(GuardBuilder.ID_MATCH)
|
|
return TritonKernelVariable(
|
|
value,
|
|
None, # No kernel idx provided
|
|
None, # No grid provided
|
|
source=self.source,
|
|
)
|
|
elif isinstance(value, torch.amp.autocast_mode.autocast):
|
|
self.install_guards(GuardBuilder.ID_MATCH)
|
|
return AutocastModeVariable(
|
|
target_values=[
|
|
value.device,
|
|
value.fast_dtype,
|
|
value._enabled,
|
|
value._cache_enabled,
|
|
],
|
|
source=self.source,
|
|
)
|
|
elif trace_rules.lookup(value) is not None:
|
|
if is_callable_allowed(value):
|
|
self.tx.output.has_user_defined_allowed_in_graph = True
|
|
return trace_rules.lookup(value).create_with_source(
|
|
value, source=self.source
|
|
)
|
|
# Don't use istype, since some python modules are not subclasses of types.ModuleType directly.
|
|
# E.g, type(torch.ops) -> <class 'torch._ops._Ops'>,
|
|
# type(torch.backends.cudnn) -> <class 'torch.backends.cudnn.CudnnModule'>
|
|
elif isinstance(value, (types.ModuleType, replay_record.DummyModule)):
|
|
self.install_guards(GuardBuilder.FUNCTION_MATCH)
|
|
return PythonModuleVariable(
|
|
value,
|
|
source=self.source,
|
|
)
|
|
elif (
|
|
is_function(value)
|
|
and skipfiles.check(value, is_inlined_call=True)
|
|
and not inspect.getattr_static(value, "_torchdynamo_inline", False)
|
|
and not inspect.getattr_static(value, "__script_if_tracing_wrapper", False)
|
|
):
|
|
self.install_guards(GuardBuilder.FUNCTION_MATCH)
|
|
return SkipFilesVariable(
|
|
value,
|
|
skipfiles.check_verbose(value, is_inlined_call=True).reason,
|
|
source=self.source,
|
|
)
|
|
elif istype(value, (types.FunctionType, torch.jit.ScriptFunction)):
|
|
self.install_guards(GuardBuilder.CLOSURE_MATCH)
|
|
return UserFunctionVariable(
|
|
value,
|
|
source=self.source,
|
|
)
|
|
elif isinstance(value, types.MethodType) and isinstance(
|
|
value.__self__, (torch.nn.Module, torch.utils._pytree.TreeSpec)
|
|
):
|
|
# don't let MethodTypes fall through to UserDefinedObject,
|
|
# which doesn't support 'CALL_FUNCTION'
|
|
|
|
# TODO(whc): Why do we limit this to methods on NNModules?
|
|
# I don't have a good reason for this, but it preserves the existing behavior
|
|
# for MBartForConditionalGeneration, which generates many graph breaks and OOMs otherwise.
|
|
# I suspect we probably want to relax this check and dig deeper there.
|
|
|
|
# In order to construct a MethodVariable in Dynamo, we start with an actual method obj from python,
|
|
# but need to separately wrap its underlying `__func__` and its `self` argument. We wrap `self` here
|
|
# and then `__func__` gets wrapped inside UserMethodVariable.
|
|
self_obj = VariableBuilder(
|
|
self.tx, source=AttrSource(self.source, "__self__")
|
|
)(value.__self__)
|
|
assert self_obj and isinstance(
|
|
self_obj, VariableTracker
|
|
), "Failed to produce a valid self obj"
|
|
self.install_guards(GuardBuilder.FUNCTION_MATCH)
|
|
return UserMethodVariable(
|
|
value.__func__,
|
|
self_obj,
|
|
source=self.source,
|
|
)
|
|
elif isinstance(value, types.GetSetDescriptorType):
|
|
self.install_guards(GuardBuilder.FUNCTION_MATCH)
|
|
return GetSetDescriptorVariable(value)
|
|
elif isinstance(value, types.MethodWrapperType):
|
|
self.install_guards(GuardBuilder.FUNCTION_MATCH)
|
|
return MethodWrapperVariable(value)
|
|
elif issubclass(type(value), type):
|
|
self.install_guards(GuardBuilder.FUNCTION_MATCH)
|
|
return UserDefinedClassVariable(
|
|
value,
|
|
source=self.source,
|
|
)
|
|
elif RestrictedListSubclassVariable.is_matching_cls(type(value)):
|
|
self.install_guards(GuardBuilder.TYPE_MATCH, GuardBuilder.LIST_LENGTH)
|
|
return self.set_source_and_track_mutable(
|
|
value,
|
|
RestrictedListSubclassVariable(
|
|
[
|
|
LazyVariableTracker.create(
|
|
value=value[i], source=GetItemSource(self.source, i)
|
|
)
|
|
for i in range(len(value))
|
|
],
|
|
user_cls=type(value),
|
|
user_cls_source=AttrSource(self.source, "__class__"),
|
|
),
|
|
)
|
|
else:
|
|
# breakpoint()
|
|
self.install_guards(GuardBuilder.TYPE_MATCH)
|
|
result = UserDefinedObjectVariable(value, source=self.source)
|
|
if not SideEffects.cls_supports_mutation_side_effects(type(value)):
|
|
# don't allow STORE_ATTR mutation with custom __setattr__
|
|
return result
|
|
return self.tx.output.side_effects.track_object_existing(value, result)
|
|
|
|
def wrap_listlike(self, value: Union[tuple, list, odict_values, NamedTuple]):
|
|
if config.specialize_int and type(value) is torch.Size:
|
|
self.install_guards(GuardBuilder.CONSTANT_MATCH)
|
|
return ConstantVariable.create(value=value)
|
|
# One can index a tensor with a list/tuple. Therefore, we need to
|
|
# have a stricter match.
|
|
self.install_guards(GuardBuilder.LIST_LENGTH)
|
|
|
|
for item in value:
|
|
if item is value:
|
|
unimplemented("list elements are pointing to the list itself")
|
|
|
|
output = [
|
|
LazyVariableTracker.create(item, source=GetItemSource(self.get_source(), i))
|
|
for i, item in enumerate(value)
|
|
]
|
|
|
|
result = BaseListVariable.cls_for_instance(value)(
|
|
output, mutable_local=MutableLocal()
|
|
)
|
|
if istype(value, list):
|
|
return self.set_source_and_track_mutable(value, result)
|
|
return result
|
|
|
|
def wrap_tuple_iterator(self, value: tuple_iterator):
|
|
self.install_guards(GuardBuilder.TUPLE_ITERATOR_LEN)
|
|
output = [
|
|
VariableBuilder(self.tx, TupleIteratorGetItemSource(self.get_source(), i))(
|
|
tuple_iterator_getitem(value, i)
|
|
)
|
|
for i in range(tuple_iterator_len(value))
|
|
]
|
|
result = TupleIteratorVariable(
|
|
output, mutable_local=MutableLocal(), source=self.source
|
|
)
|
|
|
|
return self.set_source_and_track_mutable(value, result)
|
|
|
|
def wrap_slice_range(self, value: Union[slice, range]):
|
|
items = [
|
|
VariableBuilder(self.tx, AttrSource(self.get_source(), k))(
|
|
getattr(value, k)
|
|
)
|
|
for k in ("start", "stop", "step")
|
|
]
|
|
self.install_guards(GuardBuilder.TYPE_MATCH)
|
|
if isinstance(value, slice):
|
|
return SliceVariable(items, source=self.source)
|
|
else:
|
|
return RangeVariable(items, source=self.source)
|
|
|
|
def wrap_module(self, value: torch.nn.Module):
|
|
from ..eval_frame import OptimizedModule
|
|
|
|
if istype(value, OptimizedModule):
|
|
self.install_guards(GuardBuilder.TYPE_MATCH)
|
|
self.source = AttrSource(self.source, "_orig_mod")
|
|
return self.wrap_module(value._orig_mod)
|
|
|
|
if (
|
|
isinstance(value, (torch.nn.RNN, torch.nn.GRU, torch.nn.LSTM))
|
|
and not config.allow_rnn
|
|
):
|
|
unimplemented("TorchDynamo purposely graph breaks on RNN, GRU, LSTMs")
|
|
if mutation_guard.is_dynamic_nn_module(value):
|
|
# created dynamically, don't specialize on it
|
|
self.install_guards(GuardBuilder.TYPE_MATCH)
|
|
result = UnspecializedNNModuleVariable(value, source=self.source)
|
|
if not SideEffects.cls_supports_mutation_side_effects(type(value)):
|
|
# don't allow STORE_ATTR mutation with custom __setattr__
|
|
return result
|
|
return self.tx.output.side_effects.track_object_existing(value, result)
|
|
elif issubclass(
|
|
value.__class__, torch.nn.parallel.distributed.DistributedDataParallel
|
|
):
|
|
self.install_guards(GuardBuilder.TYPE_MATCH)
|
|
return UnspecializedNNModuleVariable(value)
|
|
elif getattr(value, "_is_fsdp_managed_module", False):
|
|
# See note [Dynamo treats FSDP wrapped modules as UnspecializedNNModule]
|
|
# in fully_sharded_data_parallel.py for more information
|
|
|
|
# we can't do this assert inside FSDP constructor,
|
|
# since we don't know yet whether dynamo will be used
|
|
assert getattr(
|
|
value, "_fsdp_use_orig_params", False
|
|
), "Dynamo only supports FSDP with use_orig_params=True"
|
|
|
|
# Note on FSDP guarding
|
|
# 1. We expect FSDP wrapping mutates an nn module irreversably (no way to de-wrap).
|
|
# 2. Eager FSDP already assumes (requires, but without enforcement) that users don't mutate their
|
|
# model parameters/structure after FSDP wrapping, because FSDP wouldn't notice or update its FlatParams.
|
|
#
|
|
# Due to (1), once we enter this path we expect not to go back nor have to guard on type
|
|
# or _is_fsdp_managed_module.
|
|
#
|
|
# TODO(whc) We could add a guard on the opposite case, where a user compiled/ran
|
|
# pre-FSDP-wrapped model, then wrapped, to ensure that we recompile with the FSDP handling.
|
|
#
|
|
# Due to (2), we skip guards on inner contents of fsdp_managed modules, by using FSDPNNModuleSource as the
|
|
# guard source. This behavior is gated on config.skip_fsdp_guards.
|
|
#
|
|
# ID_MATCH is required to disambiguate cases as simple as a unit test that constructs 2 models and wraps
|
|
# them differently with different FSDP configs. (test_dynamo_distributed.py -k test_fsdp_aot_eager)
|
|
self.install_guards(GuardBuilder.TYPE_MATCH, GuardBuilder.ID_MATCH)
|
|
return FSDPManagedNNModuleVariable(value, source=self.get_source())
|
|
else:
|
|
return self.tx.output.register_attr_or_module(
|
|
value,
|
|
self.name,
|
|
source=self.get_source(),
|
|
# Guards are added inside register_attr_or_module
|
|
)
|
|
|
|
def wrap_literal(self, value):
|
|
unspec = not config.specialize_int
|
|
if unspec and type(value) is int:
|
|
# unspecializing int by default, but still
|
|
# specialize for the following conditions
|
|
if not TracingContext.get().force_unspec_int_unbacked_size_like and (
|
|
value in self._common_constants()
|
|
# Assume integers from global variables want to be specialized
|
|
or not self.source.guard_source().is_local()
|
|
# Assume that integers that came from NN modules want to be
|
|
# specialized (as we don't expect users to be changing the
|
|
# NN modules on the fly)
|
|
or self.source.guard_source().is_nn_module()
|
|
):
|
|
self.install_guards(GuardBuilder.CONSTANT_MATCH)
|
|
return ConstantVariable.create(value=value, source=self.source)
|
|
else:
|
|
return self.wrap_unspecialized_primitive(value)
|
|
else:
|
|
self.install_guards(GuardBuilder.CONSTANT_MATCH)
|
|
return ConstantVariable.create(value=value)
|
|
|
|
def assert_not_wrapped_by_this_graph(self, value: torch.Tensor):
|
|
if is_fake(value) and maybe_get_fake_mode(value) is self.tx.fake_mode:
|
|
raise InternalTorchDynamoError(
|
|
"Cannot wrap a Tensor that has already been",
|
|
"wrapped by this instance of Dynamo",
|
|
)
|
|
|
|
def wrap_tensor(self, value: torch.Tensor):
|
|
source = self.get_source()
|
|
|
|
# We cannot already be tracking the tensor, which implies
|
|
# it would have already been wrapped
|
|
assert value not in self.tx.output.side_effects
|
|
|
|
if (
|
|
source.guard_source().is_nn_module()
|
|
or get_static_address_type(value) is not None
|
|
) and not source.guard_source().is_fsdp_module():
|
|
self.assert_not_wrapped_by_this_graph(value)
|
|
return self.tx.output.register_attr_or_module(
|
|
value, self.name, source=source
|
|
)
|
|
|
|
if is_constant_source(source):
|
|
self.assert_not_wrapped_by_this_graph(value)
|
|
return self.tx.output.register_attr_or_module(
|
|
value,
|
|
re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
|
|
source=source,
|
|
# Guards are added inside register_attr_or_module
|
|
)
|
|
|
|
if type(value) in config.traceable_tensor_subclasses:
|
|
# Ordinarily, we would fakeify a tensor so that it can get dynamic
|
|
# shapes and be computed on without triggering actual operations.
|
|
# However, how can we fakeify a tensor subclass? Ordinary
|
|
# inheritance (nor multiple inheritance) won't work work.
|
|
#
|
|
# Instead, our plan is to *manually simulate* the tensor subclass
|
|
# inheriting from a fake tensor with dynamo. This means our
|
|
# data representation for a tensor subclass will be a fake tensor
|
|
# + tensor subclass type + any extra data the subclass may have
|
|
# been storing on the tensor. Because all Python accesses are
|
|
# mediated through TensorWithTFOverrideVariable, we can ensure
|
|
# that we dispatch differently, e.g., according to
|
|
# __torch_function__
|
|
#
|
|
# To simplify things for now, the __dict__ tracking bits haven't
|
|
# been implemented yet, but they can be added into this design at
|
|
# a later point in time.
|
|
subclass_type = type(value)
|
|
else:
|
|
assert type(value) in (
|
|
torch.Tensor,
|
|
torch.nn.Parameter,
|
|
torch._subclasses.fake_tensor.FakeTensor,
|
|
torch._subclasses.functional_tensor.FunctionalTensor,
|
|
) or is_traceable_wrapper_subclass(value), type(value)
|
|
subclass_type = None
|
|
|
|
# NB: this just says we accessed a tensor from the same source again
|
|
# (e.g., a tensor lives in a global foo, and we LOAD_GLOBAL it twice).
|
|
# This is distinct from two distinct sources mapping to the same
|
|
# Tensor (per id())! No guard is necessary here. See below for the
|
|
# other case.
|
|
is_duplicate_tensor = source in self.tx.output.input_source_to_var
|
|
if is_duplicate_tensor:
|
|
return self.tx.output.input_source_to_var[source]
|
|
|
|
# By this point, we should have deduplicated all tensors
|
|
self.assert_not_wrapped_by_this_graph(value)
|
|
|
|
# tx.output has multiple tracers if we're introspecting HigherOrderOperator.
|
|
# When we've discovered an untracked tensor, then we actually need
|
|
# to get Dynamo to track the tensor (which is what this function does)
|
|
# and put it as a graph input on the root tracer. Later on,
|
|
# if the input is actually used in the body of the HigherOrderOperator,
|
|
# then the relevant SubgraphTracer will lift it to being an input of
|
|
# the subgraph.
|
|
# See NOTE [HigherOrderOperator tracing design] for more details.
|
|
|
|
tensor_proxy = self.tx.output.root_tracer.create_graph_input(
|
|
re.sub(r"[^a-zA-Z0-9]+", "_", self.name), type(value), source=source
|
|
)
|
|
options = {}
|
|
if type(value) in config.traceable_tensor_subclasses:
|
|
options["torch_function_fn"] = build_torch_function_fn(
|
|
self.tx, value, self.source
|
|
)
|
|
self.install_guards(GuardBuilder.TYPE_MATCH)
|
|
|
|
if (
|
|
isinstance(value, torch.Tensor)
|
|
and value.is_nested
|
|
and not isinstance(value, NestedTensor)
|
|
):
|
|
unimplemented("torch.compile does not support strided NestedTensor")
|
|
|
|
tensor_variable = wrap_fx_proxy(
|
|
tx=self.tx,
|
|
proxy=tensor_proxy,
|
|
example_value=value,
|
|
subclass_type=subclass_type,
|
|
source=source,
|
|
**options,
|
|
)
|
|
|
|
self.install_guards(
|
|
functools.partial(
|
|
GuardBuilder.TENSOR_MATCH,
|
|
value=value
|
|
if isinstance(source, NumpyTensorSource)
|
|
else TensorWeakRef(value),
|
|
)
|
|
)
|
|
|
|
# install guards for subclass inner tensors
|
|
if is_traceable_wrapper_subclass(value):
|
|
attrs, _ = value.__tensor_flatten__()
|
|
for attr in attrs:
|
|
inner_value = getattr(value, attr)
|
|
inner_source = AttrSource(self.source, attr)
|
|
VariableBuilder(self.tx, inner_source)(inner_value).recursive_realize()
|
|
|
|
self.tx.output.input_source_to_var[source] = tensor_variable
|
|
assert "tensor_dict" not in tensor_proxy.node.meta
|
|
tensor_proxy.node.meta["tensor_dict"] = value.__dict__.copy()
|
|
|
|
# Note: this information is conveyed via subclass_type now
|
|
fake_tensor_value = tensor_variable.proxy.node.meta["example_value"]
|
|
if maybe_get_fake_mode(fake_tensor_value) is not self.tx.fake_mode:
|
|
raise InternalTorchDynamoError("Wrapped Tensor must be this graph's fake")
|
|
|
|
grapharg = GraphArg(source, value, False, fake_tensor_value)
|
|
tensor_proxy.node.meta["grapharg"] = grapharg
|
|
self.tx.output.add_symbol_bindings(grapharg)
|
|
return tensor_variable
|
|
|
|
def wrap_numpy_ndarray(self, value):
|
|
assert np is not None
|
|
assert isinstance(value, np.ndarray)
|
|
|
|
source = NumpyTensorSource(self.get_source())
|
|
|
|
from torch._numpy import _util
|
|
|
|
readonly = not value.flags.writeable
|
|
if readonly:
|
|
value.flags.writeable = True
|
|
|
|
try:
|
|
tensor_value = _util._try_convert_to_tensor(value)
|
|
if readonly:
|
|
from torch._prims_common import clone_preserve_strides
|
|
|
|
tensor_value = clone_preserve_strides(tensor_value)
|
|
except NotImplementedError as e:
|
|
# failed to convert to tensor, graph break
|
|
unimplemented(str(e))
|
|
|
|
# We do this because we want the full behavior of guarding the numpy ndarray as if it were
|
|
# a tensor. It's a little annoying to make a VT to throw out, but there's so many side effects here
|
|
# that there's not another great way to do this atm.
|
|
# This creates the right graphargs, as well as registration for guards in tensor names and shape env.
|
|
VariableBuilder(self.tx, source)(tensor_value).recursive_realize()
|
|
proxy = self.tx.output.root_tracer.create_graph_input(
|
|
re.sub(r"[^a-zA-Z0-9]+", "_", self.name), type(tensor_value), source=source
|
|
)
|
|
options = {"source": source}
|
|
numpy_ndarray_variable = wrap_fx_proxy_cls(
|
|
target_cls=NumpyNdarrayVariable,
|
|
tx=self.tx,
|
|
proxy=proxy,
|
|
example_value=tensor_value,
|
|
**options,
|
|
)
|
|
|
|
self.tx.output.input_source_to_var[source] = numpy_ndarray_variable
|
|
example_value = numpy_ndarray_variable.proxy.node.meta["example_value"]
|
|
|
|
# is_unspecialized should be true because we are wrapping a np.ndarray as argument input, and it needs to be
|
|
# converted to a tensor.
|
|
grapharg = GraphArg(
|
|
source,
|
|
tensor_value,
|
|
is_unspecialized=True,
|
|
fake_tensor=example_value,
|
|
is_tensor=True,
|
|
example_strong_ref=tensor_value,
|
|
)
|
|
proxy.node.meta["grapharg"] = grapharg
|
|
|
|
return numpy_ndarray_variable
|
|
|
|
def wrap_unspecialized_primitive(self, value):
|
|
if self.name in self.tx.output.unspec_variable_map:
|
|
return self.tx.output.unspec_variable_map[self.name]
|
|
else:
|
|
shape_env = self.tx.output.shape_env
|
|
if TracingContext.get().force_unspec_int_unbacked_size_like and isinstance(
|
|
value, int
|
|
):
|
|
wrapped_value = shape_env.create_unbacked_symint()
|
|
_constrain_range_for_size(wrapped_value)
|
|
self.tx.output.bound_symbols.add(wrapped_value.node.expr)
|
|
self.tx.output.tracked_fakes.append(
|
|
TrackedFake(wrapped_value, self.source, None)
|
|
)
|
|
|
|
# NB: We do not do float. For motivation, see
|
|
# https://docs.google.com/document/d/1INSCdYu1PxXcr43HrD82OudeEuS-qxQe1yZmLg2wy6A/edit
|
|
# but the general idea is that we generate kernels that can
|
|
# take unspecialized floats and use them in sizevar computation
|
|
elif (
|
|
isinstance(value, int)
|
|
and not is_constant_source(self.get_source())
|
|
and not isinstance(self.get_source(), RandomValueSource)
|
|
):
|
|
if torch._dynamo.config.specialize_int:
|
|
# If specialize_int is False, also return
|
|
# a constant (but this should have been handled
|
|
# in the caller, TBH)
|
|
self.install_guards(GuardBuilder.CONSTANT_MATCH)
|
|
return ConstantVariable.create(value=value, source=self.source)
|
|
|
|
name = self.source.name()
|
|
if name not in self.tx.output.frame_state:
|
|
# Note - this essentially means that if this name gets reused as a tensor,
|
|
# it will start fully dynamic. That should always be a safe option, and not awfully inefficient.
|
|
# Alternatively, if we want to improve pef here, we can add a third state of unset, but I am not
|
|
# sure that is necessary for now.
|
|
frame_state_entry = FrameStateSizeEntry(scalar=value, size=None)
|
|
else:
|
|
frame_state_entry = self.tx.output.frame_state[name]
|
|
if frame_state_entry.scalar != value:
|
|
log.debug(
|
|
"automatic dynamic int %s val %s != %s",
|
|
name,
|
|
value,
|
|
frame_state_entry.scalar,
|
|
)
|
|
frame_state_entry.scalar = None
|
|
self.tx.output.frame_state[name] = frame_state_entry
|
|
|
|
# TODO: This should be dynamic, as we in general do not
|
|
# know if bare integers are actually going to be sizevars
|
|
# and it is inappropriate to eagerly duck size them with
|
|
# real sizevars
|
|
if (
|
|
config.automatic_dynamic_shapes and frame_state_entry.scalar is None
|
|
) or not config.assume_static_by_default:
|
|
dynamic_dim = DimDynamic.DYNAMIC
|
|
else: # assume_static_by_default
|
|
# TODO: dynamic_dim = DimDynamic.STATIC should work but
|
|
# for some reason it doesn't
|
|
self.install_guards(GuardBuilder.CONSTANT_MATCH)
|
|
return ConstantVariable.create(value=value)
|
|
|
|
wrapped_value = shape_env.create_unspecified_symint_and_symbol(
|
|
value,
|
|
source=self.source,
|
|
dynamic_dim=dynamic_dim,
|
|
)
|
|
self.tx.output.bound_symbols.add(wrapped_value.node.expr)
|
|
|
|
self.tx.output.tracked_fakes.append(
|
|
TrackedFake(wrapped_value, self.source, None)
|
|
)
|
|
else:
|
|
wrapped_value = torch.tensor(value)
|
|
if not isinstance(self.get_source(), RandomValueSource):
|
|
install_guard(self.get_source().make_guard(GuardBuilder.TYPE_MATCH))
|
|
options = {"source": self.get_source()}
|
|
if isinstance(wrapped_value, torch.Tensor):
|
|
options.update({"raw_value": value})
|
|
|
|
proxy = self.tx.output.root_tracer.create_graph_input(
|
|
re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
|
|
type(wrapped_value),
|
|
source=self.get_source(),
|
|
)
|
|
|
|
unspec_var = wrap_fx_proxy_cls(
|
|
UnspecializedPythonVariable,
|
|
tx=self.tx,
|
|
proxy=proxy,
|
|
example_value=wrapped_value,
|
|
**options,
|
|
)
|
|
self.tx.output.unspec_variable_map[self.name] = unspec_var
|
|
if not is_constant_source(self.get_source()):
|
|
if self.tx.export and not isinstance(self.get_source(), LocalSource):
|
|
raise AssertionError(
|
|
"Dynamo attempts to add additional input during export: value={}, source={}".format(
|
|
wrapped_value, self.get_source()
|
|
)
|
|
)
|
|
fake_tensor_value = None
|
|
if isinstance(unspec_var, ConstantVariable):
|
|
example_value = unspec_var.value
|
|
else:
|
|
example_value = unspec_var.proxy.node.meta["example_value"]
|
|
if is_fake(example_value):
|
|
fake_tensor_value = example_value
|
|
assert fake_tensor_value.fake_mode is self.tx.fake_mode, (
|
|
f"fake mode ({fake_tensor_value.fake_mode}) from fake tensor metadata doesn't match mode"
|
|
"({self.tx.fake_mode}) from InstructionTranslator"
|
|
)
|
|
|
|
proxy.node.meta["grapharg"] = GraphArg(
|
|
self.get_source(),
|
|
wrapped_value,
|
|
isinstance(wrapped_value, torch.Tensor),
|
|
fake_tensor_value,
|
|
is_tensor=False,
|
|
example_strong_ref=wrapped_value,
|
|
)
|
|
return unspec_var
|
|
|
|
|
|
def _dataclasses_fields_lambda(obj):
|
|
if isinstance(obj, UserDefinedObjectVariable):
|
|
value = obj.value
|
|
elif isinstance(obj, DataClassVariable):
|
|
value = obj.user_cls
|
|
else:
|
|
unimplemented(f"Dataclass fields handling fails for type {obj}")
|
|
items = []
|
|
for field in dataclasses.fields(value):
|
|
source = None
|
|
if obj.source:
|
|
source = GetItemSource(
|
|
AttrSource(obj.source, "__dataclass_fields__"), field.name
|
|
)
|
|
items.append(UserDefinedObjectVariable(field, source=source))
|
|
return TupleVariable(items)
|
|
|
|
|
|
def wrap_fx_proxy(tx, proxy, example_value=None, subclass_type=None, **options):
|
|
kwargs = {
|
|
"tx": tx,
|
|
"proxy": proxy,
|
|
"example_value": example_value,
|
|
"subclass_type": subclass_type,
|
|
**options,
|
|
}
|
|
if subclass_type is None:
|
|
return wrap_fx_proxy_cls(target_cls=TensorVariable, **kwargs)
|
|
else:
|
|
result = wrap_fx_proxy_cls(target_cls=TensorWithTFOverrideVariable, **kwargs)
|
|
result.install_global(tx)
|
|
return result
|
|
|
|
|
|
# Note: Unfortunate split due to some gross classes existing that subclass TensorVariable
|
|
# Should be compositional instead
|
|
#
|
|
# This is a horribly complicated function that does too many things, to
|
|
# explain what it does, let's first talk about the classic usage wrap_fx_proxy
|
|
# for a TensorVariable. There are two primary modes of use:
|
|
#
|
|
# 1. Wrapping a pre-existing Tensor. In this case, example_value is set
|
|
# to the pre-existing Tensor. (Note that this example_value will NOT
|
|
# be the final example_value we put into node.meta['example_value'],
|
|
# instead it is converted into a fake tensor using
|
|
# wrap_to_fake_tensor_and_record and registered as a graph input.)
|
|
#
|
|
# 2. "Wrapping" the result of some Tensor operation Dynamo traced over. In
|
|
# this case, example_value is None (and we are going to figure it out
|
|
# ourselves using FakeTensors, via get_fake_value, which will run
|
|
# the operation represented by the (singular!) FX node referenced by
|
|
# the passed in proxy.)
|
|
#
|
|
# The expectation is you end up with a Tensor output, and everything is
|
|
# straightforwardly traced into the graph.
|
|
#
|
|
# In all cases, the returned `TensorVariable` subclass will have an `example_value`
|
|
# and that `example_value` must be a `FakeTensor` produced by the currently running
|
|
# instance of Dynamo.
|
|
#
|
|
# Upon closer inspection, you may notice that there are a slurry of non-Tensor
|
|
# output cases. What gives? Well, we sometimes trace operations into the
|
|
# graph that don't involve tensors.
|
|
#
|
|
# * Some operators return tuples; we need to recursively handle their
|
|
# contents
|
|
#
|
|
# * Some operators have side effects that will affect subsequent AOTAutograd
|
|
# tracing but don't otherwise return anything.
|
|
#
|
|
# * Some operators return symbolic ints/floats/bools which can go in the
|
|
# graph and be traced (but only if they're actually symbolic! If they're
|
|
# static you don't want to put them in the graph, which means you
|
|
# shouldn't call this function.)
|
|
#
|
|
# The common theme is that you only use this function WHEN YOU ARE TRACING
|
|
# SOMETHING INTO THE GRAPH. This is sort of obvious, because you can't call
|
|
# this function without a proxy.
|
|
def wrap_fx_proxy_cls(
|
|
target_cls, tx, proxy, example_value=None, subclass_type=None, **options
|
|
):
|
|
from ..symbolic_convert import InstructionTranslatorBase
|
|
|
|
assert isinstance(tx, InstructionTranslatorBase)
|
|
if "guards" in options and options["guards"] is not None:
|
|
tx.output.guards.update(options["guards"])
|
|
|
|
assert "example_value" not in proxy.node.meta, f"{proxy.node.meta['example_value']}"
|
|
|
|
initial_example_value = example_value
|
|
|
|
def _clone_input(value):
|
|
if isinstance(value, torch.Tensor):
|
|
# tensor subclasses will not be converted to FakeTensors and need to be cloned
|
|
if not (
|
|
isinstance(value, FakeTensor)
|
|
or (
|
|
# Is functional tensor fakeified by this instance of Dynamo
|
|
torch._is_functional_tensor(value)
|
|
and maybe_get_fake_mode(value) is tx.fake_mode
|
|
)
|
|
or value.is_nested
|
|
):
|
|
# NB: ensure strides are preserved
|
|
value = clone_input(value)
|
|
|
|
return value
|
|
|
|
with preserve_rng_state():
|
|
if example_value is None:
|
|
# only allow_non_graph_fake in this instance because we handle the non-fake
|
|
# cases properly below.
|
|
example_value = get_fake_value(proxy.node, tx, allow_non_graph_fake=True)
|
|
|
|
# Handle recursive calls here
|
|
elif maybe_get_fake_mode(example_value) is tx.fake_mode:
|
|
pass
|
|
|
|
elif isinstance(example_value, torch.Tensor):
|
|
if tx.export:
|
|
# The legacy behavior for real value cache with subclasses was
|
|
# to perform a clone WITHOUT preserving the subclass. It's
|
|
# not entirely clear this is what you actually want though.
|
|
with torch._C.DisableTorchFunctionSubclass():
|
|
proxy.tracer.real_value_cache[proxy.node] = _clone_input(
|
|
example_value
|
|
)
|
|
# NB: If we're ignoring subclass, then the expectation is you will
|
|
# take the returned TensorVariable and wrap it into a more
|
|
# accurate TensorVariable that is able to track subclass-ness;
|
|
# otherwise this is wrong!
|
|
kwargs = {
|
|
"is_tensor": target_cls
|
|
in (TensorVariable, TensorWithTFOverrideVariable),
|
|
}
|
|
assert "source" in options and options["source"] is not None
|
|
kwargs["source"] = options["source"]
|
|
example_value = wrap_to_fake_tensor_and_record(
|
|
example_value, tx=tx, **kwargs
|
|
)
|
|
if isinstance(example_value, torch.Tensor) and (
|
|
maybe_get_fake_mode(example_value) is not tx.fake_mode
|
|
):
|
|
raise InternalTorchDynamoError(
|
|
"`example_value` needs to be a `FakeTensor`"
|
|
f"wrapped by this instance of Dynamo. Found: {example_value}"
|
|
)
|
|
|
|
if isinstance(example_value, torch.Tensor):
|
|
is_parameter = isinstance(example_value, torch.nn.Parameter)
|
|
|
|
# NB: In most (all?) cases, this does not actually do a clone.
|
|
# (WARNING: this means that if we mutate metadata on the fake
|
|
# tensor, the stored example value will update too!)
|
|
example_value = _clone_input(example_value)
|
|
proxy.node.meta["example_value"] = example_value
|
|
specialized_props = target_cls.specialize(example_value)
|
|
# TODO: not sure about this fake mode test
|
|
if (
|
|
isinstance(example_value, torch._subclasses.fake_tensor.FakeTensor)
|
|
and example_value.fake_mode is tx.fake_mode
|
|
):
|
|
tensor_type = subclass_type if subclass_type else torch.Tensor
|
|
specialized_props["class_type"] = (
|
|
torch.nn.Parameter if is_parameter else tensor_type
|
|
)
|
|
|
|
options.update(specialized_props)
|
|
return target_cls(proxy, **options)
|
|
elif (
|
|
hasattr(proxy.node.target, "__name__")
|
|
and proxy.node.target.__name__ == "set_state"
|
|
and isinstance(proxy.node.target.__self__, torch._C.Generator)
|
|
or proxy.node.target == torch.random.set_rng_state
|
|
):
|
|
return TorchInGraphFunctionVariable(proxy.node.target)
|
|
elif (
|
|
proxy.node.target == torch._C._DisableFuncTorch
|
|
or proxy.node.target == torch.cuda._is_in_bad_fork
|
|
):
|
|
return UserDefinedObjectVariable(example_value)
|
|
elif istype(example_value, torch.Size) and all(
|
|
isinstance(x, int) for x in example_value
|
|
):
|
|
sizes = [ConstantVariable.create(x) for x in example_value]
|
|
return SizeVariable(sizes, **options)
|
|
elif isinstance(example_value, (tuple, list)):
|
|
proxy.node.meta["example_value"] = example_value
|
|
unpacked = []
|
|
for i, val in enumerate(example_value):
|
|
if val is None:
|
|
# nn.MultiheadAttention() can return None, see issue #175
|
|
unpacked.append(
|
|
ConstantVariable.create(None, **options),
|
|
)
|
|
else:
|
|
unpacked.append(
|
|
wrap_fx_proxy_cls(
|
|
target_cls,
|
|
tx,
|
|
proxy.tracer.create_proxy(
|
|
"call_function", operator.getitem, (proxy, i), {}
|
|
),
|
|
example_value=val,
|
|
**options,
|
|
)
|
|
)
|
|
if isinstance(example_value, torch.Size):
|
|
# NB: Keep the old proxy around. See SizeVariable for an
|
|
# explanation why
|
|
return SizeVariable(unpacked, proxy, **options)
|
|
elif istype(example_value, tuple):
|
|
return TupleVariable(unpacked, **options)
|
|
elif istype(example_value, (list, immutable_list)):
|
|
return ListVariable(unpacked, mutable_local=MutableLocal(), **options)
|
|
else:
|
|
assert example_value.__class__.__module__ == "torch.return_types" or hasattr(
|
|
example_value, "_fields"
|
|
), f"expected {example_value.__class__.__module__} == torch.return_types or named tuple but got {type(example_value)}"
|
|
return NamedTupleVariable(unpacked, example_value.__class__, **options)
|
|
elif example_value is None or proxy.node.target is torch.manual_seed:
|
|
return ConstantVariable.create(None, **options)
|
|
elif isinstance(example_value, (torch.SymInt, torch.SymFloat, torch.SymBool)):
|
|
proxy.node.meta["example_value"] = example_value
|
|
return SymNodeVariable(proxy, example_value, **options)
|
|
elif (
|
|
inspect.isclass(proxy.node.target)
|
|
and issubclass(proxy.node.target, _StreamBase)
|
|
) or proxy.node.target in [
|
|
device_interface.current_stream
|
|
for _, device_interface in get_registered_device_interfaces()
|
|
]:
|
|
proxy.node.meta["example_value"] = example_value
|
|
return StreamVariable(proxy, example_value, example_value.device, **options)
|
|
elif (
|
|
inspect.isclass(proxy.node.target) and issubclass(proxy.node.target, _EventBase)
|
|
) or proxy.node.target in [
|
|
device_interface.Event
|
|
for _, device_interface in get_registered_device_interfaces()
|
|
]:
|
|
proxy.node.meta["example_value"] = example_value
|
|
return EventVariable(proxy, example_value, **options)
|
|
elif proxy.node.target == "query" and proxy.node.op == "call_method":
|
|
proxy.node.meta["example_value"] = example_value
|
|
return ConstantVariable(example_value, **options)
|
|
elif (
|
|
example_value is not None
|
|
and isinstance(example_value, _EventBase)
|
|
and proxy.node.target == "record_event"
|
|
and proxy.node.op == "call_method"
|
|
):
|
|
proxy.node.meta["example_value"] = example_value
|
|
return EventVariable(proxy, example_value, **options)
|
|
elif isinstance(example_value, int) and proxy.node.target in [
|
|
torch.sym_int,
|
|
getattr,
|
|
operator.getitem,
|
|
torch._utils._element_size,
|
|
torch.seed,
|
|
operator.mod,
|
|
torch._C._functorch._vmap_increment_nesting,
|
|
torch._C._functorch._vmap_decrement_nesting,
|
|
torch._functorch.vmap._validate_and_get_batch_size,
|
|
# some mac builds are missing torch.distributed.get_rank()
|
|
getattr(torch.distributed, "get_rank", _missing),
|
|
getattr(torch.distributed, "get_world_size", _missing),
|
|
# This always wants to be in the graph, even if the constraint
|
|
# results in a constant int
|
|
torch._constrain_as_value,
|
|
torch._constrain_as_size,
|
|
]:
|
|
proxy.node.meta["example_value"] = example_value
|
|
return ConstantVariable.create(example_value, **options)
|
|
elif isinstance(example_value, torch.backends.cuda.SDPAParams):
|
|
from .sdpa import SDPAParamsVariable
|
|
|
|
proxy.node.meta["example_value"] = example_value
|
|
return SDPAParamsVariable(proxy, **options)
|
|
else:
|
|
unimplemented(
|
|
"torch.* op returned non-Tensor "
|
|
+ f"{typestr(example_value)} {proxy.node.op} {proxy.node.target}"
|
|
)
|
|
|
|
|
|
# Tracks the sources of all fake tensors we wrap in Dynamo.
|
|
# Used by shape guard computation.
|
|
@dataclasses.dataclass
|
|
class TrackedFake:
|
|
fake: Union[FakeTensor, SymInt]
|
|
source: Source
|
|
# Is None when fake is SymInt
|
|
symbolic_context: Optional[SymbolicContext]
|
|
|
|
def __hash__(self) -> int:
|
|
return hash((self.fake, self.source.name()))
|
|
|
|
def __eq__(self, other: object) -> bool:
|
|
if isinstance(other, TrackedFake):
|
|
return self.fake is other.fake and self.source.name() == other.source.name()
|
|
return False
|
|
|
|
|
|
# Performs automatic dynamic dim determination.
|
|
# Returns a SymbolicContext
|
|
def _automatic_dynamic(
|
|
e, tx, source, static_shapes, outer_only=False
|
|
) -> SymbolicContext:
|
|
name = source.name()
|
|
prior_policy = tx.output.tracing_context.tensor_to_context.get(e, None)
|
|
shape_env_to_source_to_symbol_cache = (
|
|
prior_policy.shape_env_to_source_to_symbol_cache if prior_policy else None
|
|
)
|
|
|
|
if is_traceable_wrapper_subclass(e) and not outer_only:
|
|
# Get symbolic context for outer tensor
|
|
outer_context = _automatic_dynamic(
|
|
e, tx, source, static_shapes, outer_only=True
|
|
)
|
|
|
|
# Get symbolic contexts for inner tensors
|
|
attrs, _ = type(e).__tensor_flatten__(e)
|
|
inner_contexts = {} # mapping from attr -> symbolic context
|
|
for attr in attrs:
|
|
inner_tensor = getattr(e, attr)
|
|
inner_source = AttrSource(source, attr)
|
|
inner_context = _automatic_dynamic(
|
|
inner_tensor, tx, inner_source, static_shapes
|
|
)
|
|
inner_contexts[attr] = inner_context
|
|
|
|
return SubclassSymbolicContext(
|
|
dynamic_sizes=outer_context.dynamic_sizes,
|
|
constraint_sizes=outer_context.constraint_sizes,
|
|
tensor_source=outer_context.tensor_source,
|
|
shape_env_to_source_to_symbol_cache=outer_context.shape_env_to_source_to_symbol_cache,
|
|
inner_contexts=inner_contexts,
|
|
)
|
|
|
|
if static_shapes:
|
|
return StatefulSymbolicContext(
|
|
dynamic_sizes=[DimDynamic.STATIC] * e.dim(),
|
|
constraint_sizes=[None] * e.dim(),
|
|
tensor_source=source,
|
|
shape_env_to_source_to_symbol_cache=shape_env_to_source_to_symbol_cache,
|
|
)
|
|
|
|
# We preserve the dynamism of inputs. For example, when users call
|
|
# make_fx(torch.cond, tracing_mode="symbolic")(*args), inputs have SymInt sizes.
|
|
from torch.fx.experimental.symbolic_shapes import is_singleton
|
|
|
|
if any(isinstance(s, SymInt) and not is_singleton(s) for s in e.size()):
|
|
return StatefulSymbolicContext(
|
|
dynamic_sizes=[
|
|
DimDynamic.DYNAMIC if isinstance(s, SymInt) else DimDynamic.STATIC
|
|
for s in e.size()
|
|
],
|
|
constraint_sizes=[None] * e.dim(),
|
|
tensor_source=source,
|
|
shape_env_to_source_to_symbol_cache=shape_env_to_source_to_symbol_cache,
|
|
)
|
|
|
|
# Prep for automatic dynamic
|
|
frame_state_entry = None
|
|
if name not in tx.output.frame_state:
|
|
# If there is no entry for this source, add the tensor to frame state with its current static size.
|
|
# E.g., {} -> {"x": [2, 4]}
|
|
frame_state_entry = FrameStateSizeEntry(None, None)
|
|
frame_state_entry.size = list(e.size())
|
|
else:
|
|
frame_state_entry = tx.output.frame_state[name]
|
|
if frame_state_entry.size is not None:
|
|
if e.ndim != len(frame_state_entry.size):
|
|
# If there is already an entry, and the dim mismatches, replace the frame state entry with None.
|
|
# E.g. {"x": [2, 3, 4]} -> {"x": None}
|
|
log.debug(
|
|
"automatic dynamic %s dim %s != %s",
|
|
name,
|
|
e.ndim,
|
|
frame_state_entry.size,
|
|
)
|
|
frame_state_entry.size = None
|
|
else:
|
|
# If there is already an entry, and the dim matches, for every size in the frame state which
|
|
# disagrees with the current static size, replace it with None. E.g., {"x": [2, 3]} -> {"x": [2, None]}
|
|
for i, dim in enumerate(frame_state_entry.size):
|
|
if dim is not None and e.size()[i] != dim:
|
|
log.debug(
|
|
"automatic dynamic %s size(%s) %s != %s",
|
|
name,
|
|
i,
|
|
e.size(i),
|
|
dim,
|
|
)
|
|
frame_state_entry.size[i] = None
|
|
|
|
# TODO: index export_constraints ahead of time so we don't have to
|
|
# do a linear scan every time here
|
|
t_id = id(e)
|
|
dim2constraint = {}
|
|
|
|
def update_dim2constraint(dim, constraint_range, debug_name):
|
|
if dim in dim2constraint:
|
|
from torch.fx.experimental.symbolic_shapes import StrictMinMaxConstraint
|
|
|
|
old_constraint_range, old_debug_name = dim2constraint[dim]
|
|
new_constraint_range = StrictMinMaxConstraint(
|
|
vr=constraint_range.vr & old_constraint_range.vr,
|
|
warn_only=False,
|
|
)
|
|
if old_debug_name is not None:
|
|
assert debug_name is None or debug_name == old_debug_name
|
|
new_debug_name = old_debug_name
|
|
else:
|
|
new_debug_name = debug_name
|
|
dim2constraint[dim] = new_constraint_range, new_debug_name
|
|
else:
|
|
dim2constraint[dim] = constraint_range, debug_name
|
|
|
|
if tx.output.export_constraints:
|
|
for constraint in tx.output.export_constraints:
|
|
if constraint.t_id == t_id:
|
|
update_dim2constraint(
|
|
constraint.dim, constraint.constraint_range, constraint.debug_name
|
|
)
|
|
if constraint.shared is not None and constraint.shared.t_id == t_id:
|
|
# We process constraint ranges for each shared dimension separately
|
|
# so that we can directly check range constraint violations on them
|
|
# without looking up which other shared dimensions have this info.
|
|
# In other words, for this t_id, we will have processed all of its
|
|
# constraint ranges, no matter where / how they were specified, by
|
|
# by the end of this loop.
|
|
update_dim2constraint(
|
|
constraint.shared.dim,
|
|
constraint.constraint_range,
|
|
constraint.debug_name,
|
|
)
|
|
|
|
dynamic_dims = []
|
|
constraint_dims = []
|
|
for i in range(e.dim()):
|
|
# NB: mark dynamic has precedence over static
|
|
marked_dynamic = i in getattr(e, "_dynamo_dynamic_indices", set())
|
|
marked_weak_dynamic = i in getattr(e, "_dynamo_weak_dynamic_indices", set())
|
|
marked_static = i in getattr(e, "_dynamo_static_indices", set())
|
|
|
|
# NB: both static and dynamic have precedence over
|
|
automatic_dynamic = config.automatic_dynamic_shapes and (
|
|
frame_state_entry.size is None or frame_state_entry.size[i] is None
|
|
)
|
|
|
|
# Reflect the user directive in the frame_state
|
|
# For dynamic, apply None always
|
|
if frame_state_entry.size and marked_dynamic:
|
|
log.debug("automatic dynamic %s marked dynamic", name)
|
|
frame_state_entry.size[i] = None
|
|
|
|
# We will process constraints first, as they will imply that we
|
|
# have a dynamic dimension
|
|
# Precedence: export constraints > eager constraints
|
|
constraint = dim2constraint.get(i)
|
|
if constraint is None:
|
|
if marked_dynamic and not config.allow_ignore_mark_dynamic:
|
|
constraint_dim = RelaxedUnspecConstraint(warn_only=False)
|
|
elif not marked_static and automatic_dynamic:
|
|
constraint_dim = RelaxedUnspecConstraint(warn_only=True)
|
|
else:
|
|
constraint_dim = None
|
|
else:
|
|
constraint_dim, debug_name = constraint
|
|
if debug_name is not None:
|
|
dim_name = f"{name}.size()[{i}]"
|
|
tx.output.shape_env.source_name_to_debug_name[dim_name] = debug_name
|
|
constraint_dims.append(constraint_dim)
|
|
|
|
# Now, figure out if the dim is dynamic/duck/static
|
|
if (
|
|
constraint_dim is not None
|
|
or marked_dynamic
|
|
or marked_weak_dynamic
|
|
or is_singleton(e.shape[i])
|
|
):
|
|
# NB: We could assert static_shapes is False here, but it
|
|
# seems better to allow the user to override symbolic_context in this
|
|
# case
|
|
dynamic = DimDynamic.DYNAMIC
|
|
elif static_shapes or config.assume_static_by_default or marked_static:
|
|
dynamic = DimDynamic.STATIC
|
|
else:
|
|
dynamic = DimDynamic.DUCK
|
|
|
|
dynamic_dims.append(dynamic)
|
|
|
|
tx.output.frame_state[name] = frame_state_entry
|
|
|
|
return StatefulSymbolicContext(
|
|
dynamic_sizes=dynamic_dims,
|
|
constraint_sizes=constraint_dims,
|
|
tensor_source=source,
|
|
shape_env_to_source_to_symbol_cache=shape_env_to_source_to_symbol_cache,
|
|
)
|
|
|
|
|
|
# See note [Tensor Fakification and Symbol Caching]
|
|
def wrap_to_fake_tensor_and_record(
|
|
e, tx, *, source: Optional[Source], is_tensor: bool, parent_context=None
|
|
):
|
|
if (
|
|
type(e) in (torch.Tensor, torch.nn.Parameter, FakeTensor)
|
|
or isinstance(e, torch.Tensor)
|
|
or is_traceable_wrapper_subclass(e)
|
|
):
|
|
assert source is not None
|
|
static_shapes, reason = tensor_always_has_static_shape(
|
|
e, is_tensor, guard_source=source.guard_source()
|
|
)
|
|
|
|
if not parent_context:
|
|
symbolic_context = _automatic_dynamic(e, tx, source, static_shapes)
|
|
else:
|
|
# Parent contexts are passed in when we are recursively creating
|
|
# fake tensors for subclasses. A better design would be not to create a
|
|
# parent/child relationship, but to recursively call _automatic_dynamic
|
|
# as we recursively call wrap_to_fake_tensor_and_record. This runs
|
|
# into bugs around how meta_utils knows and works to create fake tensors
|
|
# with tensor subclasses. Ideally, dynamo would drive both the recursive
|
|
# wrap_to_fake_tensor_and_record and _automatic_dynamic policy creation.
|
|
assert isinstance(source, AttrSource)
|
|
inner_context_name = source.member
|
|
symbolic_context = parent_context.inner_contexts[inner_context_name]
|
|
|
|
log.debug(
|
|
"wrap_to_fake %s %s %s",
|
|
source.name(),
|
|
tuple(e.shape),
|
|
symbolic_context,
|
|
)
|
|
fake_e = wrap_fake_exception(
|
|
lambda: tx.fake_mode.from_tensor(
|
|
e,
|
|
source=source,
|
|
symbolic_context=symbolic_context,
|
|
)
|
|
)
|
|
|
|
if is_traceable_wrapper_subclass(fake_e):
|
|
attrs, _ = fake_e.__tensor_flatten__()
|
|
for attr in attrs:
|
|
fake_inner = getattr(fake_e, attr)
|
|
inner = getattr(e, attr)
|
|
inner_source = AttrSource(source, attr)
|
|
wrap_to_fake_tensor_and_record(
|
|
inner,
|
|
tx,
|
|
source=inner_source,
|
|
is_tensor=isinstance(fake_inner, torch.Tensor),
|
|
parent_context=symbolic_context,
|
|
)
|
|
|
|
tx.output.tracing_context.tensor_to_context[e] = symbolic_context
|
|
tx.output.tensor_weakref_to_sizes_strides[e] = {
|
|
"size": fake_e.size(),
|
|
"stride": fake_e.stride(),
|
|
}
|
|
|
|
if is_tensor and not (static_shapes and source.is_nn_module()):
|
|
tx.output.tracked_fakes.append(
|
|
TrackedFake(fake_e, source, symbolic_context)
|
|
)
|
|
tx.output.tracked_fakes_id_to_source[id(e)].append(source)
|
|
|
|
return fake_e
|
|
else:
|
|
return e
|
|
|
|
|
|
class SourcelessBuilder:
|
|
"""
|
|
Like builder, but stateless and does not require a source. Useful for simple type->VT objects, or objects
|
|
that are being created/evaporated during inlining (ex: consider a locally made list of tensors we then iterate over
|
|
.), such a list should not show up as an artifact from inputs, nor in reconstruction, nor in the graph. However,
|
|
there may be reasons to represent it as a ListVariable internally.
|
|
|
|
NOTE - Objects produced here are born UNGUARDED due to the nature of sources!
|
|
|
|
NOTE - This class is very new! It will have some rough edges, but it was created to stem the bleeding of giant
|
|
if/else type->VariableTracker trees that were cropping up all over dynamo.
|
|
"""
|
|
|
|
def __call__(self, tx, value) -> VariableTracker:
|
|
if isinstance(value, VariableTracker):
|
|
# This is always valid to call, and useful for recursive calls.
|
|
return value
|
|
if isinstance(value, dataclasses._HAS_DEFAULT_FACTORY_CLASS):
|
|
return UserDefinedObjectVariable(value)
|
|
if ConstantVariable.is_literal(value):
|
|
return SourcelessBuilder.wrap_constant_literal(value)
|
|
elif is_builtin_callable(value):
|
|
return BuiltinVariable(value)
|
|
elif trace_rules.lookup(value) is not None:
|
|
if is_callable_allowed(value):
|
|
self.tx.output.has_user_defined_allowed_in_graph = True
|
|
return trace_rules.lookup(value)(value)
|
|
elif isinstance(value, types.FunctionType):
|
|
return UserFunctionVariable(value)
|
|
elif isinstance(value, enum.Enum):
|
|
return EnumVariable(value)
|
|
elif isinstance(value, (type, abc.ABCMeta)):
|
|
return UserDefinedClassVariable(value)
|
|
elif isinstance(value, dict):
|
|
items = {self(tx, k): self(tx, v) for k, v in value.items()}
|
|
return ConstDictVariable(items, mutable_local=MutableLocal())
|
|
elif isinstance(value, set):
|
|
# Nb. value is a set here so the iteration below is non-deterministic!
|
|
return SetVariable(
|
|
[self(tx, x) for x in value], mutable_local=MutableLocal()
|
|
)
|
|
elif isinstance(value, (tuple, list)):
|
|
cls = BaseListVariable.cls_for(type(value))
|
|
return cls([self(tx, x) for x in value], mutable_local=MutableLocal())
|
|
elif isinstance(value, types.MethodWrapperType):
|
|
return MethodWrapperVariable(value)
|
|
unimplemented(f"Unexpected type in sourceless builder {type(value)}")
|
|
|
|
@staticmethod
|
|
def wrap_constant_literal(value):
|
|
assert ConstantVariable.is_literal(value)
|
|
return ConstantVariable.create(value=value)
|