Summary:
Previously we were touching up unbacked bindings between Dynamo and AOTAutograd in strict export, but the logic had a bug: if an unbacked symint gets substituted by a backed symint, we would put the backed symint in the unbacked bindings (the check `is_symbol` was not enough here).
This PR fixes this logic, and moreover, moves it into the serializer instead, because we don't need this adjustment outside serde.
Test Plan: added test
Differential Revision: D68880766
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146115
Approved by: https://github.com/pianpwk
Summary:
Previously, aoti compile node is represented as a kernel-less custom op in the exported program. The node was not eager runnable, which is a common practice for numerical validation during lowering.
I introduce a new HOP to address this.
The schema is following
```
aoti_call_delegate(lower_moduel: AOTInductorEPModule, original_gm: fx.GraphModule, weights: List[Tensor], inputs: List[Tensor])
```
There are a few problems exposed by HOP
- AOTI expects a FX graph with weights as getattr nodes, aka stateful graph. HOP expect graph_module arguments to be stateless. Export serializer also expect a stateless graph. Currently, to make AOTI happy, I am making `original_gm` stateful, and bypassing the serialization for `original_gm`.
- As a result, the HOP is not re-traceable, as functionalization on stateful graph module argument will fail.
Test Plan: buck2 test 'fbcode//mode/opt' fbcode//deeplearning/aot_inductor/cpu/test:cpu_lowering_utils_test
Reviewed By: zhxchen17
Differential Revision: D68359391
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145630
Approved by: https://github.com/zou3519
Instead of bumping symint counters when we process unbacked bindings during deserialization, it's better to bump them at the beginning based on what the symbols in the original shape env before serialization were. This allows symbols in unbacked bindings to have "gaps" that bumping alone would not be able to match.
Why is bumping counters important at all? It is because when the shape env coming out of deserialization is used later for propagating symints, say in run_decompositions, we don't want new names to clash with existing names (bad things happen).
Differential Revision: [D68798191](https://our.internmc.facebook.com/intern/diff/D68798191/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145882
Approved by: https://github.com/pianpwk
Adds unbacked bindings during deserialization. These are carried by a node's metadata, and map pending fresh unbacked symbols to paths to such symbols inside the corresponding example value carried by the node's metadata.
Since it is awkward to serialize paths, we only serialize the names of these symbols and reconstruct the paths on deserialization, using a shape env util. We also need to bump counters for unbacked symbols here, because the shape env util we use to create these symbols (when deserializing example values) don't do so, and not doing so makes later passes (like `run_decompositions`) crash because new unbacked symbols don't get new names.
This is enough for non-strict. For strict, the unbacked bindings and example values in node metadata can get out of sync, because of running AOTAutograd as an additional step after Dynamo. So we have to sync those back.
Differential Revision: [D68232274](https://our.internmc.facebook.com/intern/diff/D68232274/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144894
Approved by: https://github.com/pianpwk
As of python 3.9 annotated lists can be written as `list[T]` and `List[T]` has been deprecated. However schema_check was converting `list[T]` to simply be `list`. This change teaches it to handle `list[T]` the same as `List[T]`.
A couple small drive-by changes I noticed as well:
- Path concatenation should use `os.path.join`, not `+`
- Spelling in error message
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145154
Approved by: https://github.com/bobrenjc93
Summary:
Add experimental support for torch.nn.Module as input types.
Before this change, we don't support module inputs but recently we saw some interesting use cases like gpt-fast https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py#L68 where we directly pass in a module input for different variants of the same models.
Since we don't really care about non-param or non-buffer states in non strict mode, we don't care about those either and pretend they are like plain constants during tracing. We treat any module input like a nested container of tensor, and each time we will automatically register a pytree handler for these module types to flatten its state dict into a group of tensors. We will just inline any module method call during tracing like we did for `self` module in export_for_training. This will make input modules' behavior very similar to the training module in typical case, except that we don't record the inputs as parameter or buffers but rather just plain user inputs.
Test Plan: buck run mode/opt caffe2/test:test_export -- -r test_module_input
Differential Revision: D67680827
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143925
Approved by: https://github.com/tugsbayasgalan
Summary: Introduce `is_hop_single_tensor_return` field to the `Node` class in serialization so that during deserialization when there is a single return, we know whether it is a tuple of a single element or a single element.
Test Plan:
```
buck2 run @mode/dev-nosan sigmoid/inference/test:e2e_test_cpu -- -r E2ETestCPUCond
buck2 run @mode/dev-nosan sigmoid/inference/test:test_passes -- -r test_const_folding2
```
Differential Revision: D66991624
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143227
Approved by: https://github.com/zhxchen17
Summary:
When there is a `torch._check()` that checks if a sym_int is equal to some constant, it will generate 3 nodes in the graph with target `operation.ge`, `operator.le` and `operator.eq`. These operators belong to `_SYM_BOOL_OPS` but the `meta_val` of these nodes are are `bool` instead of `torch.SymBool`.
Similar things can happen to `torch.SymInt`, where a `node.target` belongs to `_SYM_INT_OPS` but `node.meta["val"]` is an `int` instead of `torch.SymInt`.
Therefore, we need to check both `meta_val` type and `node.target` type during serialization.
Test Plan:
```
buck2 run @mode/dev-nosan caffe2/test:test_export -- -r test_sym_bool_torch_check_equal
buck2 run @mode/dev-nosan caffe2/test:test_export -- -r test_sym_int_torch_check_equal
```
Differential Revision: D67883754
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144295
Approved by: https://github.com/avikchaudhuri, https://github.com/angelayi
We added an is_export flag under torch.compiler.is_exporting. This comes handy when we try to do some special logic in user-level and system-level (e.g. in upper of the stack).
In increasing-scope:
- `_is_fx_tracing` is set to True when we use under symbolic_trace or make_fx.
- `is_exporting` is set to True when we're doing strict or non-strict export, which internally has a step that calls make_fx and set _is_fx_tracing to be True.
- `is_compiling` is set to True when we're either doing strict, non-strict export or torch.compile.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142425
Approved by: https://github.com/avikchaudhuri
A bunch of auto dynamic shape tests would fail non-strict retraceability because when checking input constraints, we'd compare non-trivial expressions, which would require / affect shape env.
```
... is not tracked with proxy for <torch.fx.experimental.proxy_tensor._ModuleStackTracer object ...
```
I've also observed this bug internally.
This PR does an early check on whether args passed have concrete shapes, and only then proceeds: as before, we
1. try to unify / solve with the arg dim when the corresponding placeholder node dim is symbolic in one symbol
2. check directly if the placeholder node dim is concrete
3. otherwise defer to run time.
Differential Revision: [D67359596](https://our.internmc.facebook.com/intern/diff/D67359596/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143442
Approved by: https://github.com/tugsbayasgalan
Reverts a change in #121337. All dataclass members must be serialized, even default-valued members, because downstream code often implicitly assumes their presence.
This PR fixes a segfault when running `test_custom_op_all_inputs` from `test/inductor/test_aot_inductor_custom_ops.py`. This segfault was caused by querying for an "index" field for the `Device` type (see `torch/csrc/inductor/aoti_torch/oss_proxy_executor.cpp:136`), which was previously skipped when serializing if the device index was unspecified. A number of other structs which are deserialized in this file also contain optional fields, and presumably could experience the same bug.
Fixes#138955Fixes#134793
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142286
Approved by: https://github.com/zhxchen17
ghstack dependencies: #142175
Summary:
This diff make it possible to migrate to PyTorch's OSS export schema from sigmoid. Basically, we add a new field called "methods" to ExportedProgram in Model definition, which contains the thrift schema generated based on schema.py from OSS. This way, we can keep writing the old fields while double write a new format in equivalent form. Since thrift doesn't support inlining type definitions, we do it manually here and it shouldn't break on-wire compatibility. As long as every sigmoid user is using sigmoid.frontend.serialization.serialize, we always guarantee to have the new format saved sa well.
Eventually we will will use json deserialization from OSS so we will only keep this double writing for a couple of months. Eventually, we will migrate every serialization path to the OSS workflow.
Test Plan:
buck test mode/opt sigmoid/frontend:serialization_test
buck test mode/opt sigmoid/frontend/test_gpu:serializer_test
Differential Revision: D67044185
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142511
Approved by: https://github.com/desertfire
Summary:
In thrift schema, we represent every None value as "True/False" while we represent None as () in OSS schema. This will cause some inconsistency between the type systems and the simplest thing to do here is changing Tuple[()] to bool in oss schema.
This change should NOT cause version bump, because on deserializer side we never read the value from as_none fields, as it doesn't have real meaning. Therefore this schema change should be considered as safe.
Test Plan: CI
Reviewed By: SherlockNoMad
Differential Revision: D66888892
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142257
Approved by: https://github.com/yiming0416, https://github.com/hl475
Over time, a large number of the existing type ignores have become irrelevant/unused/dead as a result of improvements in annotations and type checking.
Having these `# type: ignore` linger around is not ideal for two reasons:
- They are verbose/ugly syntatically.
- They could hide genuine bugs in the future, if a refactoring would actually introduce a bug but it gets hidden by the ignore.
I'm counting over 1500 unused ignores already. This is a first PR that removes some of them. Note that I haven't touched type ignores that looked "conditional" like the import challenge mentioned in https://github.com/pytorch/pytorch/pull/60006#issuecomment-2480604728. I will address these at a later point, and eventually would enable `warn_unused_ignores = True` in the mypy configuration as discussed in that comment to prevent accumulating more dead ignores going forward.
This PR should have no effect on runtime at all.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142325
Approved by: https://github.com/Skylion007, https://github.com/janeyx99
Summary:
In this diff we implement a way to ensure the internal thrift schema from cfgr (configerator/structs/caffe2/torch/export/schema.thrift) and the schema in OSS (torch/_export/serde/schema.thrift) are in sync, by adding a unittest to reflect on the type names and fields from each schema and compare them field by field.
When we detect new fields/types from torch/_export/serde/schema.thrift, there'll be a test failure on the trunk and the error message hints people to add the missing field/type to the thrift schema from cfgr, so that they are always in sync in practice.
Test Plan: buck test mode/opt caffe2/test:test_export -- -r test_thrift_schema_in_sync
Differential Revision: D66716834
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141989
Approved by: https://github.com/yiming0416
Summary: To make sure schema.py and schema.thrift are kept in sync, we use the int keys from thrift and use Python Annotated type to associate fields between thrift and schema.py. Later we will use this association to build a single source of truth between the schemas.
Test Plan: CI
Differential Revision: D66253157
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141611
Approved by: https://github.com/yiming0416
For better tracking, we need to make maybe aliasing/mutating ops with proper tag. We need to special case native_batch_norm because it is not a CIA but has a wrong schema. I guess native_batch_norm will be removed at some point, so until then we just keep it around.
D60347117
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131990
Approved by: https://github.com/bdhirsh
For custom ops that do not have a meta kernel, draft export automatically creates a meta kernel based on the tracing example inputs. To ensure that these assumptions made during tracing is clear to the user, we add assertions into the traced exported program:
An example graph:
```
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, a: "f32[s0, s1]", b: "f32[s2, s3]"):
# File: /data/users/angelayi/pytorch/test/export/test_draft_export.py:172 in forward, code: res1 = torch.ops.mylib.foo4(a, b)
_assert_tensor_metadata = torch.ops.aten._assert_tensor_metadata(a, dtype = torch.float32, device = device(type='cpu')); _assert_tensor_metadata = None
_assert_tensor_metadata_1 = torch.ops.aten._assert_tensor_metadata(b, dtype = torch.float32, device = device(type='cpu')); _assert_tensor_metadata_1 = None
foo4: "f32[u2, u3]" = torch.ops.mylib.foo4.default(a, b); a = b = None
return (foo4,)
```
Differential Revision: [D66321129](https://our.internmc.facebook.com/intern/diff/D66321129)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141072
Approved by: https://github.com/pianpwk
ghstack dependencies: #141071
Summary:
Latest attempt after [136802](https://github.com/pytorch/pytorch/pull/136802) and [140084](https://github.com/pytorch/pytorch/pull/140084) got shelved.
This keeps the string format for `expr_str`, but calls `sympy.printing.repr.srepr(s)` instead of `str(s)`, which prints expressions more explicitly, e.g.
```
((2*x)//(3*y + 4)) -> "FloorDiv(Mul(Integer(2), Symbol('x')), Add(Mul(Integer(3), Symbol('y')), Integer(4)))"
```
This is nice because:
- we have better roundtrippability for deserialization, robust to pretty printing changes like [this](6c9bfd52b6/torch/utils/_sympy/functions.py (L208)) that caused the issue in the first place.
- this preserves the BC surface for both 1) sigmoid thrift serialization, by keeping the string format, and 2) deserialization for old IRs, since `sympy.sympify(...)` still handles the old `str(s)` format.
- more memory efficient than storing ASTs; the [AST attempt](https://github.com/pytorch/pytorch/pull/140084) increased artifact size by 20% on some toy programs.
- doesn't even require a schema version bump.
Additionally to push some test cases over the line, this redoes expression processing (handling ranges, symbol caching) by doing bottom-up processing instead of the current hacky-ish workflow.
Test Plan: test_serdes, test_serialize, internal tests broken by AST PR
Differential Revision: D66283208
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141284
Approved by: https://github.com/zhxchen17
Summary: The struct type is named "InputToConsantInputSpec" in thrift which causes some inconsistency between the schema. Changing the type name from 1 to another is okayish because that doesn't change the on wire format.
Test Plan: CI
Differential Revision: D66240951
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141151
Approved by: https://github.com/yiming0416
Summary:
When we have both `set_grad` and `autocast` HOP, name collision might happen when we try to inline a node.
For exmaple, for a GraphModule like this:
```
GraphModule(
(submod_0): GraphModule(
(submod_1): GraphModule()
)
(submod_1): GraphModule()
(submod_2): GraphModule()
)
```
when we inline `submod_0`, we might accidentally overwrite `submod_1`.
In this PR, we fix this by check if the graph module already has an attribute with the same name, if so, we use the next "submod_{i}", until no name collision.
Partially fixes https://github.com/pytorch/pytorch/issues/140589.
Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export -- -r test_predispatch_autocast_and_set_grad
```
Differential Revision: D66200994
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141169
Approved by: https://github.com/angelayi
* Automatically applies ruff rule 401. Turns loops into equivalent list comprehensions which are faster and do not leak the scope of the loop variables.
* list comprehensions not only often have better typing, but are 50+% faster than for loops on overhead. They also preserve length information etc and are better for the interpreter to optimize.
* Manually went back and made mypy happy after the change.
* Also fixed style lints in files covered by flake8 but not by pyfmt
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140980
Approved by: https://github.com/justinchuby, https://github.com/malfet
Summary: The way we've been de/serializing sympy.Exprs is not roundtrippable in all cases (serialize by calling `str(expr)`, and deserialize by calling `sympy.sympify(expr_str)`). This has led to expressions being mathematically equivalent but structurally different, causing issues in ValueRanges. Example issue: https://github.com/pytorch/pytorch/issues/136797
This starts to deprecate the use of `expr_str` and stores expressions in AST format instead. For BC purposes, `expr_str` deserialization is still supported, but we will always serialize to `expr_ast`. We'll kill this once the serialization upgrader design is finalized and implemented.
Test Plan: test_export
Differential Revision: D65638757
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140084
Approved by: https://github.com/angelayi
Differential Revision: D63206258
This diff introduces a mechanism to generate a json-compatible deserializer in cpp using nlohmann json (already being used by AOTI).
Why we need this? Because there will be a lot of cases where people don't want to use Python to load the graph (e.g. cpp runtime), and instead they can use this header to deserialize the JSON graph.
Every time we call update_schema.py to update the schema, the header will be auto generated and included into the source files.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136398
Approved by: https://github.com/angelayi
Differential Revision: [D65308061](https://our.internmc.facebook.com/intern/diff/D65308061/)
When a shared submodule is called multiple times with different aliases, e.g., `self.a` and `self.b` are both `C()` under the hood and we have calls to both `self.a(...)` and `self.b(...)`, we wrap `C()` to emit as many export tracepoints as there are aliases. This caused us to compute module call signatures that conflated information: we'd add inputs and outputs of one call to inputs and outputs of a different call. Overall preserving module call signatures in the presence of shared submodules was borked because of this bug.
The fix is to pay attention to the nn module stack, which accurately tracks individual calls, thus allowing us to ignore some export tracepoints that get the module correct but not the alias through which the call was made.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139438
Approved by: https://github.com/zhxchen17
# Why?
I want the following code to work.
minimal repro:
```
class M(torch.nn.Module):
def forward(self, dilate_flag):
return dilate_flag.item()
input1 = (torch.tensor([1], dtype=torch.bool, device="cuda"),)
model = M().cuda()
ep = torch.export.export(model, input1, strict=True)
path = torch._inductor.aot_compile(ep.module(), input1)
aot_model = torch._export.aot_load(path, device="cuda")
actual_output = aot_model(*input1)
```
error: AssertionError: Encountered an unsupported object of type <class 'torch.SymBool'> while writing the metadata for exported program
second error will be handled by https://github.com/pytorch/pytorch/pull/138760
# Motivation
I could technically bypass it with a torch.int tensor. However, it doesn't work with torch.cond. I want the following to work. It would also require https://github.com/pytorch/pytorch/pull/138760 for aot compile to work.
```
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.dilate_flag = 0
def forward(self, dilate_flag):
self.dilate_flag = dilate_flag.item()
def true_fn(dilate_flag):
return dilate_flag.clone()
def false_fn(dilate_flag):
return dilate_flag.clone()
torch.cond(
self.dilate_flag,
true_fn,
false_fn,
(dilate_flag,),
)
return self.dilate_flag
input1 = (torch.tensor([1], dtype=torch.bool, device="cuda"),)
input2 = (torch.tensor([0], dtype=torch.bool, device="cuda"),)
inputs = (input1, input2)
model = M().cuda()
for input in inputs:
expected_output = model(*input)
ep = torch.export.export(model, input, strict=False)
path = torch._inductor.aot_compile(ep.module(), input)
aot_model = torch._export.aot_load(path, device="cuda")
actual_output = aot_model(*input)
assert (
expected_output == actual_output
), f"henry they are not equal {expected_output} != {actual_output}"
```
Differential Revision: D64867504
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138765
Approved by: https://github.com/ydwu4
In this diff, i make test_torchbind.py tests to handle training IR. Today in the training IR, we don't see the effect token and HOP because this happens at the FunctionalTensorMode. Maybe in the future, we should move this logic up to the training IR so that writing passes etc on training Ir is safer. But for the migration purposes, i think it is ok for now. I also fixed two bugs:
1. ep.module() doesn't register all aliased constants in the module.
2. When we retrace, we need to fakify the original Torchbind object.
3. We don't run any DCE on training IR so we need to add some more torch ops to verifier.
Differential Revision: [D64853530](https://our.internmc.facebook.com/intern/diff/D64853530)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138658
Approved by: https://github.com/ydwu4, https://github.com/zhxchen17
Summary:
had a land racing with another diff D65166035 to fix the schema.
According to export team's discussion, we are upgrading min_val and max_val to optional fields which shouldn't break BC and allows the schema to express infinity.
Test Plan: buck2 test 'fbcode//mode/opt' fbcode//apf/rec/ir/tests:ir_export_deserialize_test
Differential Revision: D65273170
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139394
Approved by: https://github.com/yiming0416
Summary:
This diff reverts D65167805
broke the release pipeline
Test Plan: NA
Differential Revision: D65245198
@diff-train-skip-merge (to silent facebook-github-bot until I have a stamp to land this)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139371
Approved by: https://github.com/malfet
Summary: According to export team's discussion, we are upgrading min_val and max_val to optional fields which shouldn't break BC and allows the schema to express infinity.
Test Plan: buck test mode/opt caffe2/test:test_export -- -r test_serialize_infinite_sym_int
Differential Revision: D65167805
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139223
Approved by: https://github.com/yiming0416
Summary:
Unflatten was broken for HOPs for a couple of reasons:
(1) we didn't expect `get_attr` nodes in the exported program, but they can occur to hold graph arguments to HOPs; such attributes must be moved from the exported program to the corresponding unflattened submodule containing the HOP call.
(2) we don't record metadata for graph arguments on serialization (there's nothing to hold it in our schema), and accordingly the `get_attr` nodes we create on deserialization don't have `nn_module_stack` metadata, which obviously wrecks unflatten.
Test Plan: added a couple of tests
Differential Revision: D65013647
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138978
Approved by: https://github.com/zhxchen17
Previously we'd been raising UserErrors when `Dim()` and DimHints (`Dim.AUTO/Dim.DYNAMIC`) were both specified in `dynamic_shapes`, this PR stops that, and uses `Dim()` objects to guide DimHints.
The key to this was making the `EqualityConstraint` class happy when it checks that inferred equivalence relations were specified in the original `dynamic_shapes` spec, and this introduces a `RelaxedConstraint` object to mark the hinted dimensions, so equality checks between `RelaxedConstraints` and other constraints are treated as valid.
Current behavior is that:
```
class Foo(torch.nn.Module):
def forward(self, x, y):
return x - y
inputs = (torch.randn(4, 4), torch.randn(4, 4))
shapes = {
"x": (Dim.AUTO, Dim("d1", min=3)),
"y": (Dim("d0", max=8), Dim.DYNAMIC),
}
ep = export(Foo(), inputs, dynamic_shapes=shapes)
```
The dimensions marked `AUTO` and `DYNAMIC` will have max & min ranges of 8 & 3 respectively. Note that inferred equality between `Dim()` objects & `Dim.STATIC` will still raise errors - `Dim()` suggests not specializing to a constant.
Differential Revision: D64636101
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138490
Approved by: https://github.com/avikchaudhuri