Commit Graph

882 Commits

Author SHA1 Message Date
PyTorch MergeBot
219e9c83a5 Revert "[AOTI XPU] Support AOT Inductor for Intel GPU. (#140269)"
This reverts commit 854d83133b.

Reverted https://github.com/pytorch/pytorch/pull/140269 on behalf of https://github.com/clee2000 due to breaks forward compatibility?  D66937097 ([comment](https://github.com/pytorch/pytorch/pull/140269#issuecomment-2528828555))
2024-12-09 17:33:28 +00:00
xinan.lin
854d83133b [AOTI XPU] Support AOT Inductor for Intel GPU. (#140269)
This PR add XPU support for AOT Inductor, and reuse the corresponding UT.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140269
Approved by: https://github.com/desertfire, https://github.com/EikanWang
ghstack dependencies: #140268
2024-12-07 19:22:04 +00:00
Bin Bao
660845a1aa [AOTI] Add deprecation warning for torch._export.aot_load (#142212)
Summary: Add deprecation warning for torch._export.aot_load, and encourage user to move to the new torch._inductor.aoti_load_package.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142212
Approved by: https://github.com/angelayi
2024-12-06 21:12:34 +00:00
Zhengxu Chen
1a7da6e7e9 [export] Add test to enforce consistency between synced thrift and generated thrift from schema.py (#141989)
Summary:
In this diff we implement a way to ensure the internal thrift schema from cfgr (configerator/structs/caffe2/torch/export/schema.thrift) and the schema in OSS (torch/_export/serde/schema.thrift) are in sync, by adding a unittest to reflect on the type names and fields from each schema and compare them field by field.

When we detect new fields/types from torch/_export/serde/schema.thrift, there'll be a test failure on the trunk and the error message hints people to add the missing field/type to the thrift schema from cfgr, so that they are always in sync in practice.

Test Plan: buck test mode/opt caffe2/test:test_export -- -r test_thrift_schema_in_sync

Differential Revision: D66716834

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141989
Approved by: https://github.com/yiming0416
2024-12-06 18:42:20 +00:00
bhack
ae9cda0221 Add truediv support in export serializer (#136364)
Fixes #136113

- [x] Inital `truediv` coverage
- [ ] Expand/reduce coverage?
- [x] Add tests
- [x] Re-check docstrings
- [ ] Linting

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136364
Approved by: https://github.com/pianpwk

Co-authored-by: Angela Yi <angelayi@meta.com>
Co-authored-by: Pian Pawakapan <pianpwk@meta.com>
2024-12-05 17:33:33 +00:00
Shangdi Yu
0190d929f2 [BE] Remove unused argument (#141983)
Summary: As title, the `node_filter` argument is not used.

Test Plan: CI

Differential Revision: D66712599

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141983
Approved by: https://github.com/tugsbayasgalan
2024-12-04 00:07:33 +00:00
Fabian Keller
f472b3aee1 improve typings around torch.export (#141829)
This is another follow-up to https://github.com/pytorch/pytorch/pull/115074 / https://github.com/pytorch/pytorch/pull/141240 following the strategy discussed there (https://github.com/pytorch/pytorch/pull/115074#issuecomment-2480992230).

This PR improves the type annotations around `torch._export`. Even though the PR introduces a few runtime type asserts, the runtime behavior should stay equivalent, because the failed assertions should have been immediate crashes anyway.

CC @Skylion007 @ezyang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141829
Approved by: https://github.com/ezyang
2024-12-03 19:57:21 +00:00
Aaron Gokaslan
08db735629 [BE]: Update mypy to 1.13.0 (#140808)
Update mypy to 1.13.0 . Should hopefully reduce linting time. Has support for orjson cache serialization which should improve mypy cache perf if orjson is installed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140808
Approved by: https://github.com/ezyang, https://github.com/malfet
2024-12-03 02:50:10 +00:00
PyTorch MergeBot
09ce760fef Revert "Add missing data types at torch export serialization (#138561)"
This reverts commit 1ef1b3b391.

Reverted https://github.com/pytorch/pytorch/pull/138561 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/138561#issuecomment-2513343401))
2024-12-03 01:32:50 +00:00
PyTorch MergeBot
daa77f3d9f Revert "[BE]: Update mypy to 1.13.0 (#140808)"
This reverts commit 00134d68af.

Reverted https://github.com/pytorch/pytorch/pull/140808 on behalf of https://github.com/huydhn due to This is failing a distributed test in trunk, target determination missed this test and did not run it on PR ([comment](https://github.com/pytorch/pytorch/pull/140808#issuecomment-2512788426))
2024-12-02 20:47:43 +00:00
Aaron Gokaslan
00134d68af [BE]: Update mypy to 1.13.0 (#140808)
Update mypy to 1.13.0 . Should hopefully reduce linting time. Has support for orjson cache serialization which should improve mypy cache perf if orjson is installed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140808
Approved by: https://github.com/ezyang, https://github.com/malfet
2024-12-02 18:47:54 +00:00
Zhengxu Chen
a8a570512b [export] Generate compatible thrift schema out of schema.py (#141611)
Summary: To make sure schema.py and schema.thrift are kept in sync, we use the int keys from thrift and use Python Annotated type to associate fields between thrift and schema.py. Later we will use this association to build a single source of truth between the schemas.

Test Plan: CI

Differential Revision: D66253157

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141611
Approved by: https://github.com/yiming0416
2024-11-29 20:09:49 +00:00
yintong-lu
1ef1b3b391 Add missing data types at torch export serialization (#138561)
Related to #131654

Added missing FP8 data types at torch export serialization.
Added test cases of FP8 data types.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138561
Approved by: https://github.com/jerryzh168, https://github.com/jgong5
2024-11-28 08:35:03 +00:00
PyTorch MergeBot
6e61ff4fd3 Revert "Add truediv support in export serializer (#136364)"
This reverts commit 1df440dc4e.

Reverted https://github.com/pytorch/pytorch/pull/136364 on behalf of https://github.com/huydhn due to Sorry for reverting your change but its doc build failure is legit ([comment](https://github.com/pytorch/pytorch/pull/136364#issuecomment-2502620732))
2024-11-27 03:24:31 +00:00
bhack
1df440dc4e Add truediv support in export serializer (#136364)
Fixes #136113

- [x] Inital `truediv` coverage
- [ ] Expand/reduce coverage?
- [x] Add tests
- [x] Re-check docstrings
- [ ] Linting

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136364
Approved by: https://github.com/pianpwk

Co-authored-by: Angela Yi <angelayi@meta.com>
Co-authored-by: Pian Pawakapan <pianpwk@meta.com>
2024-11-27 00:31:47 +00:00
Tugsbayasgalan Manlaibaatar
11c786dcb5 [BE] Make maybe_aliasing_or_mutating proper tag (#131990)
For better tracking, we need to make maybe aliasing/mutating ops with proper tag. We need to special case native_batch_norm because it is not a CIA but has a wrong schema. I guess native_batch_norm will be removed at some point, so until then we just keep it around.

D60347117
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131990
Approved by: https://github.com/bdhirsh
2024-11-24 00:12:49 +00:00
angelayi
53df1c11cd [export] Add custom op guards (#141072)
For custom ops that do not have a meta kernel, draft export automatically creates a meta kernel based on the tracing example inputs. To ensure that these assumptions made during tracing is clear to the user, we add assertions into the traced exported program:

An example graph:
```
ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, a: "f32[s0, s1]", b: "f32[s2, s3]"):
             # File: /data/users/angelayi/pytorch/test/export/test_draft_export.py:172 in forward, code: res1 = torch.ops.mylib.foo4(a, b)
            _assert_tensor_metadata = torch.ops.aten._assert_tensor_metadata(a, dtype = torch.float32, device = device(type='cpu'));  _assert_tensor_metadata = None
            _assert_tensor_metadata_1 = torch.ops.aten._assert_tensor_metadata(b, dtype = torch.float32, device = device(type='cpu'));  _assert_tensor_metadata_1 = None
            foo4: "f32[u2, u3]" = torch.ops.mylib.foo4.default(a, b);  a = b = None
            return (foo4,)
```

Differential Revision: [D66321129](https://our.internmc.facebook.com/intern/diff/D66321129)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141072
Approved by: https://github.com/pianpwk
ghstack dependencies: #141071
2024-11-22 20:55:04 +00:00
Tugsbayasgalan Manlaibaatar
7c5c38da23 Fix constant lifting pass when there is no user input (#141157)
Differential Revision: [D66253854](https://our.internmc.facebook.com/intern/diff/D66253854/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141157
Approved by: https://github.com/zhxchen17
2024-11-22 19:08:25 +00:00
Pian Pawakapan
e54538afc8 [export] fix sympy.expr roundtrippability for serialization (#141284)
Summary:
Latest attempt after [136802](https://github.com/pytorch/pytorch/pull/136802) and [140084](https://github.com/pytorch/pytorch/pull/140084) got shelved.

This keeps the string format for `expr_str`, but calls `sympy.printing.repr.srepr(s)` instead of `str(s)`, which prints expressions more explicitly, e.g.
```
((2*x)//(3*y + 4)) -> "FloorDiv(Mul(Integer(2), Symbol('x')), Add(Mul(Integer(3), Symbol('y')), Integer(4)))"
```

This is nice because:
- we have better roundtrippability for deserialization, robust to pretty printing changes like [this](6c9bfd52b6/torch/utils/_sympy/functions.py (L208)) that caused the issue in the first place.
- this preserves the BC surface for both 1) sigmoid thrift serialization, by keeping the string format, and 2) deserialization for old IRs, since `sympy.sympify(...)` still handles the old `str(s)` format.
- more memory efficient than storing ASTs; the [AST attempt](https://github.com/pytorch/pytorch/pull/140084) increased artifact size by 20% on some toy programs.
- doesn't even require a schema version bump.

Additionally to push some test cases over the line, this redoes expression processing (handling ranges, symbol caching) by doing bottom-up processing instead of the current hacky-ish workflow.

Test Plan: test_serdes, test_serialize, internal tests broken by AST PR

Differential Revision: D66283208

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141284
Approved by: https://github.com/zhxchen17
2024-11-22 18:47:04 +00:00
Zhengxu Chen
313dac6c1c [export] Fix name inconsistentcy between thrift and schema.py (#141151)
Summary: The struct type is named "InputToConsantInputSpec" in thrift which causes some inconsistency between the schema. Changing the type name from 1 to another is okayish because that doesn't change the on wire format.

Test Plan: CI

Differential Revision: D66240951

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141151
Approved by: https://github.com/yiming0416
2024-11-22 18:04:23 +00:00
Shangdi Yu
0155a112fd [export] avoid name collision when inlining node (#141169)
Summary:
When we have both `set_grad` and `autocast` HOP, name collision might happen when we try to inline a node.

For exmaple, for a GraphModule like this:

```
GraphModule(
  (submod_0): GraphModule(
    (submod_1): GraphModule()
  )
  (submod_1): GraphModule()
  (submod_2): GraphModule()
)

```

when we inline `submod_0`, we might accidentally overwrite `submod_1`.

In this PR, we fix this by check if the graph module already has an attribute with the same name, if so, we use the next "submod_{i}", until no name collision.

Partially fixes https://github.com/pytorch/pytorch/issues/140589.

Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export -- -r  test_predispatch_autocast_and_set_grad
```

Differential Revision: D66200994

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141169
Approved by: https://github.com/angelayi
2024-11-22 01:08:22 +00:00
Edward Z. Yang
612122af8f Fix type-safety of torch.nn.Module instances (#141240)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141240
Approved by: https://github.com/Skylion007, https://github.com/malfet
2024-11-22 00:05:05 +00:00
PyTorch MergeBot
d3c8f1af8d Revert "[export] serialize sympy.Exprs as ASTs instead of strings (#140084)"
This reverts commit d869344bc0.

Reverted https://github.com/pytorch/pytorch/pull/140084 on behalf of https://github.com/izaitsevfb due to reverted internally in D66253238 ([comment](https://github.com/pytorch/pytorch/pull/140084#issuecomment-2492165667))
2024-11-21 20:09:54 +00:00
Shangdi Yu
5c37b20d13 Fix autocast HOP pass for nested autocast (#141065)
Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export -- -r "test_predispatch_autocast"
```

Differential Revision: D65970066

@diff-train-skip-merge

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141065
Approved by: https://github.com/angelayi
2024-11-20 21:57:11 +00:00
Aaron Gokaslan
12e95aa4ee [BE]: Apply PERF401 autofixes from ruff (#140980)
* Automatically applies ruff rule 401. Turns loops into equivalent list comprehensions which are faster and do not leak the scope of the loop variables.
* list comprehensions not only often have better typing, but are 50+% faster than for loops on overhead. They also preserve length information etc and are better for the interpreter to optimize.
* Manually went back and made mypy happy after the change.
* Also fixed style lints in files covered by flake8 but not by pyfmt

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140980
Approved by: https://github.com/justinchuby, https://github.com/malfet
2024-11-20 17:52:07 +00:00
Pian Pawakapan
d869344bc0 [export] serialize sympy.Exprs as ASTs instead of strings (#140084)
Summary: The way we've been de/serializing sympy.Exprs is not roundtrippable in all cases (serialize by calling `str(expr)`, and deserialize by calling `sympy.sympify(expr_str)`). This has led to expressions being mathematically equivalent but structurally different, causing issues in ValueRanges. Example issue: https://github.com/pytorch/pytorch/issues/136797

This starts to deprecate the use of `expr_str` and stores expressions in AST format instead. For BC purposes, `expr_str` deserialization is still supported, but we will always serialize to `expr_ast`. We'll kill this once the serialization upgrader design is finalized and implemented.

Test Plan: test_export

Differential Revision: D65638757

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140084
Approved by: https://github.com/angelayi
2024-11-20 07:44:25 +00:00
Angela Yi
baf756a785 [reland] [aoti] Selectively package AOTI generated files (#140675)
Summary: Reland  https://github.com/pytorch/pytorch/pull/140022

Test Plan: CI

Differential Revision: D65929964

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140675
Approved by: https://github.com/desertfire
2024-11-15 23:48:34 +00:00
Zhengxu Chen
add6bb2e96 [aps] skip version check for export IR. (#140573)
Summary: mitigating potential export compatibility issue for production (temporarily).

Test Plan: CI

Differential Revision: D65890958

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140573
Approved by: https://github.com/desertfire
2024-11-14 17:13:42 +00:00
Zhengxu Chen
3ef2dfc1ba [export] Implement cpp deserializer. (#136398)
Differential Revision: D63206258

This diff introduces a mechanism to generate a json-compatible deserializer in cpp using nlohmann json (already being used by AOTI).

Why we need this? Because there will be a lot of cases where people don't want to use Python to load the graph (e.g. cpp runtime), and instead they can use this header to deserialize the JSON graph.

Every time we call update_schema.py to update the schema, the header will be auto generated and included into the source files.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136398
Approved by: https://github.com/angelayi
2024-11-14 16:34:59 +00:00
PyTorch MergeBot
b4cc5d38b4 Revert "[aoti] Remove dir after packaging (#140022)"
This reverts commit ba136a78ba.

Reverted https://github.com/pytorch/pytorch/pull/140022 on behalf of https://github.com/angelayi due to sorry I realized I need to land from internal ([comment](https://github.com/pytorch/pytorch/pull/140022#issuecomment-2473814720))
2024-11-13 14:43:15 +00:00
angelayi
ba136a78ba [aoti] Remove dir after packaging (#140022)
Update AOTI to return a list of files that it generates when `aot_inductor.package=True`. Then we will only package the files that are in that list.

This should fix the [caching issue](https://fb.workplace.com/groups/1028545332188949/permalink/1081702043539944/) and hopefully https://github.com/pytorch/pytorch/issues/140053.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140022
Approved by: https://github.com/larryliu0820, https://github.com/desertfire, https://github.com/malfet
2024-11-13 12:17:19 +00:00
zeshengzong
cb71bcc542 Replace clone.detach with detach.clone (#140264)
Fixes #64532

As state in issue, replace `clone.detach` by `detach.clone`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140264
Approved by: https://github.com/soulitzer
2024-11-13 07:01:02 +00:00
PyTorch MergeBot
d48ea29b9a Revert "[aoti] Remove dir after packaging (#140022)"
This reverts commit 8c6abe5a8c.

Reverted https://github.com/pytorch/pytorch/pull/140022 on behalf of https://github.com/huydhn due to Sorry for reverting your change but the lint failure is legit ([comment](https://github.com/pytorch/pytorch/pull/140022#issuecomment-2471847439))
2024-11-12 23:35:27 +00:00
angelayi
8c6abe5a8c [aoti] Remove dir after packaging (#140022)
Update AOTI to return a list of files that it generates when `aot_inductor.package=True`. Then we will only package the files that are in that list.

This should fix the [caching issue](https://fb.workplace.com/groups/1028545332188949/permalink/1081702043539944/) and hopefully https://github.com/pytorch/pytorch/issues/140053.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140022
Approved by: https://github.com/larryliu0820, https://github.com/desertfire, https://github.com/malfet
2024-11-12 21:36:24 +00:00
Avik Chaudhuri
9a5175e836 fix shared submodule module call signature (#139438)
Differential Revision: [D65308061](https://our.internmc.facebook.com/intern/diff/D65308061/)

When a shared submodule is called multiple times with different aliases, e.g., `self.a` and `self.b` are both `C()` under the hood and we have calls to both `self.a(...)` and `self.b(...)`, we wrap `C()` to emit as many export tracepoints as there are aliases. This caused us to compute module call signatures that conflated information: we'd add inputs and outputs of one call to inputs and outputs of a different call. Overall preserving module call signatures in the presence of shared submodules was borked because of this bug.

The fix is to pay attention to the nn module stack, which accurately tracks individual calls, thus allowing us to ignore some export tracepoints that get the module correct but not the alias through which the call was made.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139438
Approved by: https://github.com/zhxchen17
2024-11-12 09:53:40 +00:00
Tugsbayasgalan Manlaibaatar
0af38b1034 Remove temp table to post autograd IR (#140085)
This table is not needed

Differential Revision: [D64553397](https://our.internmc.facebook.com/intern/diff/D64553397/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140085
Approved by: https://github.com/justinchuby, https://github.com/bdhirsh
2024-11-11 23:59:09 +00:00
Gregory Comer
617b4538f1 Support symbolic builtin round in export (#139549)
Differential Revision: D65380866

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139549
Approved by: https://github.com/digantdesai, https://github.com/angelayi
2024-11-07 02:49:44 +00:00
Henry Tsang
350bc2a166 [export] Add support for symbool to make it usable for torch.cond (#138765)
# Why?

I want the following code to work.

minimal repro:
```
class M(torch.nn.Module):
    def forward(self, dilate_flag):
        return dilate_flag.item()

input1 = (torch.tensor([1], dtype=torch.bool, device="cuda"),)
model = M().cuda()

ep = torch.export.export(model, input1, strict=True)
path = torch._inductor.aot_compile(ep.module(), input1)
aot_model = torch._export.aot_load(path, device="cuda")
actual_output = aot_model(*input1)
```

error: AssertionError: Encountered an unsupported object of type <class 'torch.SymBool'> while writing the metadata for exported program

second error will be handled by https://github.com/pytorch/pytorch/pull/138760

# Motivation

I could technically bypass it with a torch.int tensor. However, it doesn't work with torch.cond. I want the following to work. It would also require https://github.com/pytorch/pytorch/pull/138760 for aot compile to work.

```
class M(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.dilate_flag = 0

    def forward(self, dilate_flag):
        self.dilate_flag = dilate_flag.item()

        def true_fn(dilate_flag):
            return dilate_flag.clone()

        def false_fn(dilate_flag):
            return dilate_flag.clone()

        torch.cond(
            self.dilate_flag,
            true_fn,
            false_fn,
            (dilate_flag,),
        )
        return self.dilate_flag

input1 = (torch.tensor([1], dtype=torch.bool, device="cuda"),)
input2 = (torch.tensor([0], dtype=torch.bool, device="cuda"),)
inputs = (input1, input2)
model = M().cuda()

for input in inputs:
    expected_output = model(*input)

    ep = torch.export.export(model, input, strict=False)
    path = torch._inductor.aot_compile(ep.module(), input)
    aot_model = torch._export.aot_load(path, device="cuda")
    actual_output = aot_model(*input)

    assert (
        expected_output == actual_output
    ), f"henry they are not equal {expected_output} != {actual_output}"
```

Differential Revision: D64867504

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138765
Approved by: https://github.com/ydwu4
2024-11-04 23:31:49 +00:00
Tugsbayasgalan Manlaibaatar
ae0e7042f6 Fix custom obj being input (#139209)
Differential Revision: [D65158939](https://our.internmc.facebook.com/intern/diff/D65158939)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139209
Approved by: https://github.com/ydwu4
ghstack dependencies: #138658
2024-11-04 18:24:29 +00:00
Tugsbayasgalan Manlaibaatar
e080c89bdc Make test_torchbind.py training IR compatible (#138658)
In this diff, i make test_torchbind.py tests to handle training IR. Today in the training IR, we don't see the effect token and HOP because this happens at the FunctionalTensorMode. Maybe in the future, we should move this logic up to the training IR so that writing passes etc on training Ir is safer. But for the migration purposes, i think it is ok for now.  I also fixed two bugs:
1. ep.module() doesn't register all aliased constants in the module.
2. When we retrace, we need to fakify the original Torchbind object.
3. We don't run any DCE on training IR so we need to add some more torch ops to verifier.

Differential Revision: [D64853530](https://our.internmc.facebook.com/intern/diff/D64853530)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138658
Approved by: https://github.com/ydwu4, https://github.com/zhxchen17
2024-11-04 17:43:11 +00:00
Zhengxu Chen
45da80b970 reland D65167805 "[export] Update min_val and max_val to Optional[int] in serialization." (#139394)
Summary:
had a land racing with another diff D65166035 to fix the schema.

According to export team's discussion, we are upgrading min_val and max_val to optional fields which shouldn't break BC and allows the schema to express infinity.

Test Plan: buck2 test 'fbcode//mode/opt' fbcode//apf/rec/ir/tests:ir_export_deserialize_test

Differential Revision: D65273170

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139394
Approved by: https://github.com/yiming0416
2024-10-31 22:28:32 +00:00
Huy Do
f98bc9a49d Revert D65167805 (#139371)
Summary:
This diff reverts D65167805
broke the release pipeline

Test Plan: NA

Differential Revision: D65245198

@diff-train-skip-merge (to silent facebook-github-bot until I have a stamp to land this)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139371
Approved by: https://github.com/malfet
2024-10-31 07:25:28 +00:00
cz2h
48854cbfc4 Add missing operator and corresponding unittest (#138309)
Fixes https://github.com/pytorch/pytorch/issues/129690

Add operator.neg and oepartor.pos into _SYM_BOOL_OPS.

Provide simple unit test under export/test_serialize.py that can reproduce the issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138309
Approved by: https://github.com/ezyang, https://github.com/angelayi
2024-10-30 23:50:24 +00:00
Zhengxu Chen
03ec25053a [export] Update min_val and max_val to Optional[int] in serialization. (#139223)
Summary: According to export team's discussion, we are upgrading min_val and max_val to optional fields which shouldn't break BC and allows the schema to express infinity.

Test Plan: buck test mode/opt caffe2/test:test_export -- -r test_serialize_infinite_sym_int

Differential Revision: D65167805

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139223
Approved by: https://github.com/yiming0416
2024-10-30 21:14:17 +00:00
Avik Chaudhuri
9e06b5b5cb fix unflatten with HOPs (#138978)
Summary:
Unflatten was broken for HOPs for a couple of reasons:
(1) we didn't expect `get_attr` nodes in the exported program, but they can occur to hold graph arguments to HOPs; such attributes must be moved from the exported program to the corresponding unflattened submodule containing the HOP call.
(2) we don't record metadata for graph arguments on serialization (there's nothing to hold it in our schema), and accordingly the `get_attr` nodes we create on deserialization don't have `nn_module_stack` metadata, which obviously wrecks unflatten.

Test Plan: added a couple of tests

Differential Revision: D65013647

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138978
Approved by: https://github.com/zhxchen17
2024-10-28 19:30:56 +00:00
Prajesh Praveen Anchalia
3685c630b8 [pytorch] Plumb compile context from dynamo.export to aot_compile (#138793)
Summary:
tlparse shows unknown for certain items when _export.aot_compile() passes the graph obtained from dynamo.export() to inductor.aot_compile(), we also do not have access to the dynamo trace in the GraphModule exported by dynamo.

This change plumbs through the compile_context into aot_compile as a part of GraphModule.meta without a major change to APIs within dynamo.

Addresses issue: https://github.com/pytorch/pytorch/issues/123759?fbclid=IwY2xjawGE0LBleHRuA2FlbQIxMQABHS-PRpxvsrsHCDPdStHpqr1jQvx1YOnrPsRAfYAb-oXkU8MxidkIUENY-Q_aem_MAT2oaOgD03C8ggBNm575Q#issuecomment-2430722505

Test Plan:
```
buck2 test mode/opt //caffe2/test/dynamo:test_dynamo
Buck UI: https://www.internalfb.com/buck2/ad64c267-65be-47cf-a94f-e4b26e6e030b
Test UI: https://www.internalfb.com/intern/testinfra/testrun/9288674286334710
Network: Up: 83KiB  Down: 314KiB  (reSessionID-1dad223b-c91d-4718-97a4-bb2c81e480f0)
Jobs completed: 10750. Time elapsed: 19:18.5s.
Cache hits: 0%. Commands: 3 (cached: 0, remote: 0, local: 3)
Tests finished: Pass 5365. Fail 2. Fatal 0. Skip 4. Build failure 0

buck2 test mode/opt //caffe2/test/dynamo:test_dynamo_fb
Buck UI: https://www.internalfb.com/buck2/179a60bb-34e1-43b3-97ad-91af8a93ab01
Test UI: https://www.internalfb.com/intern/testinfra/testrun/2533275046340687
Network: Up: 201KiB  Down: 1.8GiB  (reSessionID-36f33983-6d78-4ec9-aa1b-34cee80dcb4f)
Jobs completed: 17. Time elapsed: 42.9s.
Cache hits: 0%. Commands: 1 (cached: 0, remote: 0, local: 1)
Tests finished: Pass 6. Fail 0. Fatal 0. Skip 0. Build failure 0
```

https://interncache-all.fbcdn.net/manifold/tlparse_reports/tree/logs/.tmpxZGXf6/index.html
Repor fixed: https://github.com/pytorch/pytorch/issues/123759?fbclid=IwY2xjawGE0LBleHRuA2FlbQIxMQABHS-PRpxvsrsHCDPdStHpqr1jQvx1YOnrPsRAfYAb-oXkU8MxidkIUENY-Q_aem_MAT2oaOgD03C8ggBNm575Q#issuecomment-2430722505

Differential Revision: D64863946

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138793
Approved by: https://github.com/ezyang
2024-10-28 17:07:44 +00:00
chilli
392221b390 Made DDPOptimizer work with HOPs (#138787)
Fixes https://github.com/pytorch/pytorch/issues/137481

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138787
Approved by: https://github.com/yf225
ghstack dependencies: #138733, #138794, #138881
2024-10-25 18:59:01 +00:00
Pian Pawakapan
51045e6251 make DimHints compatible with Dims (#138490)
Previously we'd been raising UserErrors when `Dim()` and DimHints (`Dim.AUTO/Dim.DYNAMIC`) were both specified in `dynamic_shapes`, this PR stops that, and uses `Dim()` objects to guide DimHints.

The key to this was making the `EqualityConstraint` class happy when it checks that inferred equivalence relations were specified in the original `dynamic_shapes` spec, and this introduces a `RelaxedConstraint` object to mark the hinted dimensions, so equality checks between `RelaxedConstraints` and other constraints are treated as valid.

Current behavior is that:
```
class Foo(torch.nn.Module):
    def forward(self, x, y):
        return x - y

inputs = (torch.randn(4, 4), torch.randn(4, 4))
shapes = {
    "x": (Dim.AUTO, Dim("d1", min=3)),
    "y": (Dim("d0", max=8), Dim.DYNAMIC),
}
ep = export(Foo(), inputs, dynamic_shapes=shapes)
```

The dimensions marked `AUTO` and `DYNAMIC` will have max & min ranges of 8 & 3 respectively. Note that inferred equality between `Dim()` objects & `Dim.STATIC` will still raise errors - `Dim()` suggests not specializing to a constant.

Differential Revision: D64636101

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138490
Approved by: https://github.com/avikchaudhuri
2024-10-22 07:43:48 +00:00
Tugsbayasgalan Manlaibaatar
9f7c26bef3 Fix training IR bug by changing passes order (#138292)
Inserting runtime_assertions cause gm to have different names but the graph signature was populated earlier. To avoid this kind of errors in the future, I refactored these steps into a helper function.

Differential Revision: [D64576251](https://our.internmc.facebook.com/intern/diff/D64576251)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138292
Approved by: https://github.com/avikchaudhuri
ghstack dependencies: #138266
2024-10-22 01:24:14 +00:00
Tugsbayasgalan Manlaibaatar
5adc33d3b8 Training IR should preserve custom metadata (#138266)
Differential Revision: [D64576252](https://our.internmc.facebook.com/intern/diff/D64576252)

@diff-train-skip-merge
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138266
Approved by: https://github.com/yushangdi
2024-10-22 01:09:56 +00:00
Tugsbayasgalan Manlaibaatar
1f32a1fb80 Replace torch.export default decomp table to be lazily populated (#137650)
In this PR, we implement lazy dictionary for export decomp behaviour for following reasons:
1. Custom op loading can happen after import time, as a result, the decomp table might not be able to pick up the decomp. Therefore we try to delay materialization as late as possible.

I intentionally seperated out the core_aten_decomp to not have any custom CIA ops in this PR to mitigate the risk of getting reverted but in the future, core_aten_decomp under torch/_decomp will exist as an alias to official export table (torch.export.default_decompositions)

Differential Revision: [D64140807](https://our.internmc.facebook.com/intern/diff/D64140807)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137650
Approved by: https://github.com/justinchuby, https://github.com/bdhirsh
2024-10-18 19:28:52 +00:00
Avik Chaudhuri
5d01126616 preserve module signature with multiple calls (#137999)
Previously we would error when trying to preserve the call signature for a module when it was called multiple times. This PR can now do this without erroring. The fix is to propagate call indices in a few more places.

Note that while this works in the presence of params, buffers, and tensor constants, preserving call signatures for multiple calls to a module when buffers are mutated is not supported yet. This is future work. The main problem is that we do not have enough metadata to `copy_` mutated buffers at the end of each call to a module, so the next call can read those buffers at the beginning. Making this work will likely need some explicit tracking of intermediate values of mutated buffers when collecting metadata during functionalization in export.

Note also that we stop short of creating a single graph out of multiple graphs: that is still future work. So the unflattened module will still have different targets `n`, `n@1`, `n@2`, etc. for each call when we ask the module call signature of `n` to be preserved. However it is way easier to swap all of these targets with a replacement that behaves similar to the original, because all of these calls will respect the original module call signature. (In particular, any constant inputs will be carried by the calls.)

Differential Revision: D64406945

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137999
Approved by: https://github.com/tugsbayasgalan
2024-10-18 07:30:22 +00:00
Tugsbayasgalan Manlaibaatar
0a6c40faba Fix constant returning (#137993)
When the constants are used twice in the exported graph (second one is returned as output), the lifting constant pass doesn't account for the second one being the output. THis PR fixes that.

Differential Revision: [D64406108](https://our.internmc.facebook.com/intern/diff/D64406108/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137993
Approved by: https://github.com/avikchaudhuri
2024-10-16 16:42:09 +00:00
Shangdi Yu
9d4cb0d3eb Fix param and buffer mapping for state_dict when there are state_dict hooks (#137609)
Resolve #137540

Summary:

We might get different state_dict and named_parameters result when the module has registered custom state_dict_hooks.
For exported_program's state_dict, we want the state_dict to reflect the actual module hierarchy at runtime, and it might be different from the model's state_dict() output if the model has state_dict hooks.
To do weight swapping, one needs to either re-export or turn-off the hooks when saving model's state_dict().
Previously, ExportedProgram uses nn.Module's state_dict() method to populate its own state_dict, but it doesn't work for some models (e.g. llama3_3_vision) because ExportedProgram's state_dict and an nn.Module's state_dict have some subtle differences semantically.

nn.Module's state_dict is about how the state should be serialized, and it reflects the structure of the original user model code. In contrast, export specializes on a “run” of a model, and its state_dict needs to reflect the runtime module hierarchy.

One example where these two are different is TorchTune's Llama3_2_vision text decoder. Here, a FusionLayer is added as a local optimization and it is not part of the "static model definition".  In runtime, we have mod.layers[3].layer.sa_norm.scale.

But in nn.Module's state_dict, the authors of the model added a state_dict hook to remove the "layer" in mod.state_dict() to reflect the static model definition, so we have mod.state_dict()["layers.3.sa_norm.scale"].
In this Diff, we change ExportedProgram to populate its state_dict using named_parameters() and named_buffers() instead. So in ExportedProgram's state_dict, we have "layers.3.layer.sa_norm.scale", which reflects the runtime module hierarchy.

Now one problem this presents is weight swapping. Since ExportedProgram's state and the model's state is not the same anymore, weight swapping procedure also needs to change slightly.

In internal Ads and RecSys models deployment, weight swapping is where they have one model that is currently being being deployed and serving traffic, and they want to swap out the weights with newly trained model weights without having to redo the whole exporting/lowering process and create a new artifact. So they would move the deployed model’s pointer to the state dict over to the new state dict. Because of this, it’s previously a requirement that the FQNs are matching between the exported and the eager model’s state dict.

The new ExportedProgram's state dict still supports weight swapping, but the state_dict to be swapped needs to be obtained from torch.export.exported_program instead of model.state_dict() if the model has state_dict hooks.
The new requirement is that the FQNs are matching between the exported’s state dict and the state_dict obtained from `_disabled_load_state_dict_hooks(M)` context manager. One benefit of having this new API is that we are now in full control within export of gathering and updating the model state.
If a model doesn't have any state_dict hooks, one can still use model.state_dict() for weight swapping, so it's BC.

Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export  -- -r  test_export_for_training_with_state_dict_hooks
```

Differential Revision: D64080561

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137609
Approved by: https://github.com/angelayi, https://github.com/pianpwk
2024-10-11 01:33:50 +00:00
Avik Chaudhuri
365722f606 fix test_constant_output (#137547)
Summary: Fixes a couple of problems: constants didn't have metadata before creating graph signatures, and graph signatures weren't updated when lifting constants.

Test Plan: fixed test

Differential Revision: D64081786

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137547
Approved by: https://github.com/tugsbayasgalan
2024-10-10 07:48:15 +00:00
Tugsbayasgalan Manlaibaatar
bb31e3f57e Add original forward names to schema so that prettify pass works (#136887)
When we run_decomp, we retrace if it is training IR. As a result, we do need to reliably store the oroiginal forward names when we run decomp.

Differential Revision: [D63064453](https://our.internmc.facebook.com/intern/diff/D63064453/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136887
Approved by: https://github.com/angelayi
2024-10-08 04:21:02 +00:00
angelayi
fa9cd46d12 [export] Update swap's forward function (#137102)
Downstream APS code was failing to run the previously swapped module because of some fx.GraphModule forward function weirdness (P1594789677). So to fix this, I just attached a custom forward function which matches the unflattened module's forward function.

Differential Revision: [D63683422](https://our.internmc.facebook.com/intern/diff/D63683422/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137102
Approved by: https://github.com/avikchaudhuri
ghstack dependencies: #136191
2024-10-06 04:25:36 +00:00
Shangdi Yu
b2979f4382 Allow autocast in training ir export (#137287)
Summary: hardcode "val" field for autocast (similar to set_grad_enabled), to bypass the verifier check.

Test Plan: CI

Differential Revision: D63345767

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137287
Approved by: https://github.com/angelayi
2024-10-04 17:38:51 +00:00
Pian Pawakapan
6dcd773c57 [export] clean up dynamic markers from tensors (#137230)
Summary:
When we handle dynamic shapes markers like `Dim.AUTO, Dim.DYNAMIC`, we use dynamo decorators, attaching set attributes to the export input tensors, e.g. `x._dynamo_dynamic_indices = set()`.

I thought this was fine, since it's done all the time with torch.compile, but it breaks some PT2Inference tests, specifically because unpickling a set attribute isn't possible with the C++ torch::jit::pickle_load call.

We've agreed that the PT2Inference side will clone sample inputs & pickle the original inputs to be safe, but this still establishes a nice invariant that user-facing decorators are both ignored & cleaned out in the lifecycle of an export call.

Test Plan: test_export

Differential Revision: D63773534

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137230
Approved by: https://github.com/avikchaudhuri
2024-10-04 06:50:45 +00:00
Shangdi Yu
a3f3773477 Make PT2E work with both IR simultaneously (#135769)
Summary: as title

Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:quantization_pt2e_qat
```

Differential Revision: D62449830

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135769
Approved by: https://github.com/angelayi
2024-10-02 21:05:22 +00:00
Angela Yi
d725758210 [ts_converter] Fix prim::If buffer names (#136648)
Summary:
We previously incorrectly handled the following graph, specifically for the node `w.3` in `block0`:
```
 graph(%x.1 : Float(3, strides=[1], requires_grad=0, device=cpu),
       %y.1 : int):
   %2 : __torch__.___torch_mangle_1.M = prim::CreateObject()
   %3 : int = prim::Constant[value=20](), scope: M:: # /data/users/angelayi/pytorch/test/export/test_converter.py:747:34
   %4 : int = prim::Constant[value=10](), scope: M:: # /data/users/angelayi/pytorch/test/export/test_converter.py:746:34
   %5 : int = prim::Constant[value=1](), scope: M::
   %w.1 : int = prim::GetAttr[name="w"](%2), scope: M::
   %7 : int = aten::mul(%w.1, %4), scope: M:: # /data/users/angelayi/pytorch/test/export/test_converter.py:746:25
    = prim::SetAttr[name="w"](%2, %7), scope: M::
   %h.1 : int = prim::GetAttr[name="h"](%2), scope: M::
   %9 : int = aten::mul(%h.1, %3), scope: M:: # /data/users/angelayi/pytorch/test/export/test_converter.py:747:25
    = prim::SetAttr[name="h"](%2, %9), scope: M::
   %10 : bool = aten::gt(%y.1, %4), scope: M:: # /data/users/angelayi/pytorch/test/export/test_converter.py:749:19
   %res.37 : Tensor = prim::If(%10), scope: M:: # /data/users/angelayi/pytorch/test/export/test_converter.py:749:16
     block0():
       %w.3 : int = prim::GetAttr[name="w"](%2), scope: M::
       %res.1 : Tensor = aten::add(%x.1, %w.3, %5), scope: M:: # <string>:5:9
       -> (%res.1)
     block1():
       %h.3 : int = prim::GetAttr[name="h"](%2), scope: M::
       %res.3 : Tensor = aten::add(%x.1, %h.3, %5), scope: M:: # <string>:5:9
       -> (%res.3)
   %16 : bool = aten::lt(%y.1, %4), scope: M:: # /data/users/angelayi/pytorch/test/export/test_converter.py:754:19
   %res : Tensor = prim::If(%16), scope: M:: # /data/users/angelayi/pytorch/test/export/test_converter.py:754:16
     block0():
       %w : int = prim::GetAttr[name="w"](%2), scope: M::
       %res.15 : Tensor = aten::add(%res.37, %w, %5), scope: M:: # <string>:5:9
       -> (%res.15)
     block1():
       %h : int = prim::GetAttr[name="h"](%2), scope: M::
       %res.21 : Tensor = aten::add(%res.37, %h, %5), scope: M:: # <string>:5:9
       -> (%res.21)
   return (%res)
```

Test Plan: CI

Differential Revision: D63399064

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136648
Approved by: https://github.com/SherlockNoMad
2024-10-02 00:07:47 +00:00
Pian Pawakapan
cc2a66c55e [export] hook up mark_dynamic to export Dims (#137029)
Adds Dim.DYNAMIC which calls torch._dynamo.mark_dynamic() in the backend. Similar to Dim.AUTO in that it does automatic inference for ranges & relations, but errors out for specializations.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137029
Approved by: https://github.com/avikchaudhuri
2024-10-01 17:05:09 +00:00
Edward Z. Yang
6bd9d37266 Remove allow-untyped-defs from torch.fx.experimental.symbolic_shapes (#137019)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137019
Approved by: https://github.com/Skylion007
ghstack dependencies: #136934, #136935, #136972
2024-10-01 13:22:10 +00:00
Shen Xu
19a4d68224 Add missing mappings to support torch.uint16 in quantization and export (#136547)
Test Plan: CI.

Differential Revision: D63142844

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136547
Approved by: https://github.com/angelayi
2024-10-01 00:01:01 +00:00
angelayi
fe158cfb47 [aoti] Add warning to ask users to switch to new API (#135893)
Instead of the following:
```
so_path = torch._export.aot_compile(...)
torch._export.aot_load(so_path)
```

The recommended path is to:
```
ep = torch.export.export(...)
pt2_path = torch._inductor.aoti_compile_and_package(ep, ...)
torch._inductor.package.load_package(pt2_path)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135893
Approved by: https://github.com/desertfire
2024-09-27 22:38:11 +00:00
Pian Pawakapan
6075f566cc [export] simplify automatic dynamic shapes processing (#136591)
Removing `_transform_shapes_for_default_dynamic` and `assume_static_by_default=False` as added in https://github.com/pytorch/pytorch/pull/133620.

This reverts back to `assume_static_by_default=True` with the use of dynamo decorators (e.g. `maybe_mark_dynamic, mark_static`, instead) for handling Dim.AUTO & Dim.STATIC instead. This is easier to maintain, as it doesn't requiring reasoning about "inverting" the dynamic_shapes specs, and also opens up usage of other decorators (`mark_dynamic, mark_unbacked`).

On the user side this change has no effect, but internally this means dynamic behavior is determined only by the `dynamic_shapes` specs (ignoring user-side input decorators following https://github.com/pytorch/pytorch/pull/135536), but transferring this information for _DimHints via decorators, for Dynamo/non-strict to create symbolic_contexts accordingly, e.g. 7c6d543a5b/torch/_dynamo/variables/builder.py (L2646-L2666)

One caveat is we don't raise errors for dynamic decorators on the user side, since we don't know if they're from user markings, or from re-exporting with inputs we've previously marked.

Differential Revision: D63358628

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136591
Approved by: https://github.com/avikchaudhuri
2024-09-27 18:28:51 +00:00
Pian Pawakapan
f0a92541fe [export] fix lifted constants order for 0-input graphs (#136658)
Summary:
With empty graphs, the `graph.inserting_before(first_user_input = None)` call turns into a `graph.inserting_after(root)` call, inverting the order of constant input nodes being inserted.

This fixes the issue by initializing to the first node in the graph (still valid if not a user input - only used for insertion).

Test Plan: test_export

Differential Revision: D63403514

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136658
Approved by: https://github.com/avikchaudhuri
2024-09-26 17:44:24 +00:00
Shangdi Yu
ebfcbe0822 Move print_export_warning so lru_cache works (#136491)
Summary:
as title

move print_export_warning() out of the function so `lru_cache` actually works

Test Plan: CI

Differential Revision: D63297083

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136491
Approved by: https://github.com/pianpwk
2024-09-24 16:52:22 +00:00
angelayi
ea10c072f3 [export] Deserialize args with python keyword names (#136036)
Currently when we deserialize inputs to nodes, we deserialize arguments with default values as kwargs. So deserializing `aten.uniform`, which has the signature `uniform(Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None) -> Tensor(a!)`, will get become `uniform(x, from=0, to=1)`. However, this fails when running in python because `from` is a python keyword. So the solution here is to not deserialize it as a kwarg.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136036
Approved by: https://github.com/zhxchen17
2024-09-17 18:13:14 +00:00
Aaron Gokaslan
31715be72a [BE]: Update mypy to 1.11.2 (#133816)
Updates mypy to 1.11.1 to improve type inference

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133816
Approved by: https://github.com/ezyang
2024-09-16 19:44:11 +00:00
PyTorch MergeBot
3117f2cf67 Revert "[BE]: Update mypy to 1.11.2 (#133816)"
This reverts commit 55299cfc22.

Reverted https://github.com/pytorch/pytorch/pull/133816 on behalf of https://github.com/jeanschmidt due to seems to have broken https://github.com/pytorch/pytorch/actions/runs/10865710499/job/30155699792 on main ([comment](https://github.com/pytorch/pytorch/pull/133816#issuecomment-2352377684))
2024-09-16 09:11:16 +00:00
Aaron Gokaslan
55299cfc22 [BE]: Update mypy to 1.11.2 (#133816)
Updates mypy to 1.11.1 to improve type inference

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133816
Approved by: https://github.com/ezyang
2024-09-14 21:40:36 +00:00
Michael Lazos
5c5c33ac32 [Dynamo] Trace torch function modes entered outside of torch.compile (#133137)
This PR adds initial tracing for torch function modes.

Details:
In essence, this adds tracing into the torch function of modes entered outside of the torch.compile call.
This does not yet support tracing enter/exit of a torch function mode/ tracing set_default_device properly using the new mode infra (this will be a very good stress test for modes). I am adding more PRs to this stack to support these. The overall plan is to support tracing enter/exit and handling graph breaks like we do other torch.* context managers.

Previously landed:
https://github.com/pytorch/pytorch/pull/133135
https://github.com/pytorch/pytorch/pull/133136
https://github.com/pytorch/pytorch/pull/133134
https://github.com/pytorch/pytorch/pull/133133
https://github.com/pytorch/pytorch/pull/133132
https://github.com/pytorch/pytorch/pull/133131
https://github.com/pytorch/pytorch/pull/133729
https://github.com/pytorch/pytorch/pull/133130

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133137
Approved by: https://github.com/jansel, https://github.com/zou3519
ghstack dependencies: #134732
2024-09-14 18:52:22 +00:00
PyTorch MergeBot
8c8a3086a7 Revert "[Dynamo] Trace torch function modes entered outside of torch.compile (#133137)"
This reverts commit 4528777e03.

Reverted https://github.com/pytorch/pytorch/pull/133137 on behalf of https://github.com/mlazos due to broke python test/quantization/pt2e/test_numeric_debugger.py TestNumericDebugger.test_re_export_preserve_handle modified yesterday ([comment](https://github.com/pytorch/pytorch/pull/134732#issuecomment-2350937008))
2024-09-14 10:02:55 +00:00
Michael Lazos
4528777e03 [Dynamo] Trace torch function modes entered outside of torch.compile (#133137)
This PR adds initial tracing for torch function modes.

Details:
In essence, this adds tracing into the torch function of modes entered outside of the torch.compile call.
This does not yet support tracing enter/exit of a torch function mode/ tracing set_default_device properly using the new mode infra (this will be a very good stress test for modes). I am adding more PRs to this stack to support these. The overall plan is to support tracing enter/exit and handling graph breaks like we do other torch.* context managers.

Previously landed:
https://github.com/pytorch/pytorch/pull/133135
https://github.com/pytorch/pytorch/pull/133136
https://github.com/pytorch/pytorch/pull/133134
https://github.com/pytorch/pytorch/pull/133133
https://github.com/pytorch/pytorch/pull/133132
https://github.com/pytorch/pytorch/pull/133131
https://github.com/pytorch/pytorch/pull/133729
https://github.com/pytorch/pytorch/pull/133130

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133137
Approved by: https://github.com/jansel, https://github.com/zou3519
ghstack dependencies: #134732
2024-09-14 02:40:43 +00:00
Yiming Zhou
4312794b92 [reland][export] fix re-export custom metadata (#135720)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/134778

The previous D62304294 broke some executorch tests. It has already been reverted.

In this diff, `_collect_param_buffer_metadata()` is modified in a way that when a `call_function` node is encountered and its input nodes include `get_attr`. We skip the fields that have been collected previously and only collect rest of the fields. This prevents over-writing.

Test Plan:
```
buck2 test 'fbcode//mode/dev-nosan' fbcode//executorch/backends/xnnpack/test:test_xnnpack_ops

buck2 test 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r test_re_export_preserve_handle

buck2 test 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r test_run_decompositions_preserve_handle
```

Differential Revision: D62514208

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135720
Approved by: https://github.com/zhxchen17, https://github.com/jerryzh168
2024-09-13 20:15:15 +00:00
PyTorch MergeBot
eb7dd91dd1 Revert "[Dynamo] Trace torch function modes entered outside of torch.compile (#133137)"
This reverts commit fafdd588f2.

Reverted https://github.com/pytorch/pytorch/pull/133137 on behalf of https://github.com/albanD due to Broke tests on main ([comment](https://github.com/pytorch/pytorch/pull/134732#issuecomment-2348886378))
2024-09-13 12:52:58 +00:00
Michael Lazos
fafdd588f2 [Dynamo] Trace torch function modes entered outside of torch.compile (#133137)
This PR adds initial tracing for torch function modes.

Details:
In essence, this adds tracing into the torch function of modes entered outside of the torch.compile call.
This does not yet support tracing enter/exit of a torch function mode/ tracing set_default_device properly using the new mode infra (this will be a very good stress test for modes). I am adding more PRs to this stack to support these. The overall plan is to support tracing enter/exit and handling graph breaks like we do other torch.* context managers.

Previously landed:
https://github.com/pytorch/pytorch/pull/133135
https://github.com/pytorch/pytorch/pull/133136
https://github.com/pytorch/pytorch/pull/133134
https://github.com/pytorch/pytorch/pull/133133
https://github.com/pytorch/pytorch/pull/133132
https://github.com/pytorch/pytorch/pull/133131
https://github.com/pytorch/pytorch/pull/133729
https://github.com/pytorch/pytorch/pull/133130

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133137
Approved by: https://github.com/jansel, https://github.com/zou3519
ghstack dependencies: #134732
2024-09-13 08:41:00 +00:00
Shangdi Yu
1a74952925 "Remove BLOCK_LIST" (#135729)
Summary:
Skip test_prepare_qat_conv_bn_fusion_getitem_placeholder when we use training ir, since it's only for bn-getitem pattern, but the pattern doesn't exist in training ir.

Remove BLOCK_LIST since it's empty.
Now all internal unittests will use training ir.

Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan'  caffe2/test/quantization:test_quantization -- -r test_prepare_qat_conv_bn_fusion_getitem_placeholder
buck2 run 'fbcode//mode/dev-nosan'  caffe2/test:quantization_pt2e_qat -- -r test_prepare_qat_conv_bn_fusion_getitem_placeholder
```

Differential Revision: D62387987

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135729
Approved by: https://github.com/tugsbayasgalan
2024-09-12 01:22:06 +00:00
PyTorch MergeBot
183c32fd3b Revert "[Dynamo] Trace torch function modes entered outside of torch.compile (#133137)"
This reverts commit 0d15122092.

Reverted https://github.com/pytorch/pytorch/pull/133137 on behalf of https://github.com/clee2000 due to something in this stack broke functorch/test_control_flow.py::TestControlFlow::test_scan_simple_graph [GH job link](https://github.com/pytorch/pytorch/actions/runs/10804912306/job/29980571390) [HUD commit link](444b52ff40), newly added test yesterday ([comment](https://github.com/pytorch/pytorch/pull/133137#issuecomment-2344054339))
2024-09-11 15:57:00 +00:00
Yiming Zhou
4ae6d7c18f Back out "[pytorch][PR] [export] fix re-export custom metadata" (#135634)
Summary: Broke some tests. Revert this diff

Test Plan: CI

Differential Revision: D62474337

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135634
Approved by: https://github.com/tugsbayasgalan
2024-09-11 06:16:26 +00:00
Michael Lazos
0d15122092 [Dynamo] Trace torch function modes entered outside of torch.compile (#133137)
This PR adds initial tracing for torch function modes.

Details:
In essence, this adds tracing into the torch function of modes entered outside of the torch.compile call.
This does not yet support tracing enter/exit of a torch function mode/ tracing set_default_device properly using the new mode infra (this will be a very good stress test for modes). I am adding more PRs to this stack to support these. The overall plan is to support tracing enter/exit and handling graph breaks like we do other torch.* context managers.

Previously landed:
https://github.com/pytorch/pytorch/pull/133135
https://github.com/pytorch/pytorch/pull/133136
https://github.com/pytorch/pytorch/pull/133134
https://github.com/pytorch/pytorch/pull/133133
https://github.com/pytorch/pytorch/pull/133132
https://github.com/pytorch/pytorch/pull/133131
https://github.com/pytorch/pytorch/pull/133729
https://github.com/pytorch/pytorch/pull/133130

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133137
Approved by: https://github.com/jansel, https://github.com/zou3519
ghstack dependencies: #134732
2024-09-11 04:18:22 +00:00
Yiming Zhou
66c45f3ed9 [export] fix re-export custom metadata (#135282)
Fixes #134778

When a model is exported and debug handles are added to the "custom" field of non-placeholder and non-output nodes in the graph, re-exporting it will change the metadata of placeholder nodes (the "custom" field will be added or copied to these nodes, depending whether `ExportedProgram` or `ExportedProgram.module()` is passed to `generate_numeric_debug_handle()`).

This occurs because when we re-export the model, `placeholder` nodes are unlifted to `get_attr` nodes. These nodes remain as `get_attr` after being exported to `gm_torch_level`.  Their metadata are modified [here](https://github.com/pytorch/pytorch/blob/main/torch/export/_trace.py#L1347) based on `params_buffers_to_node_meta` which is collected [here](https://github.com/pytorch/pytorch/blob/main/torch/export/_trace.py#L1312).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135282
Approved by: https://github.com/jerryzh168, https://github.com/zhxchen17, https://github.com/tugsbayasgalan
2024-09-10 20:15:02 +00:00
Zhengxu Chen
04118d8617 [export] Record the global torch version in serialization. (#135243)
Summary: In general I think it will be useful to also record the global torch version in the EP, so that we can track them in the logging in addition to the schema version.

Test Plan: CI

Reviewed By: henryoier

Differential Revision: D62252626

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135243
Approved by: https://github.com/yushangdi
2024-09-06 17:02:06 +00:00
Tugsbayasgalan Manlaibaatar
9d705605dd Fix decomp behaviour in export training IR (#134801)
Subset of changes in https://github.com/pytorch/pytorch/pull/132901, can't land the previous one because it is too complicated. Rest of the change will be implemented as follow up after export design meeting. This part just makes the training IR -> inference IR decomp to have the same path as normal export.

Differential Revision: [D62000525](https://our.internmc.facebook.com/intern/diff/D62000525)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134801
Approved by: https://github.com/avikchaudhuri, https://github.com/angelayi
2024-09-05 06:37:44 +00:00
Pian Pawakapan
7b280c31ba [export] dynamic_shapes serialization, load/dump (#134718)
Adds utility functions `_dump_dynamic_shapes` and `_load_dynamic_shapes`.

- `_dump_dynamic_shapes`: dynamic shapes spec -> serialized format:
    - takes in the `dynamic_shapes` pytree object you'd feed into `export()`, and dumps into serialized format
- `_load_dynamic_shapes`: serialized format -> dynamic shapes spec
    - takes the serialized format, and produces a `dynamic_shapes` object you feed into `export()`

For example with dumping:
```
dx = Dim("dx", min=4, max=16)
dy = dx + 1

inputs = (
    [
        torch.randn(4, 4),
        torch.randn(5, 4),
    ],
    torch.randn(4),
    torch.randn(4, 4),
    "hello",
)
dynamic_shapes = {
    "a": [
        (dx, 4),
        (dy, 4),
    ],
    "b": (Dim.AUTO,),
    "c": None,
    "d": None,
}
out = _dump_dynamic_shapes(dynamic_shapes, inputs)
```

would generate the following output:
```
DynamicShapesSpec(
    dynamic_shapes=(
        [
            ['dx', 4],
            ['dx + 1', 4],
        ],
        ['_DimHint.STATIC'],
        ['_DimHint.STATIC', '_DimHint.STATIC'],
        None,
    ),
    dims={
        'dx': RootDim(
            min=4,
            max=16,
            derived=['dx + 1'],
        ),
    },
)
```

The serialized format contains 2 keys, `dynamic_shapes` and `dims.`
- `dynamic_shapes` is the pytree structure matching the input to `export()`, with strings in place of Dim names and enums, and ints/Nones otherwise. Each tensor is represented with a list of shapes, non-tensors with Nones.
- `dims` contain min/max range and derived dims info for each root dim.

The test cases show some roundtrippability guarantees for these functions. Definitely taking naming suggestions for them :)

Follow up: utility function to extract serializable format from ExportedProgram.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134718
Approved by: https://github.com/avikchaudhuri
2024-09-05 05:39:44 +00:00
Shangdi Yu
359077fa43 [export] Fix indentation (#135128)
Summary: as title

Test Plan: CI

Differential Revision: D62195680

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135128
Approved by: https://github.com/tugsbayasgalan
2024-09-04 23:26:36 +00:00
Avik Chaudhuri
9f00317997 rationalize STATIC vs. None (#134877)
Summary:
A bit of refactoring to prepare to remove `None` as a way to specify static dimensions in dynamic shapes, given we already have `Dim.STATIC` for the same purpose. We will now warn whenever this happens. However no tests were modified because problematic uses of `None` still need to behave as they do today, until we are ready to remove support. It should be easy to port tests by replacing the warning function to raise instead.

Note that other uses of `None`, such as for entire values (tensor or non-tensor) remain as is. Moving forward this should be the only purpose of `None` (at least externally).

Finally, there's a bit of confusion in our representation now because `AUTO` also internally transforms to `None`. Renamed dynamic_shapes to transformed_dynamic_shapes where this happens. Overall the two forms (pre and post transformation) have different properties so should probably not be represented in the same format in the future.

Test Plan: existing

Differential Revision: D62040729

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134877
Approved by: https://github.com/pianpwk
2024-09-04 05:34:26 +00:00
Zhengxu Chen
a19a7524f6 [export] Make sure getitem replacement are synced with module call graph. (#134830)
Summary: When we are placing nodes in the graph, we should also replace the references in module_call_graph.

Test Plan:
buck2 run 'fbcode//mode/opt' torchrec/fb/ir/tests:test_serializer -- --filter-regex test_serialize_deserialize_vlea
buck2 test 'fbcode//mode/opt' fbcode//torchrec/fb/ir/tests:test_serializer -- --exact 'torchrec/fb/ir/tests:test_serializer - torchrec.fb.ir.tests.test_serializer.TestSerializer: test_serialize_empty_value_vlea' --run-disabled

buck2 test 'fbcode//mode/opt' fbcode//torchrec/fb/ir/tests:test_serializer -- --exact 'torchrec/fb/ir/tests:test_serializer - torchrec.fb.ir.tests.test_serializer.TestSerializer: test_deserialized_device_vle' --run-disabled

Differential Revision: D62014035

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134830
Approved by: https://github.com/angelayi
2024-08-30 16:47:05 +00:00
Avik Chaudhuri
ca03a14cf7 hang dim hint constants off Dim (#134702)
Summary: Retry landing https://github.com/pytorch/pytorch/pull/134484

Test Plan: (see original)

Differential Revision: D61925860

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134702
Approved by: https://github.com/pianpwk
2024-08-29 01:02:01 +00:00
Tugsbayasgalan Manlaibaatar
6dd3f81aaf Add export_for_training as public API (#134677)
Differential Revision: [D61912084](https://our.internmc.facebook.com/intern/diff/D61912084)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134677
Approved by: https://github.com/avikchaudhuri, https://github.com/zhxchen17
2024-08-28 22:32:10 +00:00
Yidi Wu
b07d0a22f5 [hop] require hops to override __call__. (#134352)
Fixes https://github.com/pytorch/pytorch/issues/133719 by making `__call__` of hops an abstractmethod.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134352
Approved by: https://github.com/zou3519
2024-08-28 19:56:40 +00:00
PyTorch MergeBot
13d40f6fc5 Revert "hang dim hint constants off Dim (#134484)"
This reverts commit c142af7209.

Reverted https://github.com/pytorch/pytorch/pull/134484 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/134484#issuecomment-2315749549))
2024-08-28 16:05:42 +00:00
Avik Chaudhuri
c142af7209 hang dim hint constants off Dim (#134484)
Summary: Recently https://github.com/pytorch/pytorch/pull/133620 added support for automatic dynamic shapes, where a new enum, `DIM`, was introduced to provide hints like `AUTO` and `STATIC`. This PR is a nominal change where we expose the hints via the existing public `Dim` API, and remove `DIM` from the public API. The main motivation is to avoid having users need to import too many things.

Test Plan: existing

Differential Revision: D61807361

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134484
Approved by: https://github.com/angelayi
2024-08-28 14:35:40 +00:00
Yiming Zhou
71d0eff6e7 Back out "[pytorch][PR] [export] Schematize nn_module_stack serialization" (#134628)
Summary: Breaking backward compatibilities for serialization and deserialization

Differential Revision: D61888223

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134628
Approved by: https://github.com/angelayi
2024-08-28 03:45:46 +00:00
Aaron Orenstein
ed86ac2f25 [BE] typing for decorators - fx/_compatibility (#134054)
Summary: See #131429

Test Plan: unit tests pass

Differential Revision: D61493706

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134054
Approved by: https://github.com/oulgen
2024-08-26 04:00:27 +00:00
Avik Chaudhuri
8db8ac700d line by line logging (#134298)
Summary:
Today there is no good mechanism to detect progress of non-strict export line-by-line in user code. This caused some pain recently in trying to find the exact line of user code that was triggering a bug where the process appeared stuck because deep down something was calling some symbolic shapes code that was suffering some exponential blowup.

This PR adds a environment variable for extended debugging that will log the line of user code corresponding to every torch function call. It only works in non-strict export for now. Prefix setting this environment variable with `TORCH_LOGS`  enabled for `export` logs at `DEBUG` level (i.e., with a `+` prefix), i.e.,.:

```
TORCHEXPORT_EXTENDED_DEBUG_CURRENT_LOC=1 TORCH_LOGS="+export" ...
```

This will show logs with something like:
```
...
prim::device called at .../example.py:4284 in foo
TensorBase.item called at .../example.py:4277 in bar
...
```

We already have an existing place to intercept torch functions where we process data-dependent errors in non-strict, so parking the logging there. An alternative place we could be doing this is where we add `stack_trace` metadata when generating code, but unfortunately at least the example that motivated this gets stuck before generating code, so that would be too late.

Test Plan: ran it on some sample commands

Differential Revision: D61692156

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134298
Approved by: https://github.com/angelayi
2024-08-25 02:57:11 +00:00
Yiming Zhou
2cfc2da527 [export] Make move_to_device_pass function public (#134263)
Summary:
This is a follow-up of https://github.com/pytorch/pytorch/pull/133660

Here we make the `move_to_device_pass()` function publich so users can call it by `from torch.export.passes import move_to_device_pass`

Test Plan: CI

Differential Revision: D61671310

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134263
Approved by: https://github.com/angelayi
2024-08-23 23:18:30 +00:00
Pian Pawakapan
8ff3a5be1b [export] basic auto dynamic shapes (#133620)
Starter version of automatic dynamic shapes for export.

Creates enums `DIM.AUTO`, `DIM.STATIC`, allowing user to specify `AUTO` for dims in dynamic_shapes specs, meaning that corresponding dims are treated as dynamic, and relevant guards will do what's necessary (e.g. refine ValueRanges, set replacements based on equality, or even set static) without raising ConstraintViolationErrors. Basically allows the user to say, "a bunch of these dims can be dynamic, let export do model analysis and return the program with maximum possible dynamism, without complaining".

The usage for specifying `dynamic_shapes` is now:
```
AUTO -> dynamic by default, return whatever produce_guards() says, even if it's static
None/int/STATIC -> static
Dim/DerivedDim -> same as before - will complain if the min/max range is invalid, or if dims related to this are unspecified.
```

Caveat 1: specifying `AUTO` for a dim won't guarantee it'll be dynamic:

- specifying `AUTO` for a dim will return the maximum possible dynamism given your program and other specified constraints, but this can still mean you'll get a static program. For example, with the program below, x is specified dynamic, but it's equal to y, which is specified static, and with how we currently do things we won't promote y to dynamic, but will demote(?) x to static. So this can be surprising if you don't fully know your model, and/or missed one of your other inputs when specifying auto-dynamic shapes.
```
class Foo(torch.nn.Module):
    def forward(self, x, y):
        return x + y
inputs = (torch.randn(6), torch.randn(6))
export(Foo(), inputs, dynamic_shapes={"x": (DIM.AUTO,), "y": None})
```

Caveat 2: specifying `AUTO` and Dims in the same spec is still problematic:

- The way Dims/DerivedDims are currently handled is very strict. A Dim represents a symbol, and we require a user to specify the symbol for all dims governed by the symbol - that's why we've seen errors in the past like `The values of x must always be related to y by ...`, asking the user to specify the exact relation as in the program. We also require the specified min/max range to be a subset of the valid range from model analysis. All this doesn't compose well with specifying `AUTO` just yet - for example in the program below, ideal behavior could be to return a dynamic program, where `dx = x.size(0) = y.size(0)` has range (3,6). Unfortunately this crashes, and correct behavior is to specify `dx` for both inputs. So currently we raise a UserError and crash if both Dims + `AUTO` are present in the spec.
```
class Foo(torch.nn.Module):
    def forward(self, x, y):
        return x + y
inputs = (torch.randn(6), torch.randn(6))
export(Foo(), inputs, dynamic_shapes={"x": (DIM.AUTO,), "y": {0: Dim("dx", min=3, max=6)}})  # this doesn't work, because x & y and related
```

Implementation details:

This is done by setting `assume_static_by_default=False`, and doing a transform on the `dynamic_shapes` spec to preserve semantics. `assume_static_by_default=False` will treat unspecified dims or Nones as dynamic. This is the opposite of what `export.export()` currently does - unspecified Dims/Nones are treated as static. Historically this static-by-default behavior, where the user deals with fewer guards, has been desirable, and we would like to respect that in this implementation. So this internal spec transformation is added, `_transform_shapes_for_default_dynamic()`, does the spec conversion necessary to be compatbile with dynamic by default. Specifically, AUTOs are converted into Nones, and Nones/unspecified dims are filled in with explicitly static constraints.

For example, this would look like, for a 3-d tensor: `{0: DIM.AUTO, 1: None, 2: Dim("dx")} -> {0: None, 1: 32, 2: Dim("dx")}`

This does seem overly complicated, but it's done to preserve dynamic shapes semantics for `torch._dynamo.export()`, which already uses `assume_static_by_default=False`, and follows the same process for generating shape constraints , via `_process_dynamic_shapes`. There the semantics are:
```
None/unspecified: dynamic by default
Dim/DerivedDim: also a strict assertion
```

If we don't care about BC for `_dynamo.export(dynamic_shapes)`, then we can just modify semantics for `_process_dynamic_shapes()` and change all the relevant tests in `test/dynamo/test_export.py`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133620
Approved by: https://github.com/avikchaudhuri
2024-08-23 22:56:39 +00:00
Yiming Zhou
69813dbbfd [export] Schematize nn_module_stack serialization (#134049)
`nn_module_stack` was previously serialized to string by adding commas between the module_path and module_type. This error prone when the `nn_module_stack` itself contains commas.

This PR fixes this by creating a dictionary to store the `nn_module_stack` and serialize it to string via `json.dumps()`

Fixes #131941

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134049
Approved by: https://github.com/angelayi
2024-08-23 21:50:01 +00:00
Yidi Wu
a23d86c178 [hop] ban creating hop by directly instantiating HigherOrderOperator. (#133645)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133645
Approved by: https://github.com/zou3519
2024-08-23 17:28:02 +00:00
Avik Chaudhuri
b454c51060 remove dynamic_dim (#134211)
Summary: As promised in https://github.com/pytorch/pytorch/pull/134045.

Test Plan: existing

Differential Revision: D61646937

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134211
Approved by: https://github.com/angelayi
2024-08-23 04:13:03 +00:00
Shangdi Yu
b0cf287b46 [export][training ir migration] Fix getitem not exist (#134259)
Summary:
Make quantization tests compatible with the new training IR.

With the new batch norm node `torch.ops.aten.batch_norm.default`, we don't need an additional getitem node after the bn node, so tests need to be fixed to not check for the getitem node.

We added a capture_pre_autograd_graph_using_training_ir() function, which returns True when we are using the training ir, and False otherwise. This way, the code supports both training ir and the old ir.

For now, we are just rolling out the training ir for fbcode internal tests.

Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r test_qat_preserve_source_fn_stack
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r test_qat_update_shared_qspec
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r test_conv2d
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r test_qat_conv_bn_relu_fusion

buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r test_qat_conv_bn_fusion
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r test_qat_conv_bn_fusion_literal_args
```

Reviewed By: andrewor14, tugsbayasgalan

Differential Revision: D61292102

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134259
Approved by: https://github.com/tugsbayasgalan
2024-08-22 22:00:14 +00:00
Aaron Orenstein
d95aedf5fd [BE] typing for decorators - fx/_compatibility (part 1) (#134202)
Part of #134054.

This corresponds to the pytorch mypy changes from D61493706. Updating takes so
long and touches so many files that it's impossible to land as a whole without conflicting with some other intermediate change.
So landing these 'type: ignore' for pytorch in advance of them actually being needed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134202
Approved by: https://github.com/Skylion007
2024-08-22 17:07:33 +00:00
Avik Chaudhuri
0d7ac1966a kill sharing of constraints (#134045)
Summary:
Previously, reuse of the same `Dim` was encoded by "sharing" internal constraints among constraint targets. This kind of sharing, implemented using `shared` fields between `_Constraint`s, was originally motivated by `dynamic_dim`, specifically to support `==` between `dynamic_dim`s, but we no longer need to maintain this overcomplicated structure: we can simply use names of `Dims` to directly encode sharing information.

Thus this PR vastly simplifies the structure of `_Constraint` by removing `shared` fields. As a result, both `_Constraint` and its moral subclass, `_DerivedConstraint`, are 1-1 with `Dim` and its moral subclass, `DerivedDim`.

Note that this will break `==` over `dynamic_dim`, so an immediate follow-up will be to remove `dynamic_dim` entirely from our public API. (It's been more than 6 months since the deprecation warning anyway.) I just didn't want to deal with that process in the same PR.

Test Plan: existing

Differential Revision: D61559413

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134045
Approved by: https://github.com/pianpwk
2024-08-22 04:40:47 +00:00
Yiming Zhou
7b20514f8e [export] Device remapping in export (#133660)
Implemented `move_to_device_pass()` function in `torch._export.passes`.

The user has to explicitly call this method to move the exported program from one torch.device to another one.

Fixes https://github.com/pytorch/pytorch/issues/121761
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133660
Approved by: https://github.com/angelayi
2024-08-22 01:03:35 +00:00
PyTorch MergeBot
1491a61769 Revert "[hop] ban creating hop by directly instantiating HigherOrderOperator. (#133645)"
This reverts commit 696107efcb.

Reverted https://github.com/pytorch/pytorch/pull/133645 on behalf of https://github.com/ydwu4 due to breaking ci. probably due to land race ([comment](https://github.com/pytorch/pytorch/pull/133645#issuecomment-2302866106))
2024-08-21 19:33:14 +00:00
Shangdi Yu
5fcfccefc6 [export] Migrate capture_pre_autograd_graph to _export_for_training (#132815)
Summary: as title

Test Plan: CI

Differential Revision: D60860909

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132815
Approved by: https://github.com/tugsbayasgalan
2024-08-21 19:00:41 +00:00
Yidi Wu
696107efcb [hop] ban creating hop by directly instantiating HigherOrderOperator. (#133645)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133645
Approved by: https://github.com/zou3519
ghstack dependencies: #133521
2024-08-21 17:34:21 +00:00
Shangdi Yu
8337b4d96e [training ir migration] Fix ReorderConvertTest (#134010)
Summary:
Change ReorderConvertTest to work with the new `capture_pre_autograd_graph` implementation using D61175223.

Note that now `ReorderConvertTest` doesn't work with the old `capture_pre_autograd_graph` anymore.

Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//bolt/nn/executorch/passes/tests:optimize_test -- -r ReorderConvertTest
```

Differential Revision: D61507772

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134010
Approved by: https://github.com/tugsbayasgalan
2024-08-21 04:48:43 +00:00
Sherlock Huang
41fab40be7 [report_exportability] Avoid re-exporting duplicated modules (#133930)
Summary:
Skip re-exporting modules with the duplicated types to speed up the exportability tests.

In real models, there are many duplicated modules, and mostly have the same export issues.

Test Plan: Existing CI

Differential Revision: D61504630

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133930
Approved by: https://github.com/angelayi
2024-08-20 22:11:57 +00:00
PyTorch MergeBot
49f6ea6dd9 Revert "[report_exportability] Avoid re-exporting duplicated modules (#133930)"
This reverts commit 278bc985d7.

Reverted https://github.com/pytorch/pytorch/pull/133930 on behalf of https://github.com/izaitsevfb due to breaks lint ([comment](https://github.com/pytorch/pytorch/pull/133930#issuecomment-2299513046))
2024-08-20 18:44:09 +00:00
Sherlock Huang
278bc985d7 [report_exportability] Avoid re-exporting duplicated modules (#133930)
Summary:
Skip re-exporting modules with the duplicated types to speed up the exportability tests.

In real models, there are many duplicated modules, and mostly have the same export issues.

Test Plan: Existing CI

Differential Revision: D61504630

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133930
Approved by: https://github.com/angelayi

Co-authored-by: bearzx <bearzx@fb.com>
2024-08-20 18:20:49 +00:00
Angela Yi
a1a869f2f5 [ts_converter][reland] Add support for LinearOpContext and Conv2dOpContext in quantization pass (#133622)
Summary: Reland of D60871242

Test Plan: CI

Differential Revision: D61352600

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133622
Approved by: https://github.com/SherlockNoMad
2024-08-16 01:55:45 +00:00
Angela Yi
29c4b4ea5a [executorch] Refactor delegation code (#132773)
Summary: Refactoring partitioner-based delegation to prepare for allowing buffer mutations in the delegate (following diff).

Test Plan: CI

Differential Revision: D60813405

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132773
Approved by: https://github.com/ydwu4, https://github.com/cccclai
2024-08-15 22:52:12 +00:00
Sherlock Huang
09a489b177 Fix serialization for tensor list output (#133539)
Summary: Some element of tensor list output doesn't not have a user. In such case, create a name as `{node_name}_unused_{index}` for it.

Test Plan: OSS CI

Differential Revision: D61309011

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133539
Approved by: https://github.com/zhxchen17
2024-08-15 20:31:44 +00:00
Shangdi Yu
d3b458e603 [export] Do not use export.export for capture_pre_autograd_graph (#133370)
Summary:
Do not use export.export for `capture_pre_autograd_graph` in unittests anymore.

#buildall

Test Plan: CI

Reviewed By: tugsbayasgalan

Differential Revision: D60996041

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133370
Approved by: https://github.com/tugsbayasgalan
2024-08-15 17:37:45 +00:00
Pian Pawakapan
a75248528f [export] refactor _process_dynamic_shapes (#133391)
Sorryyyyy for another refactor. This splits `_process_dynamic_shapes` into 3 parts:
1. `_combine_args` - mostly the same thing
2. `_check_dynamic_shapes`, which is responsible for raising 99% of UserErrors if the dynamic shapes spec is invalid (minus 1 UserError with DerivedDims)
3.  `_process_dynamic_shapes`, which for now, is the same thing, minus the stuff in 2.

This refactor is helpful for incoming automatic dynamic shapes work, because, we're switching to `assume_static_by_default=False`, which is what `_dynamo.export` currently does. This means any unspecified dims are allocated a symbol, in contrast to export today which keeps unspecified dims static. Historically this has been desirable - export users don't want too much dynamism. So we want to change how the spec is translated into constraints.

This means when we switch over to automatic dynamic shapes, we want to plug in something in between steps 2. and 3. which patches up the spec for `assume_static_by_default=False`, filling in static shapes for any unspecified dims, and potentially clearing out the auto-dynamic dims (since they're no-ops). We would do this in-between 2. and 3. to keep `_process_dynamic_shapes` semantically the same, since it's used with `_dynamo.export`.

We could do this without a refactor, plugging in this transform before `_process_dynamic_shapes`, but since that function's responsible for both spec checking + constraint production, moving spec checking to before we transform the specs helps guarantee we're raising errors on what the user's specified, and not an internal export bug.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133391
Approved by: https://github.com/avikchaudhuri
2024-08-15 16:21:21 +00:00
Xuehai Pan
758a0a88a2 [BE][Easy] enable ruff rule PIE790: unnecessary pass statement (#133200)
This PR removes unnecessary `pass` statement. This is semanticly safe because the bytecode for the Python code does not change.

Note that if there is a docstring in the function, a empty function does not need a `pass` statement as placeholder.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133200
Approved by: https://github.com/malfet, https://github.com/eqy, https://github.com/kit1980
2024-08-15 15:50:19 +00:00
Zhengxu Chen
f23dbefe52 [export] Support "custom" metadata field. (#131912)
Summary:
Add a special field in Graph and Node level metadata called "custom" which should be mapped to a json-serializable object, and we guarantee this field should be always preversed across the following transformations:
1. copy/deepcopy
2. run_decompositions()
3. serialization
4. re-exporting

Test Plan: :test_export -- -r custom_tag

Reviewed By: angelayi

Differential Revision: D60291839

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131912
Approved by: https://github.com/angelayi
2024-08-14 01:09:01 +00:00
Pian Pawakapan
4671e98656 [export] fix node.users when inlining HOOs (#133144)
The process of inlining HOO subgraphs (e.g. set_grad_enabled) seems to break node.users when a node is present in multiple subgraphs, for example:
```
class SetGradCase(torch.nn.Module):
    def forward(self, x):
        _x = x.shape[0] + 2
        _xx = _x + 2
        with torch.no_grad():
            y = _x * 4
        return _xx, y
```

The `_x` node contains 2 users (_xx and y) after being inlined, but with inspection it seems to only contain y as a user.

Previously we were completely clearing node.users for output nodes in HOO subgraphs before inlining them - we should just be deleting the subgraph output nodes
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133144
Approved by: https://github.com/larryliu0820, https://github.com/ydwu4
2024-08-13 03:21:42 +00:00
Shangdi Yu
b06959e614 [export] change deepcopy to copy in _replace_with_hop passes (#133142)
Summary:
Add back the change in 19897a1647.

The change was lost in refactoring due to a bad rebase.

Test Plan:
CI

```
buck2 run 'fbcode//mode/dev-nosan'  fbcode//torchrec/distributed/tests:test_pt2 -- --filter-text test_sharded_quant_fpebc_non_strict_export
```

Differential Revision: D61052687

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133142
Approved by: https://github.com/ydwu4
2024-08-12 17:15:04 +00:00
PyTorch MergeBot
9641abe97a Revert "[export] change deepcopy to copy in _replace_with_hop passes (#133142)"
This reverts commit 2d71f03db1.

Reverted https://github.com/pytorch/pytorch/pull/133142 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/133142#issuecomment-2284327241))
2024-08-12 15:48:11 +00:00
Shangdi Yu
2d71f03db1 [export] change deepcopy to copy in _replace_with_hop passes (#133142)
Summary:
Add back the change in 19897a1647.

The change was lost in refactoring due to a bad rebase.

Test Plan:
CI

```
buck2 run 'fbcode//mode/dev-nosan'  fbcode//torchrec/distributed/tests:test_pt2 -- --filter-text test_sharded_quant_fpebc_non_strict_export
```

Differential Revision: D61052687

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133142
Approved by: https://github.com/ydwu4
2024-08-11 21:47:52 +00:00
Avik Chaudhuri
c8275e25a7 fix requirement for error classification (#133122)
Test Plan: none

Differential Revision: D61039300

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133122
Approved by: https://github.com/yushangdi
2024-08-10 04:59:09 +00:00
Avik Chaudhuri
3899465268 relax unification checks when size-like symbols can be 0 (#133112)
Test Plan: Fixes test failure in https://www.internalfb.com/diff/D51127481

Differential Revision: D61031307

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133112
Approved by: https://github.com/angelayi
2024-08-10 00:57:49 +00:00
Shangdi Yu
574cdf1232 [export] Merge functions in replace set_grad/autocast with HOO (#132724)
Summary: as title

Test Plan: CI

Differential Revision: D60701648

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132724
Approved by: https://github.com/ydwu4
2024-08-09 17:25:07 +00:00
Avik Chaudhuri
22ea248aa8 dynamic shapes mismatch errors (#132982)
Summary: When PyTree detects a structural mismatch between inputs and dynamic shapes, the error messages are quite horrible. This PR fixes these error messages by adding, for each kind of error, the path to the point where the error happens and an actionable reason for the error.

Test Plan: added test with several cases

Differential Revision: D60956976

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132982
Approved by: https://github.com/yushangdi
2024-08-09 02:22:32 +00:00
Shangdi Yu
3c5b246d3c [export] Remove Proxy from exported programs and modules (#132956)
Summary: Remove Proxy from exported programs and modules because they cannot be deepcopied or pickeled.

Test Plan:
CI

```
buck2 run 'fbcode//mode/dev-nosan'  fbcode//caffe2/test/quantization:test_quantization -- -r  qat_conv2d
buck2 run 'fbcode//mode/dev-nosan' fbcode//modai/test:test_modai -- -r test_qat_stinson_htp_export
buck2 run 'fbcode//mode/dev-nosan' fbcode//vizard_projects/ml_depth/tests:test_model -- -r test_qat_model_et
buck2 run 'fbcode//mode/dev-nosan' fbcode//bolt/nn/executorch/backends/tests:qnn_test -- -r test_qat_bias=False,use_3d_input=False
buck2 run 'fbcode//mode/dev-nosan' fbcode//bolt/nn/executorch/backends/tests:qnn_test -- -r test_qat_bias=True,use_3d_input=False
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r  test_fold_bn_erases_bn_node
```

Differential Revision: D60940832

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132956
Approved by: https://github.com/angelayi
2024-08-09 00:00:20 +00:00
Jiashen Cao
fa8c34301a [ts-migration]: Quantized ops to standard ops pass. (#133026)
#### Description
Transform quantized operation properly. Add de/quantization before and after the quantized operation.

#### Test Plan
`pytest test/export/test_converter.py -s -k test_ts2ep_convert_quantized_model`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133026
Approved by: https://github.com/angelayi
2024-08-08 23:10:17 +00:00
Edward Z. Yang
1f66487c69 [BE] Reroute all uses of proxy_tensor.maybe_disable_fake_tensor_mode to fake_tensor.unset_fake_temporarily (#132770)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132770
Approved by: https://github.com/bdhirsh
2024-08-08 23:07:23 +00:00
PyTorch MergeBot
6f99e97f0a Revert "[ts-migration]: Support quantized operation transformation (#131915)"
This reverts commit 0e8541766f.

Reverted https://github.com/pytorch/pytorch/pull/131915 on behalf of https://github.com/ezyang due to test broken on windows 0e8541766f ([comment](https://github.com/pytorch/pytorch/pull/131915#issuecomment-2275974907))
2024-08-08 14:30:35 +00:00
PyTorch MergeBot
d1f73fd844 Revert "[BE] Reroute all uses of proxy_tensor.maybe_disable_fake_tensor_mode to fake_tensor.unset_fake_temporarily (#132770)"
This reverts commit 902c6f3a19.

Reverted https://github.com/pytorch/pytorch/pull/132770 on behalf of https://github.com/ezyang due to Removed API was recommitted ([comment](https://github.com/pytorch/pytorch/pull/132770#issuecomment-2275749689))
2024-08-08 12:54:34 +00:00
Edward Z. Yang
902c6f3a19 [BE] Reroute all uses of proxy_tensor.maybe_disable_fake_tensor_mode to fake_tensor.unset_fake_temporarily (#132770)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132770
Approved by: https://github.com/bdhirsh
ghstack dependencies: #132674, #132675, #132421, #132062, #132767, #132769
2024-08-08 12:03:25 +00:00
Edward Z. Yang
54efd43022 [BE] Simplify code interacting with get_proxy_mode/enable_tracing (#132675)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132675
Approved by: https://github.com/Skylion007, https://github.com/ydwu4, https://github.com/zou3519
ghstack dependencies: #132674
2024-08-08 12:03:00 +00:00
Jiashen Cao
0e8541766f [ts-migration]: Support quantized operation transformation (#131915)
#### Description
Transform quantized operation properly. Add de/quantization before and after the quantized operation.

#### Test Plan
`pytest test/export/test_converter.py -s -k test_ts2ep_convert_quantized_model`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131915
Approved by: https://github.com/angelayi
2024-08-08 06:34:53 +00:00
Angela Yi
45d0e90bd3 [export] Allow str outputs (#132808)
Summary: Fixes https://fb.workplace.com/groups/1075192433118967/permalink/1478413606130179/

Test Plan: CI

Differential Revision: D60850712

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132808
Approved by: https://github.com/ydwu4
2024-08-08 02:20:59 +00:00
Yidi Wu
bbf568aac8 Split of "[reland] [export] fix zero arg export in training_ir and constant tensor handling" (#132307)
Summary:
A re-land of D60006710.
Fixed TrainingIRToRunDecomp failures for test_tensor_attribute_zero_args and also a few re-tracability failures because run_decomposition does a retracing.

edit: also remove the eliminate_dead_code() in _unlift because of one onnx test failure:
a constant tensor attr was lifted as constant_tensor input but it's not used in the graph after aot_autograd due to a short cut in its decomposition. This causes the setattr to be removed by eliminate_dead_code but the graph signature still contains the name of that buffer, which causes an inconsitency between the transformed graph and ep's original signature after _unlift. And it seems that this has happened a few times where some nodes are accidentally removed and we're in an inconsistent state.
The alternative of removing it would be: every time we call elimiate_dead_code, we verify the consistency of the graph with 1. the graph before transformation and 2. all the meta datas but i think this deserves a complete design

edit 2: Also fix the inconsistency of graph signatures when param_constant is marked as lifted_tensor_constants but it's registered as parameters in the output of ep.module().

Differential Revision: D60532628

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132307
Approved by: https://github.com/zhxchen17
2024-08-08 01:36:16 +00:00
Xu Han
a9036e1cf8 [inductor] raise unsupport msg in capture_pre_autograd_graph on Windows (#132841)
Debuged with @leslie-fang-intel , and we found that: https://github.com/pytorch/pytorch/issues/132561 and https://github.com/pytorch/pytorch/issues/132569 are all failed by `capture_pre_autograd_graph` not work well on Windows.

So, we added some code to raise message and let end user known that.

Detailed:
For https://github.com/pytorch/pytorch/issues/132561
```cmd
Traceback (most recent call last):
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\unittest\case.py", line 59, in testPartExecutor
    yield
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\unittest\case.py", line 591, in run
    self._callTestMethod(testMethod)
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\unittest\case.py", line 549, in _callTestMethod
    method()
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\site-packages\torch\testing\_internal\common_utils.py", line 2918, in wrapper
    method(*args, **kwargs)
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\site-packages\torch\testing\_internal\common_utils.py", line 1515, in wrapper
    fn(*args, **kwargs)
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\site-packages\torch\testing\_internal\common_quantization.py", line 399, in wrapper
    fn(*args, **kwargs)
  File "D:\xu_git\dnnl_cb\pytorch\test\quantization\pt2e\test_x86inductor_quantizer.py", line 1737, in test_qat_conv2d
    self._test_quantizer(
  File "D:\xu_git\dnnl_cb\pytorch\test\quantization\pt2e\test_x86inductor_quantizer.py", line 553, in _test_quantizer
    m = capture_pre_autograd_graph(
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\site-packages\torch\_export\__init__.py", line 121, in capture_pre_autograd_graph
    raise RuntimeError("capture_pre_autograd_graph not yet supported on Windows")
RuntimeError: capture_pre_autograd_graph not yet supported on Windows

To execute this test, run the following from the base repo dir:
    python test\quantization\pt2e\test_x86inductor_quantizer.py -k TestQuantizePT2EX86Inductor.test_qat_conv2d

This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
```

For https://github.com/pytorch/pytorch/issues/132569
```cmd
Traceback (most recent call last):
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\unittest\case.py", line 59, in testPartExecutor
    yield
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\unittest\case.py", line 591, in run
    self._callTestMethod(testMethod)
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\unittest\case.py", line 549, in _callTestMethod
    method()
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\site-packages\torch\testing\_internal\common_utils.py", line 2918, in wrapper
    method(*args, **kwargs)
  File "D:\xu_git\dnnl_cb\pytorch\test\inductor\test_torchinductor.py", line 11218, in new_test
    return value(self)
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\site-packages\torch\_dynamo\testing.py", line 312, in _fn
    return fn(*args, **kwargs)
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\contextlib.py", line 79, in inner
    return func(*args, **kwds)
  File "D:\xu_git\dnnl_cb\pytorch\test\inductor\test_cpu_cpp_wrapper.py", line 155, in fn
    _, code = test_torchinductor.run_and_get_cpp_code(
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\site-packages\torch\_inductor\utils.py", line 1863, in run_and_get_cpp_code
    result = fn(*args, **kwargs)
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\site-packages\torch\testing\_internal\common_quantization.py", line 415, in wrapper
    fn(*args, **kwargs)
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\site-packages\torch\testing\_internal\common_quantization.py", line 367, in wrapper
    fn(*args, **kwargs)
  File "D:\xu_git\dnnl_cb\pytorch\test\inductor\test_mkldnn_pattern_matcher.py", line 1668, in test_qlinear_gelu_cpu
    self._qlinear_unary_cpu_test_helper((torch.randn((2, 4)),), gelu)
  File "D:\xu_git\dnnl_cb\pytorch\test\inductor\test_mkldnn_pattern_matcher.py", line 1615, in _qlinear_unary_cpu_test_helper
    self._test_common(
  File "D:\xu_git\dnnl_cb\pytorch\test\inductor\test_mkldnn_pattern_matcher.py", line 165, in _test_common
    convert_model = _generate_qdq_quantized_model(
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\site-packages\torch\testing\_internal\common_quantization.py", line 2949, in _generate_qdq_quantized_model
    export_model = capture_pre_autograd_graph(
  File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\site-packages\torch\_export\__init__.py", line 121, in capture_pre_autograd_graph
    raise RuntimeError("capture_pre_autograd_graph not yet supported on Windows")
RuntimeError: capture_pre_autograd_graph not yet supported on Windows

To execute this test, run the following from the base repo dir:
    python test\inductor\test_cpu_cpp_wrapper.py -k DynamicShapesCppWrapperCpuTests.test_qlinear_gelu_cpu_dynamic_shapes_cpp_wrapper

This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
--------------------------------------------------------------------------------------------------------------------------- Captured stderr call ----------------------------------------------------------------------------------------------------------------------------
W0807 13:24:34.291000 11228 torch\_export\__init__.py:64] +============================+
W0807 13:24:34.291000 11228 torch\_export\__init__.py:65] |     !!!   WARNING   !!!    |
W0807 13:24:34.291000 11228 torch\_export\__init__.py:66] +============================+
W0807 13:24:34.291000 11228 torch\_export\__init__.py:67] capture_pre_autograd_graph() is deprecated and doesn't provide any function guarantee moving forward.
W0807 13:24:34.291000 11228 torch\_export\__init__.py:68] Please switch to use torch.export instead.
```

Co-authored-by: Jiong Gong <jiong.gong@intel.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132841
Approved by: https://github.com/jgong5, https://github.com/ezyang
2024-08-08 00:28:07 +00:00
Edward Z. Yang
9282e6ca78 Don't use _disable_current_modes as decorator (#132809)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132809
Approved by: https://github.com/albanD
ghstack dependencies: #132801, #132802, #132804
2024-08-07 23:59:46 +00:00
angelayi
c327710a87 [export] Publicize validate function (#132777)
as titled

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132777
Approved by: https://github.com/zhxchen17
2024-08-07 23:10:05 +00:00
PyTorch MergeBot
9d476fee53 Revert "[BE] Simplify code interacting with get_proxy_mode/enable_tracing (#132675)"
This reverts commit c2bccfd431.

Reverted https://github.com/pytorch/pytorch/pull/132675 on behalf of https://github.com/PaliC due to We need to now revert https://github.com/pytorch/pytorch/pull/132216 in OSS and there is a dependency on this pr ([comment](https://github.com/pytorch/pytorch/pull/132674#issuecomment-2274062785))
2024-08-07 18:25:33 +00:00
Shangdi Yu
825002c9c6 [export][fx] More robust DCE pass (#132764)
Summary:
- make default DCE pass check schema,
- need to rebase onto https://github.com/pytorch/pytorch/pull/131651 after it's in phabricator (for now the change is manually added).

- mark Proxy dump as NotImplemented for better error msg

- Remove Proxy from tensors when dumping models, as Proxy cannot be dumped.

More details in https://docs.google.com/document/d/1G5vmTXjzxoyVGRI2kpA1gQukK_Glyg2NrE0Oh6Nlg9A/edit?usp=sharing.

Test Plan:
CI
```
- buck2 run 'fbcode//mode/dev-nosan'  fbcode//caffe2/test/quantization:test_quantization -- -r  qat_conv2d
- test_export.py
- buck2 run 'fbcode//mode/dev-nosan' fbcode//modai/test:test_modai -- -r test_qat_stinson_htp_export
- buck2 run 'fbcode//mode/dev-nosan' fbcode//vizard_projects/ml_depth/tests:test_model -- -r test_qat_model_et
- buck2 run 'fbcode//mode/dev-nosan'  fbcode//caffe2/test:fx -- -r dce
- buck2 run 'fbcode//mode/dev-nosan' fbcode//bolt/nn/executorch/backends/tests:qnn_test -- -r test_qat_bias=False,use_3d_input=False
- buck2 run 'fbcode//mode/dev-nosan' fbcode//bolt/nn/executorch/backends/tests:qnn_test -- -r test_qat_bias=True,use_3d_input=False
- buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r  test_fold_bn_erases_bn_node
```

Reviewed By: angelayi

Differential Revision: D60319175

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132764
Approved by: https://github.com/angelayi
2024-08-06 22:27:22 +00:00
Edward Z. Yang
c2bccfd431 [BE] Simplify code interacting with get_proxy_mode/enable_tracing (#132675)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132675
Approved by: https://github.com/Skylion007, https://github.com/ydwu4, https://github.com/zou3519
ghstack dependencies: #132674
2024-08-06 18:13:22 +00:00
Jiashen Cao
ca7ce2fca1 [ts-migration][1/N]: Add prim::Loop for constant number of iterations and condition (#131418)
#### Description
This PR adds prim::Loop support for the simplest case where the number of iteration is constant and the loop termination condition is also a constant.

[PR by stages](https://docs.google.com/document/d/1q6OprW3HBHbYPwEyE_DikBn-uzmhnN284Cmen_CnlhI/edit?usp=sharing)

#### Test Plan
Add reprod example.
* `pytest test/export/test_converter.py -s -k test_ts2ep_with_loop`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131418
Approved by: https://github.com/angelayi
2024-08-06 16:51:08 +00:00
Shangdi Yu
93fad2f0f2 [export] Fix import in D60427208 (#132707)
Summary:
D60427208 broke APS release by failing our NE  deterministric test. https://www.internalfb.com/intern/test/562950111197340/

This Diff fixes it.

Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//aps_models/ads/gmp/tests/ne/e2e_deterministic_tests:gmp_e2e_ne_tests -- --filter-text test_mtml_instagram_model_474023725_single_gpu_with_ir
```

Differential Revision: D60790203

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132707
Approved by: https://github.com/ydwu4
2024-08-06 02:35:17 +00:00
Shangdi Yu
4a2cf50edf [export][reland] Convert autocast to HOO (#132677)
Summary:
Reland of D60206382.

Suggested in https://github.com/pytorch/pytorch/issues/128394.

If there's an autocast context manager, the predispatch (strict) graph can look something like:

```
class <lambda>(torch.nn.Module):
    def forward(self, x: "f32[1]"):
        ...
        _enter_autocast = torch.amp.autocast_mode._enter_autocast('cuda', torch.bfloat16, True, None)
        mm: "f32[8, 8]" = torch.ops.aten.mm.default(rand, rand_1);  rand = rand_1 = None
        _exit_autocast = torch.amp.autocast_mode._exit_autocast(_enter_autocast);  _enter_autocast = None
        return (mm_1,)
```

But the operator `torch.amp.autocast_mode._enter_autocast` is not a valid ATen op. We remove these nodes by turning autocast into a higher order operator and make a submodule for the blocks between `_enter_autocast` and `_exit_autocast`.

Some potential followup improvement:
1) Merge some of the duplicated logic with `replace_set_grad_with_hop_pass.py`
2) Check the current autocast status (any enabled? dtype?) and not create a submodule if the autocast args matches current autocast status.

Test Plan:
CI

```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export -- -r "test_predispatch_autocast"
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export -- -r "test_predispatch_set_grad"
```

Verified that now we can export the llama model in  gh issue 128394 and the gemma model in  gh issue 131829 without error.

Differential Revision: D60770038

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132677
Approved by: https://github.com/angelayi
2024-08-05 22:34:52 +00:00
PyTorch MergeBot
a3ea96b762 Revert "[export] Convert autocast to HOO (#131914)"
This reverts commit aec948adfc.

Reverted https://github.com/pytorch/pytorch/pull/131914 on behalf of https://github.com/davidberard98 due to PR shouldn't have been relanded by the bot, phabricator diff did not have any recent changes and is still internally reverted ([comment](https://github.com/pytorch/pytorch/pull/131914#issuecomment-2269797388))
2024-08-05 19:52:09 +00:00
Shangdi Yu
aec948adfc [export] Convert autocast to HOO (#131914)
Summary:
Suggested in https://github.com/pytorch/pytorch/issues/128394.

If there's an autocast context manager, the predispatch (strict) graph can look something like:

```
class <lambda>(torch.nn.Module):
    def forward(self, x: "f32[1]"):
        ...
        _enter_autocast = torch.amp.autocast_mode._enter_autocast('cuda', torch.bfloat16, True, None)
        mm: "f32[8, 8]" = torch.ops.aten.mm.default(rand, rand_1);  rand = rand_1 = None
        _exit_autocast = torch.amp.autocast_mode._exit_autocast(_enter_autocast);  _enter_autocast = None
        return (mm_1,)
```

But the operator `torch.amp.autocast_mode._enter_autocast` is not a valid ATen op. We remove these nodes by turning autocast into a higher order operator and make a submodule for the blocks between `_enter_autocast` and `_exit_autocast`.

Some potential followup improvement:
1) Merge some of the duplicated logic with `replace_set_grad_with_hop_pass.py`
2) Check the current autocast status (any enabled? dtype?) and not create a submodule if the autocast args matches current autocast status.

Test Plan:
CI

```
parsh --build-flags fbcode//mode/dev-nosan  fbcode//caffe2/test:test_export
run_tests("test_predispatch_autocast")
```

Reviewed By: angelayi

Differential Revision: D60206382

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131914
Approved by: https://github.com/angelayi
2024-08-05 18:52:12 +00:00
Avik Chaudhuri
27f61eba58 serde sympy functions (#132493)
Summary: Sympy functions appearing in symbolic expressions inside tensor metadata were not being deserialized properly.

Test Plan: updated test

Differential Revision: D60573150

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132493
Approved by: https://github.com/pianpwk
2024-08-05 08:08:50 +00:00