Commit Graph

212 Commits

Author SHA1 Message Date
Nikita Shulga
b706c4116d [MPS] Add MacOS 14 runtime check (#115512)
Prerequisite for adding more complex type support and FFT operation

Check using `conjugateWithTensor:name:` selector defined as follows
```objc
/// Returns the complex conjugate of the input tensor elements.
///
/// - Parameters:
///   - tensor: The input tensor.
///   - name: An optional string which serves as an identifier for the operation..
/// - Returns: A valid `MPSGraphTensor` object containing the elementwise result of the applied operation.
-(MPSGraphTensor *) conjugateWithTensor:(MPSGraphTensor *) tensor
                                   name:(NSString * _Nullable) name
MPS_AVAILABLE_STARTING(macos(14.0), ios(17.0), tvos(17.0))
MPS_SWIFT_NAME( conjugate(tensor:name:) );
```

- Rename `isOnMacOS13orNewer(unsigned minor)` hook to `isOnMacOSorNewer(major, minor)`
- Replace `torch._C.__mps_is_on_macos_13_or_newer` with `torch._C._mps_is_on_macos_or_newer`
- Add `torch.backends.mps.is_macos_or_newer` public API
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115512
Approved by: https://github.com/albanD
2023-12-11 21:11:42 +00:00
zabboud
7f9fafed53 Resolve docstring errors in throughput_benchmark.py, weak.py, _traceback.py, file_baton.py, _contextlib.py, _device.py, cpp_backtrace.py, bundled_inputs.py, run_cpu.py, hooks.py, mobile_optimizer.py, _freeze.py, __init__.py, mkldnn.py, dlpack.py (#113311)
Fixes #112633

Fixed errors relating to pydocstyle in the following files. The remaining errors are not covered in this issue. `torch/utils/dlpack.py` was not modified as the errors are relating to the function signature in the first line in the docstring which must be maintained as is for proper Sphinx interpretation.

```python
def from_dlpack(ext_tensor: Any) -> 'torch.Tensor':
    """from_dlpack(ext_tensor) -> Tensor
         .....
    """
```

pydocstyle torch/utils/_contextlib.py --count
before: 4
after: 0

pydocstyle torch/backends/mps/__init__.py --count
before: 8
after: 1

**remaining errors**
```
torch/backends/mps/__init__.py:1 at module level:
        D104: Missing docstring in public package
```

pydocstyle torch/backends/xeon/run_cpu.py --count
before: 13
after: 1

**remaining errors**
```
torch/backends/xeon/run_cpu.py:864 in public function `main`:
        D103: Missing docstring in public function
```

pydocstyle torch/backends/cpu/__init__.py --count
before: 2
after: 1

**remaining errors**
```
torch/backends/cpu/__init__.py:1 at module level:
        D104: Missing docstring in public package
```

pydocstyle torch/utils/cpp_backtrace.py --count
before: 4
after: 1

**remaining errors**
```
torch/utils/cpp_backtrace.py:1 at module level:
        D100: Missing docstring in public module
```

pydocstyle torch/utils/bundled_inputs.py --count
before: 8
after: 1

**remaining errors**
```
torch/utils/bundled_inputs.py:1 at module level:
        D100: Missing docstring in public module
```

pydocstyle torch/utils/file_baton.py --count
before: 8
after: 1

**remaining errors**
```
torch/utils/file_baton.py:1 at module level:
        D100: Missing docstring in public module
```

pydocstyle torch/utils/mobile_optimizer.py --count
before: 6
after: 1

**remaining errors**
```
torch/utils/mobile_optimizer.py:8 in public class `LintCode`:
        D101: Missing docstring in public class
```

pydocstyle torch/backends/opt_einsum/__init__.py --count
before: 7
after: 5

**remaining errors**
```
torch/backends/opt_einsum/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/opt_einsum/__init__.py:67 in public function `set_flags`:
        D103: Missing docstring in public function
torch/backends/opt_einsum/__init__.py:77 in public function `flags`:
        D103: Missing docstring in public function
torch/backends/opt_einsum/__init__.py:93 in public class `OptEinsumModule`:
        D101: Missing docstring in public class
torch/backends/opt_einsum/__init__.py:94 in public method `__init__`:
        D107: Missing docstring in __init__
```

pydocstyle torch/utils/_device.py --count
before:  9
after: 6

**remaining errors**
```
torch/utils/_device.py:58 in public class `DeviceContext`:
        D101: Missing docstring in public class
torch/utils/_device.py:59 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/_device.py:62 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/utils/_device.py:68 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/utils/_device.py:73 in public method `__torch_function__`:
        D105: Missing docstring in magic method
torch/utils/_device.py:80 in public function `device_decorator`:
        D103: Missing docstring in public function

```

pydocstyle torch/utils/_freeze.py --count
before: 15
after: 7

**remaining errors**
```
torch/utils/_freeze.py:77 in public function `indent_msg`:
        D103: Missing docstring in public function
torch/utils/_freeze.py:89 in public class `FrozenModule`:
        D101: Missing docstring in public class
torch/utils/_freeze.py:100 in public class `Freezer`:
        D101: Missing docstring in public class
torch/utils/_freeze.py:101 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/_freeze.py:106 in public method `msg`:
        D102: Missing docstring in public method
torch/utils/_freeze.py:185 in public method `get_module_qualname`:
        D102: Missing docstring in public method
torch/utils/_freeze.py:206 in public method `compile_string`:
        D102: Missing docstring in public method

```

pydocstyle torch/utils/throughput_benchmark.py --count
before: 25
after: 8
**remaining errors**
```
torch/utils/throughput_benchmark.py:1 at module level:
        D100: Missing docstring in public module
torch/utils/throughput_benchmark.py:27 in public class `ExecutionStats`:
        D101: Missing docstring in public class
torch/utils/throughput_benchmark.py:28 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/throughput_benchmark.py:33 in public method `latency_avg_ms`:
        D102: Missing docstring in public method
torch/utils/throughput_benchmark.py:37 in public method `num_iters`:
        D102: Missing docstring in public method
torch/utils/throughput_benchmark.py:46 in public method `total_time_seconds`:
        D102: Missing docstring in public method
torch/utils/throughput_benchmark.py:50 in public method `__str__`:
        D105: Missing docstring in magic method
torch/utils/throughput_benchmark.py:94 in public method `__init__`:
        D107: Missing docstring in __init__

```

pydocstyle torch/utils/hooks.py --count

before: 14
after: 11

**remaining errors**
```
torch/utils/hooks.py:1 at module level:
        D100: Missing docstring in public module
torch/utils/hooks.py:23 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/hooks.py:34 in public method `remove`:
        D102: Missing docstring in public method
torch/utils/hooks.py:44 in public method `__getstate__`:
        D105: Missing docstring in magic method
torch/utils/hooks.py:50 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/utils/hooks.py:64 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/utils/hooks.py:67 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/utils/hooks.py:82 in public function `warn_if_has_hooks`:
        D103: Missing docstring in public function
torch/utils/hooks.py:103 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/hooks.py:188 in public method `setup_input_hook`:
        D102: Missing docstring in public method
torch/utils/hooks.py:197 in public method `setup_output_hook`:
        D102: Missing docstring in public method
```

pydocstyle torch/utils/_traceback.py --count
before: 19
after: 14

**remaining errors**
```
torch/utils/_traceback.py:47 in public function `report_compile_source_on_error`:
        D103: Missing docstring in public function
torch/utils/_traceback.py:160 in public class `CapturedTraceback`:
        D101: Missing docstring in public class
torch/utils/_traceback.py:163 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/_traceback.py:167 in public method `cleanup`:
        D102: Missing docstring in public method
torch/utils/_traceback.py:170 in public method `summary`:
        D102: Missing docstring in public method
torch/utils/_traceback.py:182 in public method `__getstate__`:
        D105: Missing docstring in magic method
torch/utils/_traceback.py:190 in public method `extract`:
        D205: 1 blank line required between summary line and description (found 0)
torch/utils/_traceback.py:190 in public method `extract`:
        D400: First line should end with a period (not 't')
torch/utils/_traceback.py:213 in public method `format`:
        D205: 1 blank line required between summary line and description (found 0)
torch/utils/_traceback.py:213 in public method `format`:
        D400: First line should end with a period (not 'f')
torch/utils/_traceback.py:213 in public method `format`:
        D401: First line should be in imperative mood (perhaps 'Format', not 'Formats')
torch/utils/_traceback.py:224 in public method `format_all`:
        D200: One-line docstring should fit on one line with quotes (found 3)
torch/utils/_traceback.py:247 in private function `_extract_symbolized_tb`:
        D205: 1 blank line required between summary line and description (found 0)
torch/utils/_traceback.py:247 in private function `_extract_symbolized_tb`:
        D400: First line should end with a period (not 'f')
```

pydocstyle torch/utils/mkldnn.py --count
before: 28
after: 26

**remaining errors**
```
torch/utils/mkldnn.py:1 at module level:
        D100: Missing docstring in public module
torch/utils/mkldnn.py:4 in public class `MkldnnLinear`:
        D101: Missing docstring in public class
torch/utils/mkldnn.py:5 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/mkldnn.py:19 in public method `__getstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:23 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:29 in public method `forward`:
        D102: Missing docstring in public method
torch/utils/mkldnn.py:75 in public class `MkldnnConv1d`:
        D101: Missing docstring in public class
torch/utils/mkldnn.py:76 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/mkldnn.py:82 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:88 in public class `MkldnnConv2d`:
        D101: Missing docstring in public class
torch/utils/mkldnn.py:89 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/mkldnn.py:100 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:110 in public class `MkldnnConv3d`:
        D101: Missing docstring in public class
torch/utils/mkldnn.py:111 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/mkldnn.py:122 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:133 in public class `MkldnnBatchNorm`:
        D101: Missing docstring in public class
torch/utils/mkldnn.py:136 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/mkldnn.py:155 in public method `__getstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:163 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:171 in public method `forward`:
        D102: Missing docstring in public method
torch/utils/mkldnn.py:184 in public class `MkldnnPrelu`:
        D101: Missing docstring in public class
torch/utils/mkldnn.py:185 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/mkldnn.py:190 in public method `__getstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:194 in public method `__setstate__`:
        D105: Missing docstring in magic method
torch/utils/mkldnn.py:199 in public method `forward`:
        D102: Missing docstring in public method
torch/utils/mkldnn.py:205 in public function `to_mkldnn`:
        D103: Missing docstring in public function
```

pydocstyle torch/utils/weak.py --count
before: 32
after: 30

**remaining errors**
```
torch/utils/weak.py:1 at module level:
        D100: Missing docstring in public module
torch/utils/weak.py:42 in public class `WeakIdRef`:
        D101: Missing docstring in public class
torch/utils/weak.py:45 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/weak.py:54 in public method `__call__`:
        D102: Missing docstring in public method
torch/utils/weak.py:61 in public method `__hash__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:64 in public method `__eq__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:84 in public class `WeakIdKeyDictionary`:
        D101: Missing docstring in public class
torch/utils/weak.py:87 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/weak.py:131 in public method `__delitem__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:135 in public method `__getitem__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:138 in public method `__len__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:145 in public method `__repr__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:148 in public method `__setitem__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:151 in public method `copy`:
        D102: Missing docstring in public method
torch/utils/weak.py:162 in public method `__deepcopy__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:172 in public method `get`:
        D102: Missing docstring in public method
torch/utils/weak.py:175 in public method `__contains__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:182 in public method `items`:
        D102: Missing docstring in public method
torch/utils/weak.py:189 in public method `keys`:
        D102: Missing docstring in public method
torch/utils/weak.py:198 in public method `values`:
        D102: Missing docstring in public method
torch/utils/weak.py:216 in public method `popitem`:
        D102: Missing docstring in public method
torch/utils/weak.py:224 in public method `pop`:
        D102: Missing docstring in public method
torch/utils/weak.py:228 in public method `setdefault`:
        D102: Missing docstring in public method
torch/utils/weak.py:231 in public method `update`:
        D102: Missing docstring in public method
torch/utils/weak.py:241 in public method `__ior__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:245 in public method `__or__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:252 in public method `__ror__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:262 in public method `__eq__`:
        D105: Missing docstring in magic method
torch/utils/weak.py:276 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/weak.py:280 in public method `__call__`:
        D102: Missing docstring in public method

```

@mikaylagawarecki @jbschlosser @svekars
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113311
Approved by: https://github.com/ezyang
2023-11-15 17:40:04 +00:00
drisspg
9b0f2f8d94 expose sdpa helpers to python (#110496)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110496
Approved by: https://github.com/jbschlosser
2023-11-15 07:34:34 +00:00
Aaron Gokaslan
18d7b8e4f7 [BE]: ruff apply rule PLW1510 to find silent subprocess errors (#113644)
Reopens #111682 that I messed up due to a bad rebase and triggered some issues with CLA. This explicitly adds check=True or False to any subprocess calls where appropriate.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113644
Approved by: https://github.com/ezyang, https://github.com/kit1980
2023-11-14 20:59:40 +00:00
NVS Abhilash
eb5487361d docs: fix docstring errors in quantized modules and others (#112695)
Fixes #112632

Before: 171
```
torch/backends/_nnapi/prepare.py:24 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/_nnapi/prepare.py:46 in public method `init`:
        D102: Missing docstring in public method
torch/backends/_nnapi/prepare.py:60 in public method `forward`:
        D102: Missing docstring in public method
torch/backends/_nnapi/prepare.py:94 in public function `convert_model_to_nnapi`:
        D103: Missing docstring in public function
torch/backends/_nnapi/prepare.py:153 in public function `process_for_nnapi`:
        D103: Missing docstring in public function
torch/backends/_nnapi/prepare.py:177 in private nested class `ShapeComputeModule`:
        D400: First line should end with a period (not 'n')
torch/backends/_nnapi/serializer.py:19 in public class `NNAPI_OperandCode`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:35 in public class `NNAPI_OperationCode`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:133 in public class `NNAPI_FuseCode`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:140 in public class `OperandValueSourceType`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:150 in public class `TorchScalarTypes`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:154 in public function `approx_equal`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:158 in public function `tensor_size`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:172 in public function `change_element`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:194 in public class `DimOrder`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:225 in public method `use_nchw`:
        D102: Missing docstring in public method
torch/backends/_nnapi/serializer.py:233 in public function `broadcast_shapes`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:260 in public function `get_conv_pool_shape`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:284 in public function `fix_shape`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:301 in public function `reverse_map_dim`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:312 in public function `flex_name`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:1337 in private method `_do_add_binary`:
        D400: First line should end with a period (not 's')
torch/backends/_nnapi/serializer.py:1337 in private method `_do_add_binary`:
        D401: First line should be in imperative mood; try rephrasing (found 'Helper')
torch/backends/_nnapi/serializer.py:2180 in public function `serialize_model`:
        D202: No blank lines allowed after function docstring (found 1)
torch/backends/_nnapi/serializer.py:2180 in public function `serialize_model`:
        D205: 1 blank line required between summary line and description (found 0)
torch/backends/_nnapi/serializer.py:2180 in public function `serialize_model`:
        D400: First line should end with a period (not ':')
torch/backends/cuda/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/cuda/__init__.py:30 in public function `is_built`:
        D205: 1 blank line required between summary line and description (found 0)
torch/backends/cuda/__init__.py:30 in public function `is_built`:
        D209: Multi-line docstring closing quotes should be on a separate line
torch/backends/cuda/__init__.py:30 in public function `is_built`:
        D400: First line should end with a period (not 's')
torch/backends/cuda/__init__.py:30 in public function `is_built`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/backends/cuda/__init__.py:37 in public class `cuFFTPlanCacheAttrContextProp`:
        D101: Missing docstring in public class
torch/backends/cuda/__init__.py:40 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:44 in public method `__get__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:47 in public method `__set__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:54 in public class `cuFFTPlanCache`:
        D205: 1 blank line required between summary line and description (found 0)
torch/backends/cuda/__init__.py:54 in public class `cuFFTPlanCache`:
        D400: First line should end with a period (not 'e')
torch/backends/cuda/__init__.py:60 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:73 in public method `clear`:
        D102: Missing docstring in public method
torch/backends/cuda/__init__.py:78 in public class `cuFFTPlanCacheManager`:
        D205: 1 blank line required between summary line and description (found 0)
torch/backends/cuda/__init__.py:78 in public class `cuFFTPlanCacheManager`:
        D400: First line should end with a period (not ',')
torch/backends/cuda/__init__.py:89 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:93 in public method `__getitem__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:106 in public method `__getattr__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:109 in public method `__setattr__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:116 in public class `cuBLASModule`:
        D101: Missing docstring in public class
torch/backends/cuda/__init__.py:117 in public method `__getattr__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:126 in public method `__setattr__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:147 in public function `preferred_linalg_library`:
        D202: No blank lines allowed after function docstring (found 1)
torch/backends/cuda/__init__.py:204 in public class `SDPBackend`:
        D204: 1 blank line required after class docstring (found 0)
torch/backends/cudnn/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/cudnn/__init__.py:81 in public function `version`:
        D400: First line should end with a period (not 'N')
torch/backends/cudnn/__init__.py:81 in public function `version`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/backends/cudnn/__init__.py:95 in public function `is_available`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/backends/cudnn/__init__.py:99 in public function `is_acceptable`:
        D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:122 in public function `set_flags`:
        D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:150 in public function `flags`:
        D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:174 in public class `CudnnModule`:
        D101: Missing docstring in public class
torch/backends/cudnn/__init__.py:175 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/mkl/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/mkl/__init__.py:5 in public function `is_available`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/backends/mkl/__init__.py:14 in public class `verbose`:
        D205: 1 blank line required between summary line and description (found 0)
torch/backends/mkl/__init__.py:14 in public class `verbose`:
        D400: First line should end with a period (not 'y')
torch/backends/mkl/__init__.py:41 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/mkl/__init__.py:44 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/backends/mkl/__init__.py:53 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/mkldnn/__init__.py:9 in public function `is_available`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/backends/mkldnn/__init__.py:19 in public class `verbose`:
        D205: 1 blank line required between summary line and description (found 0)
torch/backends/mkldnn/__init__.py:19 in public class `verbose`:
        D400: First line should end with a period (not 'y')
torch/backends/mkldnn/__init__.py:47 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/mkldnn/__init__.py:50 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:59 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:64 in public function `set_flags`:
        D103: Missing docstring in public function
torch/backends/mkldnn/__init__.py:71 in public function `flags`:
        D103: Missing docstring in public function
torch/backends/mkldnn/__init__.py:81 in public class `MkldnnModule`:
        D101: Missing docstring in public class
torch/backends/mkldnn/__init__.py:82 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/openmp/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/openmp/__init__.py:5 in public function `is_available`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/nn/intrinsic/qat/modules/conv_fused.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/intrinsic/qat/modules/linear_fused.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/intrinsic/qat/modules/linear_relu.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/qat/__init__.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/qat/dynamic/__init__.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/qat/dynamic/modules/linear.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/qat/modules/__init__.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/qat/modules/conv.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/qat/modules/embedding_ops.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/qat/modules/linear.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantizable/modules/activation.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantizable/modules/rnn.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/__init__.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/conv.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/linear.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/rnn.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/sparse.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/_reference/modules/utils.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/dynamic/modules/__init__.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/dynamic/modules/conv.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/dynamic/modules/linear.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/dynamic/modules/rnn.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/functional.py:1 at module level:
        D400: First line should end with a period (not 'l')
torch/nn/quantized/modules/__init__.py:1 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/activation.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/batchnorm.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/conv.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/dropout.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/embedding_ops.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/functional_modules.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/linear.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/normalization.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/rnn.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/quantized/modules/utils.py:2 at module level:
        D400: First line should end with a period (not 's')
torch/nn/utils/_expanded_weights/conv_utils.py:13 in public function `conv_picker`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:23 in public function `conv_args_and_kwargs`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:31 in public function `conv_normalizer`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:35 in public function `conv_input_for_string_padding`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:43 in public function `int_padding_for_string_padding`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:59 in public function `conv_padding_for_same`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:66 in public function `conv_backward`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:131 in public function `conv_unfold_weight_grad_sample`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:166 in public function `conv_group_weight_grad_sample`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:189 in public function `unfold3d`:
        D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/_expanded_weights/conv_utils.py:189 in public function `unfold3d`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/utils/_expanded_weights/conv_utils.py:189 in public function `unfold3d`:
        D401: First line should be in imperative mood (perhaps 'Extract', not 'Extracts')
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:6 in public function `is_batch_first`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:19 in public function `standard_kwargs`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:19 in public function `standard_kwargs`:
        D300: Use """triple double quotes""" (found '''-quotes)
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:19 in public function `standard_kwargs`:
        D400: First line should end with a period (not 'e')
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:28 in public function `forward_helper`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:28 in public function `forward_helper`:
        D300: Use """triple double quotes""" (found '''-quotes)
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:28 in public function `forward_helper`:
        D400: First line should end with a period (not ')')
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:84 in public function `maybe_scale_by_batch_size`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:90 in public function `set_grad_sample_if_exists`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:108 in public function `unpack_expanded_weight_or_tensor`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:123 in public function `sum_over_all_but_batch_and_last_n`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:123 in public function `sum_over_all_but_batch_and_last_n`:
        D400: First line should end with a period (not 't')
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:123 in public function `sum_over_all_but_batch_and_last_n`:
        D401: First line should be in imperative mood (perhaps 'Calculate', not 'Calculates')
torch/nn/utils/convert_parameters.py:1 at module level:
        D100: Missing docstring in public module
torch/nn/utils/convert_parameters.py:57 in private function `_check_param_device`:
        D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/convert_parameters.py:57 in private function `_check_param_device`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/utils/convert_parameters.py:57 in private function `_check_param_device`:
        D400: First line should end with a period (not 'd')
torch/nn/utils/convert_parameters.py:57 in private function `_check_param_device`:
        D401: First line should be in imperative mood; try rephrasing (found 'This')
torch/nn/utils/rnn.py:1 at module level:
        D100: Missing docstring in public module
torch/nn/utils/rnn.py:28 in public class `PackedSequence`:
        D204: 1 blank line required after class docstring (found 0)
torch/nn/utils/rnn.py:63 in public method `__new__`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:73 in public method `pin_memory`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:80 in public method `cuda`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:87 in public method `cpu`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:94 in public method `double`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:97 in public method `float`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:100 in public method `half`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:103 in public method `long`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:106 in public method `int`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:109 in public method `short`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:112 in public method `char`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:115 in public method `byte`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:119 in public method `to`:
        D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/rnn.py:119 in public method `to`:
        D401: First line should be in imperative mood (perhaps 'Perform', not 'Performs')
torch/nn/utils/rnn.py:146 in public method `is_cuda`:
        D400: First line should end with a period (not 'u')
torch/nn/utils/rnn.py:150 in public method `is_pinned`:
        D400: First line should end with a period (not 'y')
torch/nn/utils/rnn.py:150 in public method `is_pinned`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/nn/utils/rnn.py:198 in public function `invert_permutation`:
        D103: Missing docstring in public function
torch/nn/utils/rnn.py:274 in public function `pad_packed_sequence`:
        D401: First line should be in imperative mood (perhaps 'Pad', not 'Pads')
torch/nn/utils/rnn.py:347 in public function `pad_sequence`:
        D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/rnn.py:347 in public function `pad_sequence`:
        D400: First line should end with a period (not '`')
torch/nn/utils/rnn.py:408 in public function `unpad_sequence`:
        D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/rnn.py:408 in public function `unpad_sequence`:
        D400: First line should end with a period (not 's')
torch/nn/utils/rnn.py:454 in public function `pack_sequence`:
        D400: First line should end with a period (not 's')
torch/nn/utils/rnn.py:490 in public function `unpack_sequence`:
        D202: No blank lines allowed after function docstring (found 1)
torch/nn/utils/rnn.py:490 in public function `unpack_sequence`:
        D400: First line should end with a period (not 's')
171
```

After: 81
```
torch/backends/_nnapi/prepare.py:24 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/_nnapi/prepare.py:46 in public method `init`:
        D102: Missing docstring in public method
torch/backends/_nnapi/prepare.py:60 in public method `forward`:
        D102: Missing docstring in public method
torch/backends/_nnapi/prepare.py:94 in public function `convert_model_to_nnapi`:
        D103: Missing docstring in public function
torch/backends/_nnapi/prepare.py:153 in public function `process_for_nnapi`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:19 in public class `NNAPI_OperandCode`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:35 in public class `NNAPI_OperationCode`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:133 in public class `NNAPI_FuseCode`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:140 in public class `OperandValueSourceType`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:150 in public class `TorchScalarTypes`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:154 in public function `approx_equal`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:158 in public function `tensor_size`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:172 in public function `change_element`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:194 in public class `DimOrder`:
        D101: Missing docstring in public class
torch/backends/_nnapi/serializer.py:225 in public method `use_nchw`:
        D102: Missing docstring in public method
torch/backends/_nnapi/serializer.py:233 in public function `broadcast_shapes`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:260 in public function `get_conv_pool_shape`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:284 in public function `fix_shape`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:301 in public function `reverse_map_dim`:
        D103: Missing docstring in public function
torch/backends/_nnapi/serializer.py:312 in public function `flex_name`:
        D103: Missing docstring in public function
torch/backends/cuda/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/cuda/__init__.py:39 in public class `cuFFTPlanCacheAttrContextProp`:
        D101: Missing docstring in public class
torch/backends/cuda/__init__.py:42 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:46 in public method `__get__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:49 in public method `__set__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:63 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:76 in public method `clear`:
        D102: Missing docstring in public method
torch/backends/cuda/__init__.py:91 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/cuda/__init__.py:95 in public method `__getitem__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:108 in public method `__getattr__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:111 in public method `__setattr__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:118 in public class `cuBLASModule`:
        D101: Missing docstring in public class
torch/backends/cuda/__init__.py:119 in public method `__getattr__`:
        D105: Missing docstring in magic method
torch/backends/cuda/__init__.py:128 in public method `__setattr__`:
        D105: Missing docstring in magic method
torch/backends/cudnn/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/cudnn/__init__.py:99 in public function `is_acceptable`:
        D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:122 in public function `set_flags`:
        D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:150 in public function `flags`:
        D103: Missing docstring in public function
torch/backends/cudnn/__init__.py:174 in public class `CudnnModule`:
        D101: Missing docstring in public class
torch/backends/cudnn/__init__.py:175 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/mkl/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/mkl/__init__.py:42 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/mkl/__init__.py:45 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/backends/mkl/__init__.py:54 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/backends/mkldnn/__init__.py:48 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/mkldnn/__init__.py:51 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:60 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/backends/mkldnn/__init__.py:65 in public function `set_flags`:
        D103: Missing docstring in public function
torch/backends/mkldnn/__init__.py:72 in public function `flags`:
        D103: Missing docstring in public function
torch/backends/mkldnn/__init__.py:82 in public class `MkldnnModule`:
        D101: Missing docstring in public class
torch/backends/mkldnn/__init__.py:83 in public method `__init__`:
        D107: Missing docstring in __init__
torch/backends/openmp/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/nn/utils/_expanded_weights/conv_utils.py:13 in public function `conv_picker`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:23 in public function `conv_args_and_kwargs`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:31 in public function `conv_normalizer`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:35 in public function `conv_input_for_string_padding`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:43 in public function `int_padding_for_string_padding`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:59 in public function `conv_padding_for_same`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:66 in public function `conv_backward`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:131 in public function `conv_unfold_weight_grad_sample`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/conv_utils.py:166 in public function `conv_group_weight_grad_sample`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:6 in public function `is_batch_first`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:87 in public function `maybe_scale_by_batch_size`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:93 in public function `set_grad_sample_if_exists`:
        D103: Missing docstring in public function
torch/nn/utils/_expanded_weights/expanded_weights_utils.py:111 in public function `unpack_expanded_weight_or_tensor`:
        D103: Missing docstring in public function
torch/nn/utils/convert_parameters.py:1 at module level:
        D100: Missing docstring in public module
torch/nn/utils/rnn.py:1 at module level:
        D100: Missing docstring in public module
torch/nn/utils/rnn.py:64 in public method `__new__`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:74 in public method `pin_memory`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:81 in public method `cuda`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:88 in public method `cpu`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:95 in public method `double`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:98 in public method `float`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:101 in public method `half`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:104 in public method `long`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:107 in public method `int`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:110 in public method `short`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:113 in public method `char`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:116 in public method `byte`:
        D102: Missing docstring in public method
torch/nn/utils/rnn.py:198 in public function `invert_permutation`:
        D103: Missing docstring in public function
81
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112695
Approved by: https://github.com/mikaylagawarecki
2023-11-07 23:52:16 +00:00
Jason Ansel
c1e2ccdb97 AssertionError -> AttributeError in cuBLASModule (#112606)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112606
Approved by: https://github.com/eellison
2023-11-01 23:23:10 +00:00
Yunfeng Wang
ad24965f6c typo: add space after cudnn error messages (#110806)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110806
Approved by: https://github.com/Skylion007
2023-10-08 20:58:40 +00:00
Aaron Gokaslan
6d725e7d66 [BE]: enable ruff rules PLR1722 and PLW3301 (#109461)
Enables two ruff rules derived from pylint:
* PLR1722 replaces any exit() calls with sys.exit(). exit() is only designed to be used in repl contexts as may not always be imported by default. This always use the version in the sys module which is better
* PLW3301 replaces nested min / max calls with simplified versions (ie. `min(a, min(b, c))` => `min(a, b. c)`). The new version is more idiomatic and more efficient.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109461
Approved by: https://github.com/ezyang
2023-09-18 02:07:21 +00:00
Aaron Gokaslan
660e8060ad [BE]: Update ruff to 0.285 (#107519)
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.

I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
2023-08-22 23:16:38 +00:00
PyTorch MergeBot
d59a6864fb Revert "[BE]: Update ruff to 0.285 (#107519)"
This reverts commit 88ab3e4322.

Reverted https://github.com/pytorch/pytorch/pull/107519 on behalf of https://github.com/ZainRizvi due to Sorry, but this PR breaks internal tests. @ezyang, can you please hep them get unblocked? It seems like one of the strings was prob accidentally modified ([comment](https://github.com/pytorch/pytorch/pull/107519#issuecomment-1688833480))
2023-08-22 19:53:32 +00:00
Aaron Gokaslan
88ab3e4322 [BE]: Update ruff to 0.285 (#107519)
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.

I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
2023-08-20 01:36:18 +00:00
Xiao Wang
21fd2bc32e Allow setting TORCH_LINALG_PREFER_CUSOLVER=1 to prefer cusolver as linear algebra library globally (#106226)
setting TORCH_LINALG_PREFER_CUSOLVER=1

This will allow users to prefer cusolver as linear algebra backend in their container use case. The switch is not enabled by default so it won't change any existing default behavior.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106226
Approved by: https://github.com/lezcano
2023-07-30 09:38:46 +00:00
Edward Z. Yang
3bf922a6ce Apply UFMT to low traffic torch modules (#106249)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106249
Approved by: https://github.com/Skylion007
2023-07-29 23:37:30 +00:00
Justin Chu
4cc1745b13 [BE] f-stringify torch/ and scripts (#105538)
This PR is a follow up on the pyupgrade series to convert more strings to use f-strings using `flynt`.

- https://docs.python.org/3/reference/lexical_analysis.html#f-strings
- https://pypi.org/project/flynt/

Command used:

```
flynt torch/ -ll 120
flynt scripts/ -ll 120
flynt tools/ -ll 120
```

and excluded `collect_env.py`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105538
Approved by: https://github.com/ezyang, https://github.com/malfet
2023-07-21 19:35:24 +00:00
Justin Chu
79c5e33349 [BE] Enable ruff's UP rules and autoformat nn/ mps/ and torch/ (#105436)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105436
Approved by: https://github.com/malfet, https://github.com/albanD
2023-07-21 07:38:46 +00:00
Nikita Shulga
4cfa06f706 [BE] Deprecate has_XYZ attributes (#103279)
Use [`__getattr__`](https://peps.python.org/pep-0562/) to raise warningwhen one tries to access `has_XYZ` methods and recommend appropriate `torch.backends.XYZ` methods

Make respective properties in `torch._C` private (by prefixing them with underscore), to exclude from `from torch._C import *`.

Added `warnings.simplefilter` to workaround Python-3.11 torch.compile lineinfo issue.

Fixes https://github.com/pytorch/pytorch/issues/102484

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103279
Approved by: https://github.com/janeyx99, https://github.com/Skylion007
2023-06-10 05:17:17 +00:00
Nikita Shulga
bf059e3925 [Typing] Export torch.backends as subpackage (#102099)
So that `pyright` is happy.

Do a little refactor in `mps/__init__.py` to avoid cyclical dependency on `torch.fx` by calling `mps._init()` implicitly.

Fixes https://github.com/pytorch/pytorch/issues/101686
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102099
Approved by: https://github.com/Skylion007
2023-05-24 07:03:17 +00:00
Aaron Gokaslan
3e2ea32dab [BE]: Enable ruff rule TRY302 and apply fixes (#101874)
Removes useless try statements and unreachable code.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101874
Approved by: https://github.com/malfet
2023-05-19 17:30:52 +00:00
vfdev-5
6a12f10b08 Publicly exposing torch.backends.cpu.get_cpu_capability() (#100164)
Description:

- As suggested by Nikita, created `torch.backends.cpu` submodule and exposed `get_cpu_capability`.

- In torchvision Resize method we want to know current cpu capability in order to pick appropriate codepath depending on cpu capablities

Newly coded vectorized resize of uint8 images on AVX2 supported CPUs is now faster than older way (uint8->float->resize->uint8). However, on non-avx hardware (e.g. Mac M1) certain configs are slower using native uint8.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100164
Approved by: https://github.com/albanD, https://github.com/malfet
2023-05-03 19:02:07 +00:00
PyTorch MergeBot
380ccfd442 Revert "Added round_with_scale_factor arg to ATen (#97868)"
This reverts commit aa99c5b4ed.

Reverted https://github.com/pytorch/pytorch/pull/97868 on behalf of https://github.com/osalpekar due to Caused breakages in the glow compiler - see [D45374622](https://www.internalfb.com/diff/D45374622) for more details
2023-04-28 20:47:00 +00:00
vfdev-5
aa99c5b4ed Added round_with_scale_factor arg to ATen (#97868)
Addresses #62396 following the strategy described in https://github.com/pytorch/pytorch/pull/64983#issuecomment-1026177629.

Fixing output size to match opencv, scikit-image, scipy if scale factor is specified on ATen side only due to JIT FC.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97868
Approved by: https://github.com/lezcano, https://github.com/mikaylagawarecki
2023-04-26 18:48:37 +00:00
Edward Z. Yang
b8b840be3d Convert logging f-strings to use % format, part five (#98765)
This does some annoying but simple cases by hand.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98765
Approved by: https://github.com/wanchaol
2023-04-11 13:17:59 +00:00
Edward Z. Yang
5a458a9df4 Convert logging f-strings to use % format, part three (#98704)
This does triple-quoted strings.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98704
Approved by: https://github.com/voznesenskym, https://github.com/albanD
2023-04-11 13:17:56 +00:00
Edward Z. Yang
9a8f71f23e Convert logging f-strings to use % format (#98697)
Codemod done with
https://gist.github.com/ezyang/2e8b0463cdc6be278478495b23ff0530 with
assistance from ChatGPT.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98697
Approved by: https://github.com/voznesenskym
2023-04-10 12:19:31 +00:00
Edward Z. Yang
5df59f957f Fix G001,G002,G003 in logs to % syntax (#97812)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97812
Approved by: https://github.com/Skylion007, https://github.com/kiukchung, https://github.com/malfet, https://github.com/mlazos
2023-04-01 01:43:33 +00:00
loganthomas
c848a777e8 DOC: Various typo fixes (#97095)
Various typos found while browsing documentation/source code.

Thank you for a wonderful deep-learning library!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97095
Approved by: https://github.com/mikaylagawarecki, https://github.com/kit1980
2023-03-20 20:46:04 +00:00
min-jean-cho
e70ea8d58d enable taskset core pinning in addition to numactl (#96011)
- port https://github.com/intel-innersource/frameworks.ai.pytorch.ipex-cpu/pull/740 to `run_cpu`
- use-case by https://github.com/pytorch/serve/pull/2166 where `numactl` is unavailable (e.g., requires `privileged` mode)

This PR automatically tries taskset if numactl core binding doesn't work.

Reference:
`taskset` is added to adapt to launcher use-cases such as in docker where `numactl` requires to be ran in  `privileged` mode, where the  `privileged` mode "wont work for deployments like sagemaker for example" as raised by TorchServe. Please see [torchserve ipex docker discussion](https://github.com/pytorch/serve/pull/1401#issuecomment-1090817704) for reference. To address such use-cases, `taskset` can be used in place of `numactl` to set core affinity. Note that, unlike `numactl`, `taskset` does not provide memory binding to local memories; however, memory binding may not be needed in these use-cases  that typically do not span multi sockets. Hence we can automatically try taskset if numactl doesn't work.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96011
Approved by: https://github.com/jgong5, https://github.com/malfet
2023-03-07 01:19:46 +00:00
Nikita Shulga
5de3ead712 [MPS] Add optional minor argument to is_macos13_or_newer (#95065)
Will be needed if one wants to make accurate XFAIL validation

I.e. `torch.backends.mps.is_macos13_or_newer()` will return True if PyTorch is running on MacOS 13.0 or newer, `torch.backends.mps.is_macos13_or_newer(1)` will return True if running on MacOS 13.1 or newer and `torch.backends.mps.is_macos13_or_newer(2)` will return True  if running on MacOS 13.2 or newer

Do not use 13.3 check as `@available` does not really work for shared libraries

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95065
Approved by: https://github.com/albanD
2023-02-17 18:30:20 +00:00
Aaron Gokaslan
b46b2e35d4 [BE] Add flake8-logging-format linter (#94840)
Follow up to #94708
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94840
Approved by: https://github.com/ezyang
2023-02-15 17:54:50 +00:00
Ramin Azarmehr
b57e6fdb50 [MPS] Enable Memory Leak Detection for test_mps.py (#94646)
- To check for Memory Leaks in `test_mps.py`, set the env-variable `PYTORCH_TEST_MPS_MEM_LEAK_CHECK=1` when running test_mps.py (used CUDA code as reference).
- Added support for the following new python interfaces in MPS module:
`torch.mps.[empty_cache(), set_per_process_memory_fraction(), current_allocated_memory(), driver_allocated_memory()]`
- Renamed `_is_mps_on_macos_13_or_newer()` to `_mps_is_on_macos_13_or_newer()`, and `_is_mps_available()` to `_mps_is_available()` to be consistent in naming with prefix `_mps`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94646
Approved by: https://github.com/malfet
2023-02-13 17:56:24 +00:00
Xuehai Pan
5b1cedacde [BE] [2/3] Rewrite super() calls in functorch and torch (#94588)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94588
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-02-10 21:16:33 +00:00
Driss Guessous
70026aaad6 [SDPA] update type hint for scaled_dot_product_attention and documentation (#94008)
# Summary
- Adds type hinting support for SDPA
- Updates the documentation adding warnings and notes on the context manager
- Adds scaled_dot_product_attention to the non-linear activation function section of nn.functional docs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94008
Approved by: https://github.com/cpuhrsch
2023-02-10 18:02:43 +00:00
Xuehai Pan
a229b4526f [BE] Prefer dash over underscore in command-line options (#94505)
Preferring dash over underscore in command-line options. Add `--command-arg-name` to the argument parser. The old arguments with underscores `--command_arg_name` are kept for backward compatibility.

Both dashes and underscores are used in the PyTorch codebase. Some argument parsers only have dashes or only have underscores in arguments. For example, the `torchrun` utility for distributed training only accepts underscore arguments (e.g., `--master_port`). The dashes are more common in other command-line tools. And it looks to be the default choice in the Python standard library:

`argparse.BooleanOptionalAction`: 4a9dff0e5a/Lib/argparse.py (L893-L895)

```python
class BooleanOptionalAction(Action):
    def __init__(...):
            if option_string.startswith('--'):
                option_string = '--no-' + option_string[2:]
                _option_strings.append(option_string)
```

It adds `--no-argname`, not `--no_argname`. Also typing `_` need to press the shift or the caps-lock key than `-`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94505
Approved by: https://github.com/ezyang, https://github.com/seemethere
2023-02-09 20:16:49 +00:00
Aaron Gokaslan
8fce9a09cd [BE]: pyupgrade Python to 3.8 - imports and object inheritance only (#94308)
Apply parts of pyupgrade to torch (starting with the safest changes).
This PR only does two things: removes the need to inherit from object and removes unused future imports.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94308
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-02-07 21:10:56 +00:00
blzheng
0c1777acec Dynamo benchmark: add CPU specific changes (#88477)
This pr adds some CPU specific changes:

- Add support for IPEX backend
- https://github.com/pytorch/torchdynamo/issues/1618
- https://github.com/pytorch/torchdynamo/issues/1534
- Enable CPU launcher in runner.py.
- Fix the issue that some environment variables are not support on CPU

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88477
Approved by: https://github.com/jgong5, https://github.com/jansel
2023-01-07 09:26:06 +00:00
Nikita Shulga
fd3a7264ae [MPS] Add group_norm[fwd+backward] and mean_var (take 2) (#91190)
Use Prims to implement group_norm, group_norm_backward and mean_var

Use `torch._ops.ops` instead of `torch.ops` in numerous subpackages in
order to be able to make them importable from `torch/backend/mps/__init__.py` as this alias is defined in
15af4b1cee/torch/__init__.py (L1095)
is executed last during init process.

Add `__all__` to `torch/backends/mps/__init__.py` as well as alias all imports as private

Add `TestNNMPS.test_group_norm_backward` that validates no NaNs are generated during the backward pass

Fixes https://github.com/pytorch/pytorch/issues/88331
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91190
Approved by: https://github.com/albanD
2022-12-22 08:54:37 +00:00
PyTorch MergeBot
645eda0a00 Revert "[MPS] Add group_norm[fwd+backward] and mean_var (#91190)"
This reverts commit 371716eb36.

Reverted https://github.com/pytorch/pytorch/pull/91190 on behalf of https://github.com/kit1980 due to Broke test_correct_module_names because of underscore _ops
2022-12-21 19:37:43 +00:00
Eddie Yan
8b617f813d [cuBLAS] Add an option to disable reduced precision reductions for BF16 GEMM (#89172)
Essentially the same change as #67946, except that the default is to disallow reduced precision reductions in `BFloat16` GEMMs (for now). If performance is severely regressed, we can change the default, but this option appears to be necessary to pass some `addmm` `BFloat16` tests on H100.

CC @ptrblck @ngimel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89172
Approved by: https://github.com/ngimel
2022-12-21 18:58:28 +00:00
Nikita Shulga
371716eb36 [MPS] Add group_norm[fwd+backward] and mean_var (#91190)
Use Prims to implement group_norm, group_norm_backward and mean_var

Use `torch._ops.ops` instead of `torch.ops` in numerous subpackages in
order to be able to make them importable from `torch/backend/mps/__init__.py` as this alias is defined in
15af4b1cee/torch/__init__.py (L1095)
is executed last during init process.

Depends on https://github.com/pytorch/pytorch/pull/91203

Fixes https://github.com/pytorch/pytorch/issues/88331
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91190
Approved by: https://github.com/albanD
2022-12-21 17:33:27 +00:00
Nikita Shulga
3859aace20 [MPS] Skip tests broken on Ventura (#90843)
Also add `torch.backends.mps.is_macos13_or_newer`
See https://github.com/pytorch/pytorch/issues/85758

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90843
Approved by: https://github.com/kulinseth, https://github.com/albanD
2022-12-14 19:51:00 +00:00
Xiao Wang
e856a4d66b Add an env var to skip cudnn version compatibility check (#89184)
skip the check by setting `PYTORCH_SKIP_CUDNN_COMPATIBILITY_CHECK=1`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89184
Approved by: https://github.com/ngimel
2022-11-17 20:10:52 +00:00
Kazuaki Ishizaki
1cd6ebe095 Fix typos in messages under torch (#89049)
This PR fixes typos of messages in `.py` files under torch directory.
Only in `torch/onnx/symbolic_opset16.py`, fix a typo in comment to make the operator name correct.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89049
Approved by: https://github.com/lezcano
2022-11-17 04:18:14 +00:00
Driss Guessous
b291c1213a Create native function for determining which implementation of SDP to call (#89029)
# Summary
Creates a callable native function that can determine which implementation of scaled dot product will get called. This allows to bump re-order the runtime dispatch of SDP to enable autograd.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89029
Approved by: https://github.com/cpuhrsch
2022-11-16 03:07:54 +00:00
Driss Guessous
35c611d30f Add mem efficient backend flag (#87946)
# Summary
Add in a torch.backends.cuda flag and update context manager to pic between the three implementations of the scaled_dot_product_attention.

cc @cpuhrsch @jbschlosser @bhosmer @mikaylagawarecki
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87946
Approved by: https://github.com/cpuhrsch
2022-10-28 15:51:10 +00:00
Jane Xu
91c7015426 [einsum] Fix opt_einsum defaults to be more reasonable (#86985)
Fixes the confusing situation mentioned here https://github.com/pytorch/pytorch/issues/85224#issuecomment-1278628262 by

- setting better OG defaults
- changing warnings to errors now that we have better defaults

Test plan:
- Ran einsum tests locally + CI
- Uninstalled opt-einsum and ran through setting
     - `enabled` to False (doesn't throw error)
     - `strategy` to anything that's not None (errors)
     - `strategy` to None (noops)
- Installed opt-einsum and ran through setting
     - `enabled` to False (doesn't throw error)
     - `enabled` to True (doesn't throw error, no ops + defaults to 'auto')
     - `strategy` to random string (errors)
     - `strategy` to None (noops, still is 'auto')
     - `strategy` to 'greedy' (is set to 'greedy')
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86985
Approved by: https://github.com/soulitzer
2022-10-15 06:23:50 +00:00
Jane Xu
a348975e00 Add opteinsum backend to give users control (#86219)
This achieves the same things as https://github.com/pytorch/pytorch/pull/85908 but using backends instead of kwargs (which breaks torchscript unfortunately). This also does mean we let go of numpy compatibility BUT the wins here are that users can control what opt einsum they wanna do!

The backend allows for..well you should just read the docs:
```
.. attribute::  torch.backends.opteinsum.enabled

    A :class:`bool` that controls whether opt_einsum is enabled (on by default). If so,
    torch.einsum will use opt_einsum (https://optimized-einsum.readthedocs.io/en/stable/path_finding.html)
    to calculate an optimal path of contraction for faster performance.

.. attribute::  torch.backends.opteinsum.strategy

    A :class:`str` that specifies which strategies to try when `torch.backends.opteinsum.enabled` is True.
    By default, torch.einsum will try the "auto" strategy, but the "greedy" and "optimal" strategies are
    also supported. Note that the "optimal" strategy is factorial on the number of inputs as it tries all
    possible paths. See more details in opt_einsum's docs
    (https://optimized-einsum.readthedocs.io/en/stable/path_finding.html).
```

In trying (and failing) to land 85908, I discovered that jit script does NOT actually pull from python's version of einsum (because it cannot support variadic args nor kwargs). Thus I learned that jitted einsum does not subscribe to the new opt_einsum path calculation. Overall, this is fine since jit script is getting deprecated, but where is the best place to document this?

## Test plan:
- added tests to CI
- locally tested that trying to set the strategy to something invalid will error properly
- locally tested that tests will pass even if you don't have opt-einsum
- locally tested that setting the strategy when opt-einsum is not there will also error properly
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86219
Approved by: https://github.com/soulitzer, https://github.com/malfet
2022-10-05 06:33:25 +00:00
Driss Guessous
cd6477617c Custom sdp implementations dense (#85984)
# Summary

- This code creates the runtime dispatch system for choosing a performant fused SDP kernel. The only choice of fused kernel is flash_attention. It also creates python flags and a context manager that can be used to turn off and on behavior for dispatch.
- This also adds support for flash_attention with dense tensors.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85984
Approved by: https://github.com/cpuhrsch
2022-10-03 17:36:37 +00:00
Xia, Weiwen
3a3e2002d8 [Quant] Add unified x86 quant backend (#84329)
## Description

Implement unified quantization backend 'X86' for x86 platforms. It combines the advantages of FBGEMM and ONEDNN. It selects kernels during weight prepacking and hide the details from end users. It will be the default backend in place of FBGEMM.

For details, please refer to this RFC: [[RFC] Unified quantization backend for x86 CPU platforms](https://github.com/pytorch/pytorch/issues/83888)

## Validation
**Correctness**
Covered by UT

**Accuracy**
By running torchvision models on imagenet, no accuracy difference is found between FBGEMM and the unified X86 backend:
[torchvision_accuracy_comparison_fbgemm_vs_x86.xlsx](https://github.com/pytorch/pytorch/files/9598114/torchvision_accuracy_comparison_fbgemm_vs_x86.xlsx)

**Performance**
Depends on https://github.com/pytorch/pytorch/pull/84470 which improves performance.
For early PoC results, please refer to https://github.com/pytorch/pytorch/files/9399202/unified_qengine_poc_performance_bechmark.xlsx

With the two PRs combined, we collected some data on Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz
Method: Run multi-instances with 4 cores per instance on whole socket. Using JeMalloc and Intel OMP.
Models/throughput | fbgemm | x86 | improvement
-- | -- | -- | --
wide_resnet101_2 | 173.5675 | 241.815 | 39.32%
resnext101_32x8d | 174.365 | 339.8175 | 94.89%
resnet50 | 573.155 | 1174.14 | 104.86%
vgg19_bn | 260.335 | 337.92 | 29.80%
vgg19 | 257.935 | 333.265 | 29.21%
inception_v3 | 601.1175 | 1309.33 | 117.82%
densenet161 | 296.645 | 435.5625 | 46.83%
mnasnet1_0 | 1216.7 | 4057.515 | 233.49%
squeezenet1_0 | 1220.085 | 5153.3875 | 322.38%
alexnet | 2294.91 | 2624.6375 | 14.37%
fbnetc_100 | 976.2825 | 3110.1825 | 218.57%
shufflenet_v2_x0_5 | 1555.76 | 3026.125 | 94.51%
spnasnet_100 | 1059.065 | 3502.0975 | 230.68%
pytorch-unet | 192.76 | 246.77 | 28.02%
acgan | 257.32 | 333.7325 | 29.70%
cgan | 7790.6925 | 7803.1025 | 0.16%
sgan | 257.565 | 338.8875 | 31.57%
se_resnet50 | 492.3725 | 916.5175 | 86.14%
vggm | 300.2875 | 316.2075 | 5.30%

Environment:
- PyTorch version: 1.13.0a0+gitcdd625b
- Is debug build: False
- CUDA used to build PyTorch: None
- ROCM used to build PyTorch: N/A
- OS: Ubuntu 20.04.3 LTS (x86_64)
- GCC version: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0
- Clang version: Could not collect
- CMake version: version 3.22.5
- Libc version: glibc-2.31
- Python version: 3.9.12 (main, Jun  1 2022, 11:38:51)  [GCC 7.5.0] (64-bit runtime)
- Python platform: Linux-5.11.0-27-generic-x86_64-with-glibc2.31
- Is CUDA available: False
- CUDA runtime version: No CUDA
- GPU models and configuration: No CUDA
- Nvidia driver version: No CUDA
- cuDNN version: No CUDA
- HIP runtime version: N/A
- MIOpen runtime version: N/A
- Is XNNPACK available: True

Versions of relevant libraries:
- [pip3] intel-extension-for-pytorch==1.13.0+cpu
- [pip3] numpy==1.23.3
- [pip3] pytorch-widedeep==0.3.7
- [pip3] torch==1.13.0a0+git48b423b
- [pip3] torchvision==0.14.0a0+ebb68f3
- [conda] blas                      1.0                         mkl
- [conda] intel-extension-for-pytorch 1.13.0+cpu               pypi_0    pypi
- [conda] mkl                       2021.4.0           h06a4308_640
- [conda] mkl-include               2022.1.0                 pypi_0    pypi
- [conda] mkl-service               2.4.0            py39h7f8727e_0
- [conda] mkl-static                2022.1.0                 pypi_0    pypi
- [conda] mkl_fft                   1.3.1            py39hd3c417c_0
- [conda] mkl_random                1.2.2            py39h51133e4_0
- [conda] numpy                     1.23.3                   pypi_0    pypi
- [conda] numpy-base                1.22.3           py39hf524024_0
- [conda] torch                     1.13.0a0+git48b423b          pypi_0    pypi
- [conda] torchvision               0.14.0a0+ebb68f3          pypi_0    pypi

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84329
Approved by: https://github.com/jerryzh168
2022-09-29 00:44:40 +00:00
anjali411
cf2f552cd8 Add __all__ to torch.{fx, distributed, backends} submodules (#85079)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85079
Approved by: https://github.com/rohan-varma
2022-09-20 12:51:08 +00:00
Bartek Rymkowski
0a6f32619e CoreML .mlmodel export support (#84784)
Test Plan: This was tested manually - model was exported and XCode was used to analyze it

Reviewed By: jmdetloff

Differential Revision: D39048536

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84784
Approved by: https://github.com/jmdetloff
2022-09-17 02:06:43 +00:00