* start at generic trilinear
* Implement einsum (fixes#1889)
This provides a simple implementation of einsum. It is built on
top of the work for computing bilinear (#6110).
It uses a naive left-to-right resolution at the moment.
Autograd is able to differentiate by itself.
The obvious unsupported feature is taking diagonals (einsum('ii->i',(a,)).
* add tests and docs
* fix flake8
* clean diff
* rebase on current master to resolve conflicting String wrapping
* clean up after rebase
* better commentary in einsum and sumproduct_pair
* don't say fixme if it's fixed and rename num_outputs to num_output_dims
* adapt python wrapper to use std::string instead of String to avoid typedef at::String
* typos and some vector to array conversion
* fix accidental python<->python3 change
* really fix bad rebase
* Codemod to update our codebase to 0.4 standard
* Update some of the test scri[ts
* remove Variable in test_clip_grad_value
* fix _symbolic_override_wrapper_maker
Changes:
- Deleted docs for old constructor. Add link to new `torch.tensor` ctor
- Add docs for `torch.tensor`
- Add some info on dtypes to the top of `tensors.rst`.
Introducing two updates.
1. Add param to He initialization scheme in torch.nn.init
Problem solved:
The function calculate_gain can take an argument to specify the type of non-linearity used. However, it wasn't possible to pass this argument directly to the He / Kaiming weight initialization function.
2. Add util to clip gradient value in torch.nn.utils.clip_grad
Problem solved:
DL libraries typically provide users with easy access to functions for clipping the gradients both using the norm and a fixed value. However, the utils clip_grad.py only had a function to clip the gradient norm.
* add param to He initialization scheme in torch.nn.init
* add util to clip gradient value in torch/nn/utils/clip_grad.py
* update doc in torch.nn.utils.clip_grad
* update and add test for torch.nn.utils.clip_grad
* update function signature in torch.nn.utils.clip_grad to match suffix_ convention
* ensure backward compatibility in torch.nn.utils.clip_grad
* remove DeprecationWarning in torch.nn.utils.clip_grad
* extend test and implementation of torch.nn.utils.clip_grad
* update test and implementation torch.nn.utils.clip_grad
* Add device docs; match constructor parameter names with attribute names.
* Use double quotes for strings.
* Update printing.
* Separate device ordinal-only construction into a separate note.
* Use current device.
* Split set_default_tensor_type(dtype) into set_default_dtype(dtype).
* Fix flake8.
The difference between this one and set_default_tensor_type is that it only sets scalar type what determines the type + device of a tensor returned from a factory function with defaults is the default tensor type + the current device (if the default tensor type is cuda). This just changes the scalar type of the default tensor type.
We do eventually want to deprecate set_default_tensor_type; it is not clear how to do that in a sensible and backwards compatible way.
* added randint function in ATEN yaml as well as Tensorfactories.cpp
* corrected randint
* randint with overloading complete,getting tuple of ints behaviour though
* done randintlike and randint_out
Left : adding docs and test, and remove the bug on size = (5)
* Removed my error messages, ThRandomTensor will handle all exceptions
* added docs and tests, corrected a mistake
Tested with manual seeds in some test cases as well. Seems fine to me (check documentation though)
* corrected indentation to spaces, and improved sizes argument description
* made documentation argument description shorter
* added whitespace after ',' in torch docs
* addes spaces in documentation
* added more tests (including bounds and overloading features)
* added whitespaces in test_torch
* removed trailing whitespaces
* removed whitespace from a blank line
* removed positive requirement from docs. Added dtype argument and gave eg
* made randint over randn in all files
* changed to data type for dtype in docs for randint
* added autofunction entry for randint in torch.rst
* change irfft signal_sizes arg to be the last
* add docs for fft, ifft, rfft, irfft; update doc for stft
* fix typo in window function docs
* improve gradcheck error message
* implement backward of fft, ifft, rfft, irfft
* add grad tests for fft, ifft, rfft, irfft
* fix nits and typos from #6118
* address comments
* Autograd container for trading compute for memory
* add a unit test for checkpoint
* address comments
* address review comments
* adding some docs for the checkpoint api
* more comments
* more comments
* repro bug
* Fix a subtle bug/apply some review comments
* Update checkpoint.py
* Run everything in grad mode
* fix flake and chunk=1
* use imperative backward as per discussion
* remove Variable and also add models and test for models
* Add a simple thread local variable to check for autograd grad mode
* remove models and models test after debugging
* address review comments
* address more comments
* address more comments
Part of #5738. Warns users that they're not viewing the latest stable
release docs.
We should remember to delete this when cutting out 0.4.0 release docs. (we'd just delete the div in pytorch.github.io)
Fixes#6312.
Changed bottleneck's arg parser to user argparse.REMAINDER. This lets
the user specify args as `python -m torch.utils.bottleneck script.py
[args]` (previously, a -- was needed after `bottleneck` and before
`script.py`).
* Implemented log2 and log10
* Re-add incorrectly removed files
* Fix minor bugs
* Fix log1p docs
* Add a try-except for python2 math module in log2 test
* Revert changes made to aten/doc/*
* Fix docstring errors
* Fix windows build
* Add max_values and argmax convenience functions to ATen
* Add documentation for torch.argmax/argmin and skip max_values
* Add tests for argmax/argmin
* Dont default the dim argument
* Use dim=0 in test_torch.py for argmax tests
* Implement argmin() and argmax() without dim
* Call .contiguous() before .view(-1)
This PR enables users to print extra information of their subclassed nn.Module.
Now I simply insert the user-defined string at the ending of module name, which should be discussed in this PR.
Before this PR, users should redefine the __repr__ and copy&paste the source code from Module.
* Add support for extra information on Module
* Rewrite the repr method of Module
* Fix flake8
* Change the __repr__ to get_extra_repr in Linear
* Fix extra new-line for empty line
* Add test for __repr__ method
* Fix bug of block string indent
* Add indent for multi-line repr test.
* Address review comments
* Update tutorial for creating nn.Module
* Fix flake8, add extra_repr of bilinear
* Refactor DropoutNd
* Change to extra_repr in some Modules
* Fix flake8
* Refactor padding modules
* Refactor pooling module
* Fix typo
* Change to extra_repr
* Fix bug for GroupNorm
* Fix bug for LayerNorm
* Deprecate ctx.saved_variables via python warning.
Advises replacing saved_variables with saved_tensors.
Also replaces all instances of ctx.saved_variables with ctx.saved_tensors in the
codebase.
Test by running:
```
import torch
from torch.autograd import Function
class MyFunction(Function):
@staticmethod
def forward(ctx, tensor1, tensor2):
ctx.save_for_backward(tensor1, tensor2)
return tensor1 + tensor2
@staticmethod
def backward(ctx, grad_output):
var1, var2 = ctx.saved_variables
return (grad_output, grad_output)
x = torch.randn((3, 3), requires_grad=True)
y = torch.randn((3, 3), requires_grad=True)
model = MyFunction()
model.apply(x, y).sum().backward()
```
and assert the warning shows up.
* Address comments
* Add deprecation test for saved_variables
* Implement torch.util.bottleneck
This is a tool that is intended to be used as initial exploratory
debugging of bottlenecks in user scripts. Run it with
python -m torch.utils.bottleneck /path/to/source/script.py
* Refactor and address comments
* Fix tests
* Allow passing of args to the profiled script
* Replace Variable
* Implement torch.reshape and Tensor.reshape
This implements reshape which has similar semantics to numpy.reshape. It
will return a view of the source tensor if possible. Otherwise, it
returns a copy.
* Remove in-place reshape_ that was an alias for resize_
* Update documentation
* Improvize documentation
1. Add formula for erf, erfinv
2. Make exp, expm1 similar to log, log1p
3. Symbol change in ge, le, ne, isnan
* Fix minor nit in the docstring
* More doc improvements
1. Added some formulae
2. Complete scanning till "Other Operations" in Tensor docs
* Add more changes
1. Modify all torch.Tensor wherever required
* Fix Conv docs
1. Fix minor nits in the references for LAPACK routines
* Improve Pooling docs
1. Fix lint error
* Improve docs for RNN, Normalization and Padding
1. Fix flake8 error for pooling
* Final fixes for torch.nn.* docs.
1. Improve Loss Function documentation
2. Improve Vision Layers documentation
* Fix lint error
* Improve docstrings in torch.nn.init
* Fix lint error
* Fix minor error in torch.nn.init.sparse
* Fix Activation and Utils Docs
1. Fix Math Errors
2. Add explicit clean to Makefile in docs to prevent running graph generation script
while cleaning
3. Fix utils docs
* Make PYCMD a Makefile argument, clear up prints in the build_activation_images.py
* Fix batch norm doc error
Questions/possible future works:
How to template-ize to extend support beyond LongTensor?
How to check if autograd works (and if not, how to add explicit gradient)?
CUDA support?
Testing command:
DEBUG=1 NO_CUDA=1 MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py build && DEBUG=1 NO_CUDA=1 MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py develop && python3 test/test_torch.py
Partially fixes#2031
* Initial commit for unique op
* Working unique with test
* Make inverse indices shape conform to input
* flake8 whitespace removal
* address review comment nits
* Expose fn and add docs. Explicitly declare no gradients
* Trial generic dispatch implementation
* Add tests for generics
* flake8 whitespace
* Add basic CUDA error throwing and templateize set
* Explicit contiguous and AT_DISPATCH_ALL_TYPES return
* Remove extraneous numpy conversion
* Refactor out .data calls
* Refactored to variable return length API with wrapper fn as opposed to returning a 0-length tensor, per off-line reviewer comments
* Remove A
* Don't use hidden torch._unique() in test
* Fix documentations
* at::maybe_data_ptr and Check.h => TensorUtils.h
* THNN support for optional BN running_*
* ATen support for optional BN running_*
* Python nn.* support for optional BN running_*; Improve IN and BN doc
* Add tests for IN and BN new option
* Layer Norm
* Fix LRN doc
* functional interface for LN and IN
* Layer norm tests
* fix BN double backward returning undefined tensors
* fix jit test using wrong dim inputs for BN
* add/improve BN, IN and LN GPU tests with half type
* Udpate docs to be consistent with Conv notation
Fix onnx
Clarified onnx symbokic wrapper
* fix typo
* Address comments
* Add a FAQ, for now just 'out of memory' advice.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Updates based on comments.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* minor copyedit
* Fix LaTex rendering in CosineAnnealingLR
Backslashes were interpreted by Python as escapes in the string, so \frac
turned into frac, which is not a valid LaTex command.
This could be fixed with double backslashes, but the easiest solution is to
just use a raw (r) docstring.
* Fix sphinx warnings for LRN doc headings
* Move LRN docstring from __init__ to class level
The docstring was not rendered by sphinx at
http://pytorch.org/docs/master/nn.html#torch.nn.LocalResponseNorm
because it was in the constructor.
* Remove superfluous backticks from LRN formula
* Add a small paragraph for pathwise estimator
* Add differentiability as well
* Add small snippet and clear some grammatical errors
* Update documentation to reflect has_rsample
* Add a fix for ExponentialFamily docs
* Update __init__.py
* ONNX: export sum, prod, sqrt improve log_softmax and fix a typo in doc.
Signed-off-by: HE, Tao <sighingnow@gmail.com>
* Add new exported op to doc.
Signed-off-by: HE, Tao <sighingnow@gmail.com>
* Double quotes.
Signed-off-by: HE, Tao <sighingnow@gmail.com>
* Update trace log of log_softmax.
Signed-off-by: HE, Tao <sighingnow@gmail.com>
* Improve export when dim is None and axes_i should be a list of ints.
Signed-off-by: HE, Tao <sighingnow@gmail.com>
* Fix prod when no dim given.
Signed-off-by: HE, Tao <sighingnow@gmail.com>
* Update line ends in test expected file.
Signed-off-by: HE, Tao <sighingnow@gmail.com>
For example, this splits threshold into threshold(), which is now
never in-place, and threshold_() which is always in-place.
This simplifies the in-place vs. non-in-place logic in
gen_variable_type.py, which was bug-prone.
* Add torch.take and Tensor.put_
These are similar to numpy.take and numpy.put. The take function allows
you to linearly index into a tensor without viewing it as a 1D tensor
first. The output has the same shape as the indices. The put function
copies value into a tensor also using linear indices.
This removes the StochasticFunctions for bernoulli, multinomial, and
normal and replaces them with classes in the torch.distributions
package. Each distribution supports the differentiable log_prob function
that returns the log of the pdf/pmf of the samples.
The current StochasticFunction implementation has a few problems: it can
be painful to use when there are multiple stochastic outputs which need
to be back-propagated through. It also requires that we store grad_fns
on Variables that have requires_grad=False in order to find stochastic
nodes.
This adds the PyTorch API user documentation for Toffee.
To make the example work, I also converted all "inplace"
ops to export out-of-place in Toffee.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
- BC BREAKING: export now also takes a mandatory file-ish argument, specifying
the file to export the protobuf to. I rewrote the tests to use BytesIO to
get out the string so they could parse it again.
- BC BREAKING: export no longer returns the tensors that were computed. To
get these, use the internal _export function.
- Multiple inputs to models are now supported by passing a tuple to input.
(Old API of a single Variable still works.)
- Keyword arguments to models are now supported via kwargs keyword arg.
- Renamed embed_params to export_params, and it now defaults to True.
- Toffee tests now live in their own test_toffee.py file. I had to
rename a pile of expect files for this.
- Removed defunct torch.toffee imports from autograd to solve module import
cycle.
- Helper function _with_file_like to abstract over opening file-ish arguments,
taken from torch.save()
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Basically, it's easy to confuse the dimensions of the index tensor.
This adds some more text which should hopefully clarify the situation.
Fixes#2416.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* add dropout2d and dropout3d to functional
added some loss functions to functional
added tests
using dropout from backend
added docs
fixes
* edited loss modules to call functional
* Add weight normalization implementation
This adds forward "pre-hooks" which get called before the module's
forward() method. Weight norm is implemented as a hook which calculates
the weight variable from the weight_g and weight_v every iteration.
Based on @rtqichen implementation.
* Specify return type
* Add torch.matmul function.
Includes test_torch, test_autograd and docs changes.
* Add __all__ to functional so imports are accidentally imported.
* Include unbind in __all__.
* Add matmul case for when one argument is 1-dimensional and the other
at least 3-dimensional.
* Add squeeze_ to Variable.
* Use squeeze_ instead of squeeze for matmul.
1) Line up trailing dimensions in broadcast docs.
2) remove unnecessary expand_as in common_nn test.
3) use view in tensor_str instead of resize_.
4) newExpand remove raiseErrors change.
5) clarify expandedSizes/expandedStrides parameters in inferExpandGeometry.
6) simplify inferSize2/inferSizeN implementations.
7) use new-style classes for warning.
* Modify torchvision documentation following https://github.com/pytorch/vision/pull/179
* Add new datasets to docs
* Fix wording in torch.datasets
* Small clarification
As discussed in #1441.
I also added some docs giving clear guidance about how to coalescing
in sparse tensors.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Add more detail to CUDA documentation
Also adds better cross-linking to the pages that discuss relevant topics.
* Adds recommendation to torch.save docs
* Make the version numbers for the docs dynamic
Might need tweaks for beta, 1.0, etc.
Here's the command I used to invoke autopep8 (in parallel!):
git ls-files | grep '\.py$' | xargs -n1 -P`nproc` autopep8 -i
Several rules are ignored in setup.cfg. The goal is to let autopep8
handle everything which it can handle safely, and to disable any rules
which are tricky or controversial to address. We may want to come back
and re-enable some of these rules later, but I'm trying to make this
patch as safe as possible.
Also configures flake8 to match pep8's behavior.
Also configures TravisCI to check the whole project for lint.
* Always compile .numpy() for all types
* Add torch.nn.functional docs and hidden headers
* Use sphinx to generate torchvision docs
* Remove unused import in ffi utils