Generate static docstrings for torch._masked functions. (#72865)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72865

Fixes #72636

Test Plan: Imported from OSS

Reviewed By: zou3519

Differential Revision: D34286183

Pulled By: cpuhrsch

fbshipit-source-id: 9cf81bfed6ba8c82593f6a1d9e0b20d0a083310d
(cherry picked from commit 0a3f57896b)
This commit is contained in:
Pearu Peterson 2022-02-16 18:40:19 -08:00 committed by PyTorch MergeBot
parent 1f74e082e2
commit 456d96d544
3 changed files with 815 additions and 6 deletions

View File

@ -0,0 +1,58 @@
"""This script updates the file torch/_masked/_docs.py that contains
the generated doc-strings for various masked operations. The update
should be triggered whenever a new masked operation is introduced to
torch._masked package. Running the script requires that torch package
is functional.
"""
import os
def main() -> None:
target = os.path.join('torch', '_masked', '_docs.py')
try:
import torch
except ImportError as msg:
print(f'Failed to import torch required to build {target}: {msg}')
return
if os.path.isfile(target):
with open(target) as _f:
current_content = _f.read()
else:
current_content = ''
_new_content = []
_new_content.append('''\
# -*- coding: utf-8 -*-
# This file is generated, do not modify it!
#
# To update this file, run the update masked docs script as follows:
#
# python tools/update_masked_docs.py
#
# The script must be called from an environment where the development
# version of torch package can be imported and is functional.
#
''')
for func_name in sorted(torch._masked.__all__):
func = getattr(torch._masked, func_name)
func_doc = torch._masked._generate_docstring(func)
_new_content.append(f'{func_name}_docstring = """{func_doc}"""\n')
new_content = '\n'.join(_new_content)
if new_content == current_content:
print(f'Nothing to update in {target}')
return
with open(target, 'w') as _f:
_f.write(new_content)
print(f'Successfully updated {target}')
if __name__ == '__main__':
main()

View File

@ -2,8 +2,10 @@
from typing import Optional, Tuple, List, Union, Any
import warnings
import torch
from torch import Tensor
from . import _docs
# A workaround to support both TorchScript and MyPy:
from typing import TYPE_CHECKING
@ -27,6 +29,26 @@ def _apply_docstring_templates(func):
"""Decorator that applies docstring templates to function docstring
and returns the function instance.
"""
doc_string = getattr(_docs, f'{func.__name__}_docstring', None)
if doc_string is None:
warnings.warn(
f'No documentation string available for {func.__name__}.'
' PyTorch team should run `python tools/update_masked_docs.py`'
' to generate the missing docstrings.')
else:
func.__doc__ = doc_string
# Expose function as public symbol
__all__.append(func.__name__)
return func
def _generate_docstring(func):
"""An utility function called from tools/update_masked_docs.py
script to update the module torch._masked._docs.py
"""
docstring_templates = dict(
reduction_signature='''\
{function_name}(input, {operation_args}, *, {operation_kwargs}) -> Tensor''',
@ -297,12 +319,7 @@ defined as ``x[i]/max(norm(x, p), eps)``.''')
doc_template = '\n\n'.join([f'{{{op_kind}_{sec}}}' for sec in doc_sections])
else:
doc_template = func.__doc__
func.__doc__ = doc_template.format_map(templates)
# Expose function as public symbol
__all__.append(func.__name__)
return func
return doc_template.format_map(templates)
def _reduction_identity(op_name: str, input: Tensor, *args):

734
torch/_masked/_docs.py Normal file
View File

@ -0,0 +1,734 @@
# -*- coding: utf-8 -*-
# This file is generated, do not modify it!
#
# To update this file, run the update masked docs script as follows:
#
# python tools/update_masked_docs.py
#
# The script must be called from an environment where the development
# version of torch package can be imported and is functional.
#
amax_docstring = """amax(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns maximum of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of maximum operation, which is used to start the
reduction, depends on input dtype. For instance, for float32, uint8,
and int32 dtypes, the identity values are ``-inf``, ``0``, and ``-2147483648``, respectively.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in maximum computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of maximum operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch._masked.amax(input, 1, mask=mask)
tensor([ -1, -9223372036854775808])
"""
amin_docstring = """amin(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns minimum of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of minimum operation, which is used to start the
reduction, depends on input dtype. For instance, for float32, uint8,
and int32 dtypes, the identity values are ``inf``, ``255``, and ``2147483647``, respectively.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in minimum computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of minimum operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch._masked.amin(input, 1, mask=mask)
tensor([ -3, 9223372036854775807])
"""
log_softmax_docstring = """log_softmax(input, dim, *, dtype=None, mask=None) -> Tensor
Returns log_softmax of all the slices in the :attr:`input` tensor
along :attr:`dim` while the :attr:`input` elements are masked out
according to the boolean tensor :attr:`mask`.
Let ``x`` be a sequence of unmasked elements of one-dimensional slice
of the :attr:`input` tensor. LogSoftmax of i-th element in ``x`` is
defined as ``log(exp(x[i])/sum(exp(x)))``.
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True then
the corresponding element in :attr:`input` tensor will be included in
log_softmax computation, otherwise the element is ignored.
The values of masked-out elements of the output tensor have undefined
value: it may or may not be set to zero or nan; the choice may correspond to
the value that leads to the most efficient storage of :attr:`output`
tensor.
The mask of the log_softmax output tensor can be computed as
``torch.broadcast_to(mask, input.shape)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int): the dimension along which log_softmax is computed.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]])
>>> input
tensor([[-3., -2., -1.],
[ 0., 1., 2.]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch._masked.log_softmax(input, 1, mask=mask)
tensor([[-2.1269, -inf, -0.1269],
[ nan, nan, nan]])
"""
mean_docstring = """mean(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns mean of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
By definition, the identity value of a mean operation is the mean
value of the tensor. If all elements of the input tensor along given
dimension(s) :attr:`dim` are masked-out, the identity value of the
mean is undefined. Due to this ambiguity, the elements of output
tensor with strided layout, that correspond to fully masked-out
elements, have ``nan`` values.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in mean computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of mean operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch._masked.mean(input, 1, mask=mask)
tensor([-2., nan])
"""
norm_docstring = """norm(input, ord, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns norm of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of norm operation, which is used to start the
reduction, is ``0.0``, except for ``ord=-inf`` it is
``inf``.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in norm computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of norm operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
ord (int, float, optional): the order of vector norm. Default: 2.
See :func:`torch.linalg.vector_norm` for a list of supported norms.
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]])
>>> input
tensor([[-3., -2., -1.],
[ 0., 1., 2.]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch._masked.norm(input, 2.0, 1, mask=mask)
tensor([3.1623, 0.0000])
"""
normalize_docstring = """normalize(input, ord, dim, *, eps=1e-12, dtype=None, mask=None) -> Tensor
Returns normalize of all the slices in the :attr:`input` tensor
along :attr:`dim` while the :attr:`input` elements are masked out
according to the boolean tensor :attr:`mask`.
Let ``x`` be a sequence of unmasked elements of one-dimensional slice
of the :attr:`input` tensor. Normalize of i-th element in ``x`` is
defined as ``x[i]/max(norm(x, p), eps)``.
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True then
the corresponding element in :attr:`input` tensor will be included in
normalize computation, otherwise the element is ignored.
The values of masked-out elements of the output tensor have undefined
value: it may or may not be set to zero or nan; the choice may correspond to
the value that leads to the most efficient storage of :attr:`output`
tensor.
The mask of the normalize output tensor can be computed as
``torch.broadcast_to(mask, input.shape)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
ord (int, float): the order of vector norm. Default: 2.
See :func:`torch.linalg.vector_norm` for a list of supported norms.
dim (int): the dimension along which normalize is computed.
Keyword args:
eps (float, optional): small value to avoid division by zero. Default: 1e-12.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]])
>>> input
tensor([[-3., -2., -1.],
[ 0., 1., 2.]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch._masked.normalize(input, 2.0, 1, mask=mask)
tensor([[-0.9487, 0.0000, -0.3162],
[ 0.0000, 0.0000, 0.0000]])
"""
prod_docstring = """prod(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns product of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of product operation, which is used to start the reduction, is ``1``.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in product computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of product operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch._masked.prod(input, 1, mask=mask)
tensor([3, 1])
"""
softmax_docstring = """softmax(input, dim, *, dtype=None, mask=None) -> Tensor
Returns softmax of all the slices in the :attr:`input` tensor
along :attr:`dim` while the :attr:`input` elements are masked out
according to the boolean tensor :attr:`mask`.
Let ``x`` be a sequence of unmasked elements of one-dimensional slice
of the :attr:`input` tensor. Softmax of i-th element in ``x`` is
defined as ``exp(x[i])/sum(exp(x))``.
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True then
the corresponding element in :attr:`input` tensor will be included in
softmax computation, otherwise the element is ignored.
The values of masked-out elements of the output tensor have undefined
value: it may or may not be set to zero or nan; the choice may correspond to
the value that leads to the most efficient storage of :attr:`output`
tensor.
The mask of the softmax output tensor can be computed as
``torch.broadcast_to(mask, input.shape)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int): the dimension along which softmax is computed.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]])
>>> input
tensor([[-3., -2., -1.],
[ 0., 1., 2.]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch._masked.softmax(input, 1, mask=mask)
tensor([[0.1192, 0.0000, 0.8808],
[ nan, nan, nan]])
"""
softmin_docstring = """softmin(input, dim, *, dtype=None, mask=None) -> Tensor
Returns softmin of all the slices in the :attr:`input` tensor
along :attr:`dim` while the :attr:`input` elements are masked out
according to the boolean tensor :attr:`mask`.
Let ``x`` be a sequence of unmasked elements of one-dimensional slice
of the :attr:`input` tensor. Softmin of i-th element in ``x`` is
defined as ``exp(-x[i])/sum(exp(-x))``.
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True then
the corresponding element in :attr:`input` tensor will be included in
softmin computation, otherwise the element is ignored.
The values of masked-out elements of the output tensor have undefined
value: it may or may not be set to zero or nan; the choice may correspond to
the value that leads to the most efficient storage of :attr:`output`
tensor.
The mask of the softmin output tensor can be computed as
``torch.broadcast_to(mask, input.shape)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int): the dimension along which softmin is computed.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]])
>>> input
tensor([[-3., -2., -1.],
[ 0., 1., 2.]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch._masked.softmin(input, 1, mask=mask)
tensor([[0.8808, 0.0000, 0.1192],
[ nan, nan, nan]])
"""
sum_docstring = """sum(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns sum of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of sum operation, which is used to start the reduction, is ``0``.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in sum computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of sum operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch._masked.sum(input, 1, mask=mask)
tensor([-4, 0])
"""
var_docstring = """var(input, dim, unbiased, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns variance of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of sample variance operation is undefined. The
elements of output tensor with strided layout, that correspond to
fully masked-out elements, have ``nan`` values.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in variance computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of variance operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
unbiased (bool): when True, use Bessels correction, otherwise, compute
the uncorrected sample variance.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch._masked.var(input, 1, False, mask=mask)
tensor([1., nan])
"""