diff --git a/tools/update_masked_docs.py b/tools/update_masked_docs.py new file mode 100644 index 00000000000..6d705d59100 --- /dev/null +++ b/tools/update_masked_docs.py @@ -0,0 +1,58 @@ +"""This script updates the file torch/_masked/_docs.py that contains +the generated doc-strings for various masked operations. The update +should be triggered whenever a new masked operation is introduced to +torch._masked package. Running the script requires that torch package +is functional. +""" + +import os + +def main() -> None: + + target = os.path.join('torch', '_masked', '_docs.py') + + try: + import torch + except ImportError as msg: + print(f'Failed to import torch required to build {target}: {msg}') + return + + if os.path.isfile(target): + with open(target) as _f: + current_content = _f.read() + else: + current_content = '' + + _new_content = [] + _new_content.append('''\ +# -*- coding: utf-8 -*- +# This file is generated, do not modify it! +# +# To update this file, run the update masked docs script as follows: +# +# python tools/update_masked_docs.py +# +# The script must be called from an environment where the development +# version of torch package can be imported and is functional. +# +''') + + for func_name in sorted(torch._masked.__all__): + func = getattr(torch._masked, func_name) + func_doc = torch._masked._generate_docstring(func) + _new_content.append(f'{func_name}_docstring = """{func_doc}"""\n') + + new_content = '\n'.join(_new_content) + + if new_content == current_content: + print(f'Nothing to update in {target}') + return + + with open(target, 'w') as _f: + _f.write(new_content) + + print(f'Successfully updated {target}') + + +if __name__ == '__main__': + main() diff --git a/torch/_masked/__init__.py b/torch/_masked/__init__.py index a1b398cb2f4..e3ed37af443 100644 --- a/torch/_masked/__init__.py +++ b/torch/_masked/__init__.py @@ -2,8 +2,10 @@ from typing import Optional, Tuple, List, Union, Any +import warnings import torch from torch import Tensor +from . import _docs # A workaround to support both TorchScript and MyPy: from typing import TYPE_CHECKING @@ -27,6 +29,26 @@ def _apply_docstring_templates(func): """Decorator that applies docstring templates to function docstring and returns the function instance. """ + + doc_string = getattr(_docs, f'{func.__name__}_docstring', None) + if doc_string is None: + warnings.warn( + f'No documentation string available for {func.__name__}.' + ' PyTorch team should run `python tools/update_masked_docs.py`' + ' to generate the missing docstrings.') + else: + func.__doc__ = doc_string + + # Expose function as public symbol + __all__.append(func.__name__) + + return func + + +def _generate_docstring(func): + """An utility function called from tools/update_masked_docs.py + script to update the module torch._masked._docs.py + """ docstring_templates = dict( reduction_signature='''\ {function_name}(input, {operation_args}, *, {operation_kwargs}) -> Tensor''', @@ -297,12 +319,7 @@ defined as ``x[i]/max(norm(x, p), eps)``.''') doc_template = '\n\n'.join([f'{{{op_kind}_{sec}}}' for sec in doc_sections]) else: doc_template = func.__doc__ - func.__doc__ = doc_template.format_map(templates) - - # Expose function as public symbol - __all__.append(func.__name__) - - return func + return doc_template.format_map(templates) def _reduction_identity(op_name: str, input: Tensor, *args): diff --git a/torch/_masked/_docs.py b/torch/_masked/_docs.py new file mode 100644 index 00000000000..b8519b5f8f7 --- /dev/null +++ b/torch/_masked/_docs.py @@ -0,0 +1,734 @@ +# -*- coding: utf-8 -*- +# This file is generated, do not modify it! +# +# To update this file, run the update masked docs script as follows: +# +# python tools/update_masked_docs.py +# +# The script must be called from an environment where the development +# version of torch package can be imported and is functional. +# + +amax_docstring = """amax(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor + +Returns maximum of all the elements in the :attr:`input` +tensor along the given dimension(s) :attr:`dim` while the :attr:`input` +elements are masked out according to the boolean tensor +:attr:`mask`. + +The identity value of maximum operation, which is used to start the +reduction, depends on input dtype. For instance, for float32, uint8, +and int32 dtypes, the identity values are ``-inf``, ``0``, and ``-2147483648``, respectively. + +If :attr:`keepdim` is ``True``, the output tensor is of the same size +as :attr:`input` except in the dimension(s) :attr:`dim` where it is of +size 1. Otherwise, :attr:`dim` is squeezed (see +:func:`torch.squeeze`), resulting in the output tensor having 1 (or +``len(dim)``) fewer dimension(s). + +The boolean tensor :attr:`mask` defines the "validity" of +:attr:`input` tensor elements: if :attr:`mask` element is True +then the corresponding element in :attr:`input` tensor will be +included in maximum computation, otherwise the element is +ignored. + +When all elements of :attr:`input` along the given dimension +:attr:`dim` are ignored (fully masked-out), the corresponding element +of the output tensor will have undefined value: it may or may not +correspond to the identity value of maximum operation; the +choice may correspond to the value that leads to the most efficient +storage of :attr:`output` tensor. + +The mask of the output tensor can be computed as +``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim, +dtype=torch.bool)``. + +The shapes of the :attr:`mask` tensor and the :attr:`input` tensor +don't need to match, but they must be :ref:`broadcastable +` and the dimensionality of the :attr:`mask` +tensor must not be greater than of the :attr:`input` tensor. + +Args: + input (Tensor): the input tensor + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + Default: None that is equivalent to ``tuple(range(input.ndim))``. + +Keyword args: + keepdim (bool, optional): whether the output tensor has + :attr:`dim` retained or not. Default: False. + dtype (:class:`torch.dtype`, optional): the desired data type + of returned tensor. If specified, the input tensor is + casted to :attr:`dtype` before the operation is + performed. Default: None. + mask (:class:`torch.Tensor`, optional): the boolean tensor + containing the binary mask of validity of input tensor + elements. + Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``. + +Example:: + + >>> input = tensor([[-3, -2, -1], [ 0, 1, 2]]) + >>> input + tensor([[-3, -2, -1], + [ 0, 1, 2]]) + >>> mask = tensor([[ True, False, True], [False, False, False]]) + >>> mask + tensor([[ True, False, True], + [False, False, False]]) + >>> torch._masked.amax(input, 1, mask=mask) + tensor([ -1, -9223372036854775808]) +""" + +amin_docstring = """amin(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor + +Returns minimum of all the elements in the :attr:`input` +tensor along the given dimension(s) :attr:`dim` while the :attr:`input` +elements are masked out according to the boolean tensor +:attr:`mask`. + +The identity value of minimum operation, which is used to start the +reduction, depends on input dtype. For instance, for float32, uint8, +and int32 dtypes, the identity values are ``inf``, ``255``, and ``2147483647``, respectively. + +If :attr:`keepdim` is ``True``, the output tensor is of the same size +as :attr:`input` except in the dimension(s) :attr:`dim` where it is of +size 1. Otherwise, :attr:`dim` is squeezed (see +:func:`torch.squeeze`), resulting in the output tensor having 1 (or +``len(dim)``) fewer dimension(s). + +The boolean tensor :attr:`mask` defines the "validity" of +:attr:`input` tensor elements: if :attr:`mask` element is True +then the corresponding element in :attr:`input` tensor will be +included in minimum computation, otherwise the element is +ignored. + +When all elements of :attr:`input` along the given dimension +:attr:`dim` are ignored (fully masked-out), the corresponding element +of the output tensor will have undefined value: it may or may not +correspond to the identity value of minimum operation; the +choice may correspond to the value that leads to the most efficient +storage of :attr:`output` tensor. + +The mask of the output tensor can be computed as +``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim, +dtype=torch.bool)``. + +The shapes of the :attr:`mask` tensor and the :attr:`input` tensor +don't need to match, but they must be :ref:`broadcastable +` and the dimensionality of the :attr:`mask` +tensor must not be greater than of the :attr:`input` tensor. + +Args: + input (Tensor): the input tensor + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + Default: None that is equivalent to ``tuple(range(input.ndim))``. + +Keyword args: + keepdim (bool, optional): whether the output tensor has + :attr:`dim` retained or not. Default: False. + dtype (:class:`torch.dtype`, optional): the desired data type + of returned tensor. If specified, the input tensor is + casted to :attr:`dtype` before the operation is + performed. Default: None. + mask (:class:`torch.Tensor`, optional): the boolean tensor + containing the binary mask of validity of input tensor + elements. + Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``. + +Example:: + + >>> input = tensor([[-3, -2, -1], [ 0, 1, 2]]) + >>> input + tensor([[-3, -2, -1], + [ 0, 1, 2]]) + >>> mask = tensor([[ True, False, True], [False, False, False]]) + >>> mask + tensor([[ True, False, True], + [False, False, False]]) + >>> torch._masked.amin(input, 1, mask=mask) + tensor([ -3, 9223372036854775807]) +""" + +log_softmax_docstring = """log_softmax(input, dim, *, dtype=None, mask=None) -> Tensor + +Returns log_softmax of all the slices in the :attr:`input` tensor +along :attr:`dim` while the :attr:`input` elements are masked out +according to the boolean tensor :attr:`mask`. + +Let ``x`` be a sequence of unmasked elements of one-dimensional slice +of the :attr:`input` tensor. LogSoftmax of i-th element in ``x`` is +defined as ``log(exp(x[i])/sum(exp(x)))``. + +The boolean tensor :attr:`mask` defines the "validity" of +:attr:`input` tensor elements: if :attr:`mask` element is True then +the corresponding element in :attr:`input` tensor will be included in +log_softmax computation, otherwise the element is ignored. + +The values of masked-out elements of the output tensor have undefined +value: it may or may not be set to zero or nan; the choice may correspond to +the value that leads to the most efficient storage of :attr:`output` +tensor. + +The mask of the log_softmax output tensor can be computed as +``torch.broadcast_to(mask, input.shape)``. + +The shapes of the :attr:`mask` tensor and the :attr:`input` tensor +don't need to match, but they must be :ref:`broadcastable +` and the dimensionality of the :attr:`mask` +tensor must not be greater than of the :attr:`input` tensor. + +Args: + input (Tensor): the input tensor + dim (int): the dimension along which log_softmax is computed. + +Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type + of returned tensor. If specified, the input tensor is + casted to :attr:`dtype` before the operation is + performed. Default: None. + mask (:class:`torch.Tensor`, optional): the boolean tensor + containing the binary mask of validity of input tensor + elements. + Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``. + +Example:: + + >>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]]) + >>> input + tensor([[-3., -2., -1.], + [ 0., 1., 2.]]) + >>> mask = tensor([[ True, False, True], [False, False, False]]) + >>> mask + tensor([[ True, False, True], + [False, False, False]]) + >>> torch._masked.log_softmax(input, 1, mask=mask) + tensor([[-2.1269, -inf, -0.1269], + [ nan, nan, nan]]) +""" + +mean_docstring = """mean(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor + +Returns mean of all the elements in the :attr:`input` +tensor along the given dimension(s) :attr:`dim` while the :attr:`input` +elements are masked out according to the boolean tensor +:attr:`mask`. + +By definition, the identity value of a mean operation is the mean +value of the tensor. If all elements of the input tensor along given +dimension(s) :attr:`dim` are masked-out, the identity value of the +mean is undefined. Due to this ambiguity, the elements of output +tensor with strided layout, that correspond to fully masked-out +elements, have ``nan`` values. + +If :attr:`keepdim` is ``True``, the output tensor is of the same size +as :attr:`input` except in the dimension(s) :attr:`dim` where it is of +size 1. Otherwise, :attr:`dim` is squeezed (see +:func:`torch.squeeze`), resulting in the output tensor having 1 (or +``len(dim)``) fewer dimension(s). + +The boolean tensor :attr:`mask` defines the "validity" of +:attr:`input` tensor elements: if :attr:`mask` element is True +then the corresponding element in :attr:`input` tensor will be +included in mean computation, otherwise the element is +ignored. + +When all elements of :attr:`input` along the given dimension +:attr:`dim` are ignored (fully masked-out), the corresponding element +of the output tensor will have undefined value: it may or may not +correspond to the identity value of mean operation; the +choice may correspond to the value that leads to the most efficient +storage of :attr:`output` tensor. + +The mask of the output tensor can be computed as +``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim, +dtype=torch.bool)``. + +The shapes of the :attr:`mask` tensor and the :attr:`input` tensor +don't need to match, but they must be :ref:`broadcastable +` and the dimensionality of the :attr:`mask` +tensor must not be greater than of the :attr:`input` tensor. + +Args: + input (Tensor): the input tensor + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + Default: None that is equivalent to ``tuple(range(input.ndim))``. + +Keyword args: + keepdim (bool, optional): whether the output tensor has + :attr:`dim` retained or not. Default: False. + dtype (:class:`torch.dtype`, optional): the desired data type + of returned tensor. If specified, the input tensor is + casted to :attr:`dtype` before the operation is + performed. Default: None. + mask (:class:`torch.Tensor`, optional): the boolean tensor + containing the binary mask of validity of input tensor + elements. + Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``. + +Example:: + + >>> input = tensor([[-3, -2, -1], [ 0, 1, 2]]) + >>> input + tensor([[-3, -2, -1], + [ 0, 1, 2]]) + >>> mask = tensor([[ True, False, True], [False, False, False]]) + >>> mask + tensor([[ True, False, True], + [False, False, False]]) + >>> torch._masked.mean(input, 1, mask=mask) + tensor([-2., nan]) +""" + +norm_docstring = """norm(input, ord, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor + +Returns norm of all the elements in the :attr:`input` +tensor along the given dimension(s) :attr:`dim` while the :attr:`input` +elements are masked out according to the boolean tensor +:attr:`mask`. + +The identity value of norm operation, which is used to start the +reduction, is ``0.0``, except for ``ord=-inf`` it is +``inf``. + +If :attr:`keepdim` is ``True``, the output tensor is of the same size +as :attr:`input` except in the dimension(s) :attr:`dim` where it is of +size 1. Otherwise, :attr:`dim` is squeezed (see +:func:`torch.squeeze`), resulting in the output tensor having 1 (or +``len(dim)``) fewer dimension(s). + +The boolean tensor :attr:`mask` defines the "validity" of +:attr:`input` tensor elements: if :attr:`mask` element is True +then the corresponding element in :attr:`input` tensor will be +included in norm computation, otherwise the element is +ignored. + +When all elements of :attr:`input` along the given dimension +:attr:`dim` are ignored (fully masked-out), the corresponding element +of the output tensor will have undefined value: it may or may not +correspond to the identity value of norm operation; the +choice may correspond to the value that leads to the most efficient +storage of :attr:`output` tensor. + +The mask of the output tensor can be computed as +``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim, +dtype=torch.bool)``. + +The shapes of the :attr:`mask` tensor and the :attr:`input` tensor +don't need to match, but they must be :ref:`broadcastable +` and the dimensionality of the :attr:`mask` +tensor must not be greater than of the :attr:`input` tensor. + +Args: + input (Tensor): the input tensor + ord (int, float, optional): the order of vector norm. Default: 2. + See :func:`torch.linalg.vector_norm` for a list of supported norms. + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + Default: None that is equivalent to ``tuple(range(input.ndim))``. + +Keyword args: + keepdim (bool, optional): whether the output tensor has + :attr:`dim` retained or not. Default: False. + dtype (:class:`torch.dtype`, optional): the desired data type + of returned tensor. If specified, the input tensor is + casted to :attr:`dtype` before the operation is + performed. Default: None. + mask (:class:`torch.Tensor`, optional): the boolean tensor + containing the binary mask of validity of input tensor + elements. + Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``. + +Example:: + + >>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]]) + >>> input + tensor([[-3., -2., -1.], + [ 0., 1., 2.]]) + >>> mask = tensor([[ True, False, True], [False, False, False]]) + >>> mask + tensor([[ True, False, True], + [False, False, False]]) + >>> torch._masked.norm(input, 2.0, 1, mask=mask) + tensor([3.1623, 0.0000]) +""" + +normalize_docstring = """normalize(input, ord, dim, *, eps=1e-12, dtype=None, mask=None) -> Tensor + +Returns normalize of all the slices in the :attr:`input` tensor +along :attr:`dim` while the :attr:`input` elements are masked out +according to the boolean tensor :attr:`mask`. + +Let ``x`` be a sequence of unmasked elements of one-dimensional slice +of the :attr:`input` tensor. Normalize of i-th element in ``x`` is +defined as ``x[i]/max(norm(x, p), eps)``. + +The boolean tensor :attr:`mask` defines the "validity" of +:attr:`input` tensor elements: if :attr:`mask` element is True then +the corresponding element in :attr:`input` tensor will be included in +normalize computation, otherwise the element is ignored. + +The values of masked-out elements of the output tensor have undefined +value: it may or may not be set to zero or nan; the choice may correspond to +the value that leads to the most efficient storage of :attr:`output` +tensor. + +The mask of the normalize output tensor can be computed as +``torch.broadcast_to(mask, input.shape)``. + +The shapes of the :attr:`mask` tensor and the :attr:`input` tensor +don't need to match, but they must be :ref:`broadcastable +` and the dimensionality of the :attr:`mask` +tensor must not be greater than of the :attr:`input` tensor. + +Args: + input (Tensor): the input tensor + ord (int, float): the order of vector norm. Default: 2. + See :func:`torch.linalg.vector_norm` for a list of supported norms. + dim (int): the dimension along which normalize is computed. + +Keyword args: + eps (float, optional): small value to avoid division by zero. Default: 1e-12. + dtype (:class:`torch.dtype`, optional): the desired data type + of returned tensor. If specified, the input tensor is + casted to :attr:`dtype` before the operation is + performed. Default: None. + mask (:class:`torch.Tensor`, optional): the boolean tensor + containing the binary mask of validity of input tensor + elements. + Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``. + +Example:: + + >>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]]) + >>> input + tensor([[-3., -2., -1.], + [ 0., 1., 2.]]) + >>> mask = tensor([[ True, False, True], [False, False, False]]) + >>> mask + tensor([[ True, False, True], + [False, False, False]]) + >>> torch._masked.normalize(input, 2.0, 1, mask=mask) + tensor([[-0.9487, 0.0000, -0.3162], + [ 0.0000, 0.0000, 0.0000]]) +""" + +prod_docstring = """prod(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor + +Returns product of all the elements in the :attr:`input` +tensor along the given dimension(s) :attr:`dim` while the :attr:`input` +elements are masked out according to the boolean tensor +:attr:`mask`. + +The identity value of product operation, which is used to start the reduction, is ``1``. + +If :attr:`keepdim` is ``True``, the output tensor is of the same size +as :attr:`input` except in the dimension(s) :attr:`dim` where it is of +size 1. Otherwise, :attr:`dim` is squeezed (see +:func:`torch.squeeze`), resulting in the output tensor having 1 (or +``len(dim)``) fewer dimension(s). + +The boolean tensor :attr:`mask` defines the "validity" of +:attr:`input` tensor elements: if :attr:`mask` element is True +then the corresponding element in :attr:`input` tensor will be +included in product computation, otherwise the element is +ignored. + +When all elements of :attr:`input` along the given dimension +:attr:`dim` are ignored (fully masked-out), the corresponding element +of the output tensor will have undefined value: it may or may not +correspond to the identity value of product operation; the +choice may correspond to the value that leads to the most efficient +storage of :attr:`output` tensor. + +The mask of the output tensor can be computed as +``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim, +dtype=torch.bool)``. + +The shapes of the :attr:`mask` tensor and the :attr:`input` tensor +don't need to match, but they must be :ref:`broadcastable +` and the dimensionality of the :attr:`mask` +tensor must not be greater than of the :attr:`input` tensor. + +Args: + input (Tensor): the input tensor + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + Default: None that is equivalent to ``tuple(range(input.ndim))``. + +Keyword args: + keepdim (bool, optional): whether the output tensor has + :attr:`dim` retained or not. Default: False. + dtype (:class:`torch.dtype`, optional): the desired data type + of returned tensor. If specified, the input tensor is + casted to :attr:`dtype` before the operation is + performed. Default: None. + mask (:class:`torch.Tensor`, optional): the boolean tensor + containing the binary mask of validity of input tensor + elements. + Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``. + +Example:: + + >>> input = tensor([[-3, -2, -1], [ 0, 1, 2]]) + >>> input + tensor([[-3, -2, -1], + [ 0, 1, 2]]) + >>> mask = tensor([[ True, False, True], [False, False, False]]) + >>> mask + tensor([[ True, False, True], + [False, False, False]]) + >>> torch._masked.prod(input, 1, mask=mask) + tensor([3, 1]) +""" + +softmax_docstring = """softmax(input, dim, *, dtype=None, mask=None) -> Tensor + +Returns softmax of all the slices in the :attr:`input` tensor +along :attr:`dim` while the :attr:`input` elements are masked out +according to the boolean tensor :attr:`mask`. + +Let ``x`` be a sequence of unmasked elements of one-dimensional slice +of the :attr:`input` tensor. Softmax of i-th element in ``x`` is +defined as ``exp(x[i])/sum(exp(x))``. + +The boolean tensor :attr:`mask` defines the "validity" of +:attr:`input` tensor elements: if :attr:`mask` element is True then +the corresponding element in :attr:`input` tensor will be included in +softmax computation, otherwise the element is ignored. + +The values of masked-out elements of the output tensor have undefined +value: it may or may not be set to zero or nan; the choice may correspond to +the value that leads to the most efficient storage of :attr:`output` +tensor. + +The mask of the softmax output tensor can be computed as +``torch.broadcast_to(mask, input.shape)``. + +The shapes of the :attr:`mask` tensor and the :attr:`input` tensor +don't need to match, but they must be :ref:`broadcastable +` and the dimensionality of the :attr:`mask` +tensor must not be greater than of the :attr:`input` tensor. + +Args: + input (Tensor): the input tensor + dim (int): the dimension along which softmax is computed. + +Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type + of returned tensor. If specified, the input tensor is + casted to :attr:`dtype` before the operation is + performed. Default: None. + mask (:class:`torch.Tensor`, optional): the boolean tensor + containing the binary mask of validity of input tensor + elements. + Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``. + +Example:: + + >>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]]) + >>> input + tensor([[-3., -2., -1.], + [ 0., 1., 2.]]) + >>> mask = tensor([[ True, False, True], [False, False, False]]) + >>> mask + tensor([[ True, False, True], + [False, False, False]]) + >>> torch._masked.softmax(input, 1, mask=mask) + tensor([[0.1192, 0.0000, 0.8808], + [ nan, nan, nan]]) +""" + +softmin_docstring = """softmin(input, dim, *, dtype=None, mask=None) -> Tensor + +Returns softmin of all the slices in the :attr:`input` tensor +along :attr:`dim` while the :attr:`input` elements are masked out +according to the boolean tensor :attr:`mask`. + +Let ``x`` be a sequence of unmasked elements of one-dimensional slice +of the :attr:`input` tensor. Softmin of i-th element in ``x`` is +defined as ``exp(-x[i])/sum(exp(-x))``. + +The boolean tensor :attr:`mask` defines the "validity" of +:attr:`input` tensor elements: if :attr:`mask` element is True then +the corresponding element in :attr:`input` tensor will be included in +softmin computation, otherwise the element is ignored. + +The values of masked-out elements of the output tensor have undefined +value: it may or may not be set to zero or nan; the choice may correspond to +the value that leads to the most efficient storage of :attr:`output` +tensor. + +The mask of the softmin output tensor can be computed as +``torch.broadcast_to(mask, input.shape)``. + +The shapes of the :attr:`mask` tensor and the :attr:`input` tensor +don't need to match, but they must be :ref:`broadcastable +` and the dimensionality of the :attr:`mask` +tensor must not be greater than of the :attr:`input` tensor. + +Args: + input (Tensor): the input tensor + dim (int): the dimension along which softmin is computed. + +Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type + of returned tensor. If specified, the input tensor is + casted to :attr:`dtype` before the operation is + performed. Default: None. + mask (:class:`torch.Tensor`, optional): the boolean tensor + containing the binary mask of validity of input tensor + elements. + Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``. + +Example:: + + >>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]]) + >>> input + tensor([[-3., -2., -1.], + [ 0., 1., 2.]]) + >>> mask = tensor([[ True, False, True], [False, False, False]]) + >>> mask + tensor([[ True, False, True], + [False, False, False]]) + >>> torch._masked.softmin(input, 1, mask=mask) + tensor([[0.8808, 0.0000, 0.1192], + [ nan, nan, nan]]) +""" + +sum_docstring = """sum(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor + +Returns sum of all the elements in the :attr:`input` +tensor along the given dimension(s) :attr:`dim` while the :attr:`input` +elements are masked out according to the boolean tensor +:attr:`mask`. + +The identity value of sum operation, which is used to start the reduction, is ``0``. + +If :attr:`keepdim` is ``True``, the output tensor is of the same size +as :attr:`input` except in the dimension(s) :attr:`dim` where it is of +size 1. Otherwise, :attr:`dim` is squeezed (see +:func:`torch.squeeze`), resulting in the output tensor having 1 (or +``len(dim)``) fewer dimension(s). + +The boolean tensor :attr:`mask` defines the "validity" of +:attr:`input` tensor elements: if :attr:`mask` element is True +then the corresponding element in :attr:`input` tensor will be +included in sum computation, otherwise the element is +ignored. + +When all elements of :attr:`input` along the given dimension +:attr:`dim` are ignored (fully masked-out), the corresponding element +of the output tensor will have undefined value: it may or may not +correspond to the identity value of sum operation; the +choice may correspond to the value that leads to the most efficient +storage of :attr:`output` tensor. + +The mask of the output tensor can be computed as +``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim, +dtype=torch.bool)``. + +The shapes of the :attr:`mask` tensor and the :attr:`input` tensor +don't need to match, but they must be :ref:`broadcastable +` and the dimensionality of the :attr:`mask` +tensor must not be greater than of the :attr:`input` tensor. + +Args: + input (Tensor): the input tensor + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + Default: None that is equivalent to ``tuple(range(input.ndim))``. + +Keyword args: + keepdim (bool, optional): whether the output tensor has + :attr:`dim` retained or not. Default: False. + dtype (:class:`torch.dtype`, optional): the desired data type + of returned tensor. If specified, the input tensor is + casted to :attr:`dtype` before the operation is + performed. Default: None. + mask (:class:`torch.Tensor`, optional): the boolean tensor + containing the binary mask of validity of input tensor + elements. + Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``. + +Example:: + + >>> input = tensor([[-3, -2, -1], [ 0, 1, 2]]) + >>> input + tensor([[-3, -2, -1], + [ 0, 1, 2]]) + >>> mask = tensor([[ True, False, True], [False, False, False]]) + >>> mask + tensor([[ True, False, True], + [False, False, False]]) + >>> torch._masked.sum(input, 1, mask=mask) + tensor([-4, 0]) +""" + +var_docstring = """var(input, dim, unbiased, *, keepdim=False, dtype=None, mask=None) -> Tensor + +Returns variance of all the elements in the :attr:`input` +tensor along the given dimension(s) :attr:`dim` while the :attr:`input` +elements are masked out according to the boolean tensor +:attr:`mask`. + +The identity value of sample variance operation is undefined. The +elements of output tensor with strided layout, that correspond to +fully masked-out elements, have ``nan`` values. + +If :attr:`keepdim` is ``True``, the output tensor is of the same size +as :attr:`input` except in the dimension(s) :attr:`dim` where it is of +size 1. Otherwise, :attr:`dim` is squeezed (see +:func:`torch.squeeze`), resulting in the output tensor having 1 (or +``len(dim)``) fewer dimension(s). + +The boolean tensor :attr:`mask` defines the "validity" of +:attr:`input` tensor elements: if :attr:`mask` element is True +then the corresponding element in :attr:`input` tensor will be +included in variance computation, otherwise the element is +ignored. + +When all elements of :attr:`input` along the given dimension +:attr:`dim` are ignored (fully masked-out), the corresponding element +of the output tensor will have undefined value: it may or may not +correspond to the identity value of variance operation; the +choice may correspond to the value that leads to the most efficient +storage of :attr:`output` tensor. + +The mask of the output tensor can be computed as +``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim, +dtype=torch.bool)``. + +The shapes of the :attr:`mask` tensor and the :attr:`input` tensor +don't need to match, but they must be :ref:`broadcastable +` and the dimensionality of the :attr:`mask` +tensor must not be greater than of the :attr:`input` tensor. + +Args: + input (Tensor): the input tensor + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + Default: None that is equivalent to ``tuple(range(input.ndim))``. + unbiased (bool): when True, use Bessel’s correction, otherwise, compute + the uncorrected sample variance. + +Keyword args: + keepdim (bool, optional): whether the output tensor has + :attr:`dim` retained or not. Default: False. + dtype (:class:`torch.dtype`, optional): the desired data type + of returned tensor. If specified, the input tensor is + casted to :attr:`dtype` before the operation is + performed. Default: None. + mask (:class:`torch.Tensor`, optional): the boolean tensor + containing the binary mask of validity of input tensor + elements. + Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``. + +Example:: + + >>> input = tensor([[-3, -2, -1], [ 0, 1, 2]]) + >>> input + tensor([[-3, -2, -1], + [ 0, 1, 2]]) + >>> mask = tensor([[ True, False, True], [False, False, False]]) + >>> mask + tensor([[ True, False, True], + [False, False, False]]) + >>> torch._masked.var(input, 1, False, mask=mask) + tensor([1., nan]) +"""