privateGPT/README.md
Pablo Orgaz 51cc638758
Next version of PrivateGPT (#1077)
* Dockerize private-gpt

* Use port 8001 for local development

* Add setup script

* Add CUDA Dockerfile

* Create README.md

* Make the API use OpenAI response format

* Truncate prompt

* refactor: add models and __pycache__ to .gitignore

* Better naming

* Update readme

* Move models ignore to it's folder

* Add scaffolding

* Apply formatting

* Fix tests

* Working sagemaker custom llm

* Fix linting

* Fix linting

* Enable streaming

* Allow all 3.11 python versions

* Use llama 2 prompt format and fix completion

* Restructure (#3)

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Fix Dockerfile

* Use a specific build stage

* Cleanup

* Add FastAPI skeleton

* Cleanup openai package

* Fix DI and tests

* Split tests and tests with coverage

* Remove old scaffolding

* Add settings logic (#4)

* Add settings logic

* Add settings for sagemaker

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Local LLM (#5)

* Add settings logic

* Add settings for sagemaker

* Add settings-local-example.yaml

* Delete terraform files

* Refactor tests to use fixtures

* Join deltas

* Add local model support

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Update README.md

* Fix tests

* Version bump

* Enable simple llamaindex observability (#6)

* Enable simple llamaindex observability

* Improve code through linting

* Update README.md

* Move to async (#7)

* Migrate implementation to use asyncio

* Formatting

* Cleanup

* Linting

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Query Docs and gradio UI

* Remove unnecessary files

* Git ignore chromadb folder

* Async migration + DI Cleanup

* Fix tests

* Add integration test

* Use fastapi responses

* Retrieval service with partial implementation

* Cleanup

* Run formatter

* Fix types

* Fetch nodes asynchronously

* Install local dependencies in tests

* Install ui dependencies in tests

* Install dependencies for llama-cpp

* Fix sudo

* Attempt to fix cuda issues

* Attempt to fix cuda issues

* Try to reclaim some space from ubuntu machine

* Retrieval with context

* Fix lint and imports

* Fix mypy

* Make retrieval API a POST

* Make Completions body a dataclass

* Fix LLM chat message order

* Add Query Chunks to Gradio UI

* Improve rag query prompt

* Rollback CI Changes

* Move to sync code

* Using Llamaindex abstraction for query retrieval

* Fix types

* Default to CONDENSED chat mode for contextualized chat

* Rename route function

* Add Chat endpoint

* Remove webhooks

* Add IntelliJ run config to gitignore

* .gitignore applied

* Sync chat completion

* Refactor total

* Typo in context_files.py

* Add embeddings component and service

* Remove wrong dataclass from IngestService

* Filter by context file id implementation

* Fix typing

* Implement context_filter and separate from the bool use_context in the API

* Change chunks api to avoid conceptual class of the context concept

* Deprecate completions and fix tests

* Remove remaining dataclasses

* Use embedding component in ingest service

* Fix ingestion to have multipart and local upload

* Fix ingestion API

* Add chunk tests

* Add configurable paths

* Cleaning up

* Add more docs

* IngestResponse includes a list of IngestedDocs

* Use IngestedDoc in the Chunk document reference

* Rename ingest routes to ingest_router.py

* Fix test working directory for intellij

* Set testpaths for pytest

* Remove unused as_chat_engine

* Add .fleet ide to gitignore

* Make LLM and Embedding model configurable

* Fix imports and checks

* Let local_data folder exist empty in the repository

* Don't use certain metadata in LLM

* Remove long lines

* Fix windows installation

* Typos

* Update poetry.lock

* Add TODO for linux

* Script and first version of docs

* No jekill build

* Fix relative url to openapi json

* Change default docs values

* Move chromadb dependency to the general group

* Fix tests to use separate local_data

* Create CNAME

* Update CNAME

* Fix openapi.json relative path

* PrivateGPT logo

* WIP OpenAPI documentation metadata

* Add ingest script (#11)

* Add ingest script

* Fix broken name refactor

* Add ingest docs and Makefile script

* Linting

* Move transformers to main dependency

* Move torch to main dependencies

* Don't load HuggingFaceEmbedding in tests

* Fix lint

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Rename file to camel_case

* Commit settings-local.yaml

* Move documentation to public docs

* Fix docker image for linux

* Installation and Running the Server documentation

* Move back to docs folder, as it is the only supported by github pages

* Delete CNAME

* Create CNAME

* Delete CNAME

* Create CNAME

* Improved API documentation

* Fix lint

* Completions documentation

* Updated openapi scheme

* Ingestion API doc

* Minor doc changes

* Updated openapi scheme

* Chunks API documentation

* Embeddings and Health API, and homogeneous responses

* Revamp README with new skeleton of content

* More docs

* PrivateGPT logo

* Improve UI

* Update ingestion docu

* Update README with new sections

* Use context window in the retriever

* Gradio Documentation

* Add logo to UI

* Include Contributing and Community sections to README

* Update links to resources in the README

* Small README.md updates

* Wrap lines of README.md

* Don't put health under /v1

* Add copy button to Chat

* Architecture documentation

* Updated openapi.json

* Updated openapi.json

* Updated openapi.json

* Change UI label

* Update documentation

* Add releases link to README.md

* Gradio avatar and stop debug

* Readme update

* Clean old files

* Remove unused terraform checks

* Update twitter link.

* Disable minimum coverage

* Clean install message in README.md

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>
Co-authored-by: Iván Martínez <ivanmartit@gmail.com>
Co-authored-by: RubenGuerrero <ruben.guerrero@boopos.com>
Co-authored-by: Daniel Gallego Vico <daniel.gallego@bq.com>
2023-10-19 16:04:35 +02:00

159 lines
7.8 KiB
Markdown

# 🔒 PrivateGPT 📑
<img width="900" alt="demo" src="https://lh3.googleusercontent.com/drive-viewer/AK7aPaBasLxbp49Hrwnmi_Ctii1oIM18nFJrBO0ERSE3wpkS-syjiQBE32_tUSdqnjn6etUDjUSkdJeFa8acqRb0lZbkZ6CyAw=s1600">
PrivateGPT is a production-ready AI project that allows you to ask questions to your documents using the power
of Large Language Models (LLMs), even in scenarios without Internet connection. 100% private, no data leaves your
execution environment at any point.
The project provides an API offering all the primitives required to build private, context-aware AI applications.
It follows and extends [OpenAI API standard](https://openai.com/blog/openai-api),
and supports both normal and streaming responses.
The API is divided into two logical blocks:
**High-level API**, which abstracts all the complexity of a RAG (Retrieval Augmented Generation)
pipeline implementation:
- Ingestion of documents: internally managing document parsing,
splitting, metadata extraction, embedding generation and storage.
- Chat & Completions using context from ingested documents:
abstracting the retrieval of context, the prompt engineering and the response generation.
**Low-level API**, which allows advanced users to implement their own complex pipelines:
- Embeddings generation: based on a piece of text.
- Contextual chunks retrieval: given a query, returns the most relevant chunks of text from the ingested documents.
In addition to this, a working [Gradio UI](https://www.gradio.app/)
client is provided to test the API, together with a set of useful tools such as bulk model
download script, ingestion script, documents folder watch, etc.
> 👂 **Need help applying PrivateGPT to your specific use case?**
> [Let us know more about it](https://forms.gle/4cSDmH13RZBHV9at7)
> and we'll try to help! We are refining PrivateGPT through your feedback.
## 🎞️ Overview
DISCLAIMER: This README is not updated as frequently as the [documentation](https://docs.privategpt.dev/).
Please check it out for the latest updates!
### Motivation behind PrivateGPT
Generative AI is a game changer for our society, but adoption in companies of all size and data-sensitive
domains like healthcare or legal is limited by a clear concern: **privacy**.
Not being able to ensure that your data is fully under your control when using third-party AI tools
is a risk those industries cannot take.
### Primordial version
The first version of PrivateGPT was launched in May 2023 as a novel approach to address the privacy
concern by using LLMs in a complete offline way.
This was done by leveraging existing technologies developed by the thriving Open Source AI community:
[LangChain](https://github.com/hwchase17/langchain), [LlamaIndex](https://www.llamaindex.ai/),
[GPT4All](https://github.com/nomic-ai/gpt4all),
[LlamaCpp](https://github.com/ggerganov/llama.cpp),
[Chroma](https://www.trychroma.com/)
and [SentenceTransformers](https://www.sbert.net/).
That version, which rapidly became a go-to project for privacy-sensitive setups and served as the seed
for thousands of local-focused generative AI projects, was the foundation of what PrivateGPT is becoming nowadays;
thus a simpler and more educational implementation to understand the basic concepts required
to build a fully local -and therefore, private- chatGPT-like tool.
If you want to keep experimenting with it, we have saved it in the
[primordial branch](https://github.com/imartinez/privateGPT/branches) of the project.
> It is strongly recommended to do a clean clone and install of this new version of
PrivateGPT if you come from the previous, primordial version.
### Present and Future of PrivateGPT
PrivateGPT is now evolving towards becoming a gateway to generative AI models and primitives, including
completions, document ingestion, RAG pipelines and other low-level building blocks.
We want to make easier for any developer to build AI applications and experiences, as well as providing
a suitable extensive architecture for the community to keep contributing.
Stay tuned to our [releases](https://github.com/imartinez/privateGPT/releases) to check all the new features and changes included.
## 📄 Documentation
Full documentation on installation, dependencies, configuration, running the server, deployment options,
ingesting local documents, API details and UI features can be found here: https://docs.privategpt.dev/
## 🧩 Architecture
Conceptually, PrivateGPT is an API that wraps a RAG pipeline and exposes its
primitives.
* The API is built using [FastAPI](https://fastapi.tiangolo.com/) and follows
[OpenAI's API scheme](https://platform.openai.com/docs/api-reference).
* The RAG pipeline is based on [LlamaIndex](https://www.llamaindex.ai/).
The design of PrivateGPT allows to easily extend and adapt both the API and the
RAG implementation. Some key architectural decisions are:
* Dependency Injection, decoupling the different componentes and layers.
* Usage of LlamaIndex abstractions such as `LLM`, `BaseEmbedding` or `VectorStore`,
making it immediate to change the actual implementations of those abstractions.
* Simplicity, adding as few layers and new abstractions as possible.
* Ready to use, providing a full implementation of the API and RAG
pipeline.
Main building blocks:
* APIs are defined in `private_gpt:server:<api>`. Each package contains an
`<api>_router.py` (FastAPI layer) and an `<api>_service.py` (the
service implementation). Each *Service* uses LlamaIndex base abstractions instead
of specific implementations,
decoupling the actual implementation from its usage.
* Components are placed in
`private_gpt:components:<component>`. Each *Component* is in charge of providing
actual implementations to the base abstractions used in the Services - for example
`LLMComponent` is in charge of providing an actual implementation of an `LLM`
(for example `LlamaCPP` or `OpenAI`).
## 💡 Contributing
Contributions are welcomed! To ensure code quality we have enabled several format and
typing checks, just run `make check` before committing to make sure your code is ok.
Remember to test your code! You'll find a tests folder with helpers, and you can run
tests using `make test` command.
Interested in contributing to PrivateGPT? We have the following challenges ahead of us in case
you want to give a hand:
### Improvements
- Better RAG pipeline implementation (improvements to both indexing and querying stages)
- Code documentation
- Expose execution parameters such as top_p, temperature, max_tokens... in Completions and Chat Completions
- Expose chunk size in Ingest API
- Implement Update and Delete document in Ingest API
- Add information about tokens consumption in each response
- Add to Completion APIs (chat and completion) the context docs used to answer the question
- In “model” field return the actual LLM or Embeddings model name used
### Features
- Implement concurrency lock to avoid errors when there are several calls to the local LlamaCPP model
- API key-based request control to the API
- CORS support
- Support for Sagemaker
- Support Function calling
- Add md5 to check files already ingested
- Select a document to query in the UI
- Better observability of the RAG pipeline
### Project Infrastructure
- Create a “wipe” shortcut in `make` to remove all contents of local_data folder except .gitignore
- Packaged version as a local desktop app (windows executable, mac app, linux app)
- Dockerize the application for platforms outside linux (Docker Desktop for Mac and Windows)
- Document how to deploy to AWS, GCP and Azure.
##
## 💬 Community
Join the conversation around PrivateGPT on our:
- [Twitter (aka X)](https://twitter.com/PrivateGPT_AI)
- [Discord](https://discord.gg/bK6mRVpErU)
## 📖 Citation
Reference to cite if you use PrivateGPT in a paper:
```
@software{PrivateGPT_2023,
authors = {Martinez, I., Gallego, D. Orgaz, P.},
month = {5},
title = {PrivateGPT},
url = {https://github.com/imartinez/privateGPT},
year = {2023}
}
```