- Replaced existing localGPT codebase with multimodal RAG implementation - Includes full-stack application with backend, frontend, and RAG system - Added Docker support and comprehensive documentation - Enhanced with multimodal capabilities for document processing - Preserved git history for localGPT while integrating new functionality
7.8 KiB
⚡ Quick Start Guide - RAG System
Get up and running in 5 minutes!
🚀 Choose Your Deployment Method
Option 1: Docker Deployment (Production Ready) 🐳
Best for: Production deployments, isolated environments, easy scaling
Option 2: Direct Development (Developer Friendly) 💻
Best for: Development, customization, debugging, faster iteration
🐳 Docker Deployment
Prerequisites
- Docker Desktop installed and running
- 8GB+ RAM available
- Internet connection
Step 1: Clone and Setup
# Clone repository
git clone <your-repository-url>
cd rag_system_old
# Ensure Docker is running
docker version
Step 2: Install Ollama Locally
Even with Docker, Ollama runs locally for better performance:
# Install Ollama
curl -fsSL https://ollama.ai/install.sh | sh
# Start Ollama (in one terminal)
ollama serve
# Install models (in another terminal)
ollama pull qwen3:0.6b
ollama pull qwen3:8b
Step 3: Start Docker Containers
# Start all containers
./start-docker.sh
# Or manually:
docker compose --env-file docker.env up --build -d
Step 4: Verify Deployment
# Check container status
docker compose ps
# Test endpoints
curl http://localhost:3000 # Frontend
curl http://localhost:8000/health # Backend
curl http://localhost:8001/models # RAG API
Step 5: Access Application
Open your browser to: http://localhost:3000
💻 Direct Development
Prerequisites
- Python 3.8+
- Node.js 16+ and npm
- 8GB+ RAM available
Step 1: Clone and Install Dependencies
# Clone repository
git clone <your-repository-url>
cd rag_system_old
# Install Python dependencies
pip install -r requirements.txt
# Install Node.js dependencies
npm install
Step 2: Install and Configure Ollama
# Install Ollama
curl -fsSL https://ollama.ai/install.sh | sh
# Start Ollama (in one terminal)
ollama serve
# Install models (in another terminal)
ollama pull qwen3:0.6b
ollama pull qwen3:8b
Step 3: Start the System
# Start all components with one command
python run_system.py
Or start components manually in separate terminals:
# Terminal 1: RAG API
python -m rag_system.api_server
# Terminal 2: Backend
cd backend && python server.py
# Terminal 3: Frontend
npm run dev
Step 4: Verify Installation
# Check system health
python system_health_check.py
# Test endpoints
curl http://localhost:3000 # Frontend
curl http://localhost:8000/health # Backend
curl http://localhost:8001/models # RAG API
Step 5: Access Application
Open your browser to: http://localhost:3000
🎯 First Use Guide
1. Create a Chat Session
- Click "New Chat" in the interface
- Give your session a descriptive name
2. Upload Documents
- Click "Create New Index" button
- Upload PDF files from your computer
- Configure processing options:
- Chunk Size: 512 (recommended)
- Embedding Model: Qwen/Qwen3-Embedding-0.6B
- Enable Enrichment: Yes
- Click "Build Index" and wait for processing
3. Start Chatting
- Select your built index
- Ask questions about your documents:
- "What is this document about?"
- "Summarize the key points"
- "What are the main findings?"
- "Compare the arguments in section 3 and 5"
🔧 Management Commands
Docker Commands
# Container management
./start-docker.sh # Start all containers
./start-docker.sh stop # Stop all containers
./start-docker.sh logs # View logs
./start-docker.sh status # Check status
# Manual Docker Compose
docker compose ps # Check status
docker compose logs -f # Follow logs
docker compose down # Stop containers
docker compose up --build -d # Rebuild and start
Direct Development Commands
# System management
python run_system.py # Start all services
python system_health_check.py # Check system health
# Individual components
python -m rag_system.api_server # RAG API only
cd backend && python server.py # Backend only
npm run dev # Frontend only
# Stop: Press Ctrl+C in terminal running services
🆘 Quick Troubleshooting
Docker Issues
Containers not starting?
# Check Docker daemon
docker version
# Restart Docker Desktop and try again
./start-docker.sh
Port conflicts?
# Check what's using ports
lsof -i :3000 -i :8000 -i :8001
# Stop conflicting processes
./start-docker.sh stop
Direct Development Issues
Import errors?
# Check Python installation
python --version # Should be 3.8+
# Reinstall dependencies
pip install -r requirements.txt --force-reinstall
Node.js errors?
# Check Node version
node --version # Should be 16+
# Reinstall dependencies
rm -rf node_modules package-lock.json
npm install
Common Issues
Ollama not responding?
# Check if Ollama is running
curl http://localhost:11434/api/tags
# Restart Ollama
pkill ollama
ollama serve
Out of memory?
# Check memory usage
docker stats # For Docker
htop # For direct development
# Recommended: 16GB+ RAM for optimal performance
📊 System Verification
Run this comprehensive check:
# Check all endpoints
curl -f http://localhost:3000 && echo "✅ Frontend OK"
curl -f http://localhost:8000/health && echo "✅ Backend OK"
curl -f http://localhost:8001/models && echo "✅ RAG API OK"
curl -f http://localhost:11434/api/tags && echo "✅ Ollama OK"
# For Docker: Check containers
docker compose ps
🎉 Success!
If you see:
- ✅ All services responding
- ✅ Frontend accessible at http://localhost:3000
- ✅ No error messages
You're ready to start using LocalGPT!
What's Next?
- 📚 Upload Documents: Add your PDF files to create indexes
- 💬 Start Chatting: Ask questions about your documents
- 🔧 Customize: Explore different models and settings
- 📖 Learn More: Check the full documentation below
📁 Key Files
rag-system/
├── 🐳 start-docker.sh # Docker deployment script
├── 🏃 run_system.py # Direct development launcher
├── 🩺 system_health_check.py # System verification
├── 📋 requirements.txt # Python dependencies
├── 📦 package.json # Node.js dependencies
├── 📁 Documentation/ # Complete documentation
└── 📁 rag_system/ # Core system code
📖 Additional Resources
- 🏗️ Architecture: See
Documentation/architecture_overview.md - 🔧 Configuration: See
Documentation/system_overview.md - 🚀 Deployment: See
Documentation/deployment_guide.md - 🐛 Troubleshooting: See
DOCKER_TROUBLESHOOTING.md
Happy RAG-ing! 🚀
🛠️ Indexing Scripts
The repository includes several convenient scripts for document indexing:
Simple Index Creation Script
For quick document indexing without the UI:
# Basic usage
./simple_create_index.sh "Index Name" "document.pdf"
# Multiple documents
./simple_create_index.sh "Research Papers" "paper1.pdf" "paper2.pdf" "notes.txt"
# Using wildcards
./simple_create_index.sh "Invoice Collection" ./invoices/*.pdf
Supported file types: PDF, TXT, DOCX, MD
Batch Indexing Script
For processing large document collections:
# Using the Python batch indexing script
python demo_batch_indexing.py
# Or using the direct indexing script
python create_index_script.py
These scripts automatically:
- ✅ Check prerequisites (Ollama running, Python dependencies)
- ✅ Validate document formats
- ✅ Create database entries
- ✅ Process documents with the RAG pipeline
- ✅ Generate searchable indexes