tensorflow/tensorflow/python/ops/image_ops.py
Vijay Vasudevan bf6b536bde TensorFlow: Upstream changes to git.
Change 109240606
	Fix typo
Change 109240358
	Fix bug in Concat's shape inference due to legacy scalar handling.

	The shape function was inadvertently converting outputs of unknown
	shape (rank=None) to vectors of unknown length (rank=1), due to
	inability to distinguish between legacy scalars and vectors, because
	`max(1, None)` is 1.
Change 109237152
	Remove numarray requirement in python_config.
Change 109234003
	Fix typo in elu documentation.
Change 109232946
	Python must now be configured via ./configure script
Change 109232134
	Backported fixes to the tensor comparison operators from the public Eigen repository
Change 109231761
	Test invalid inputs to softmax_cross_entropy_with_logits.
Change 109230218
	Backported fixes to the tensor comparison operators from the public Eigen repository
Change 109229915
	Correct comments in seq2seq to show the right input types for embedding models.
	(Thanks to hugman@github for bringing this up.)
Change 109229118
	Fix resize_images example in documentation and allow resize_images to run on a single image with partially-known shape.
Change 109228940
	Fix demo and node add/remove button spacing
Change 109227909
	Include Elu in the NN docs.
Change 109227059
	Adds variable_op_scope and makes variable_scope always add a name_scope.

	This creates an op scope for variables that makes it easy to create independent
	operations with a default name by making that name unique for the current scope
	and it allows explicit names that are not made unique.

Change 109224492
	Streamline yuv -> rgb conversion to be done in one pass in native code.

	The entire process now takes ~2ms (including the ByteBuffer.get() calls), down from 10+ ms when the arrays were being interleaved in Java prior to conversion.

	Also abstracting common yuv->rgb color conversion into helper method.
Change 109224389
	Add ability to move nodes in and out of auxiliary nodes in graph.
Change 109217177
	Update generated Op docs.
Change 109215030
	Implementation of the ELU activation function: http://arxiv.org/abs/1511.07289
Change 109209848
	When GPUBFCAllocator runs out of memory, also log a summary
	of chunks in use by size.
Change 109206569
	Switched to the public version of the Eigen::sign method since it supports complex numbers.
Change 109199813
	Modify tensorflow.SequenceExample to support multiple-length sequences.

Base CL: 109241553
2015-12-02 15:04:40 -08:00

878 lines
29 KiB
Python

# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=g-short-docstring-punctuation
"""## Encoding and Decoding
TensorFlow provides Ops to decode and encode JPEG and PNG formats. Encoded
images are represented by scalar string Tensors, decoded images by 3-D uint8
tensors of shape `[height, width, channels]`.
The encode and decode Ops apply to one image at a time. Their input and output
are all of variable size. If you need fixed size images, pass the output of
the decode Ops to one of the cropping and resizing Ops.
Note: The PNG encode and decode Ops support RGBA, but the conversions Ops
presently only support RGB, HSV, and GrayScale. Presently, the alpha channel has
to be stripped from the image and re-attached using slicing ops.
@@decode_jpeg
@@encode_jpeg
@@decode_png
@@encode_png
## Resizing
The resizing Ops accept input images as tensors of several types. They always
output resized images as float32 tensors.
The convenience function [`resize_images()`](#resize_images) supports both 4-D
and 3-D tensors as input and output. 4-D tensors are for batches of images,
3-D tensors for individual images.
Other resizing Ops only support 4-D batches of images as input:
[`resize_area`](#resize_area), [`resize_bicubic`](#resize_bicubic),
[`resize_bilinear`](#resize_bilinear),
[`resize_nearest_neighbor`](#resize_nearest_neighbor).
Example:
```python
# Decode a JPG image and resize it to 299 by 299 using default method.
image = tf.image.decode_jpeg(...)
resized_image = tf.image.resize_images(image, 299, 299)
```
@@resize_images
@@resize_area
@@resize_bicubic
@@resize_bilinear
@@resize_nearest_neighbor
## Cropping
@@resize_image_with_crop_or_pad
@@pad_to_bounding_box
@@crop_to_bounding_box
@@random_crop
@@extract_glimpse
## Flipping and Transposing
@@flip_up_down
@@random_flip_up_down
@@flip_left_right
@@random_flip_left_right
@@transpose_image
## Converting Between Colorspaces.
Internally, images are either stored in as one `float32` per channel per pixel
(implicitly, values are assumed to lie in `[0,1)`) or one `uint8` per channel
per pixel (values are assumed to lie in `[0,255]`).
@@convert_image_dtype
## Image Adjustments
TensorFlow provides functions to adjust images in various ways: brightness,
contrast, hue, and saturation. Each adjustment can be done with predefined
parameters or with random parameters picked from predefined intervals. Random
adjustments are often useful to expand a training set and reduce overfitting.
@@adjust_brightness
@@random_brightness
@@adjust_contrast
@@random_contrast
@@per_image_whitening
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import tensorflow.python.platform
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import random_seed
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import clip_ops
from tensorflow.python.ops import common_shapes
from tensorflow.python.ops import constant_op
from tensorflow.python.ops import gen_image_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
# pylint: disable=wildcard-import
from tensorflow.python.ops.gen_image_ops import *
from tensorflow.python.ops.gen_attention_ops import *
# pylint: enable=wildcard-import
ops.NoGradient('ResizeBilinear')
ops.NoGradient('RandomCrop')
def _ImageDimensions(images):
"""Returns the dimensions of an image tensor.
Args:
images: 4-D Tensor of shape [batch, height, width, channels]
Returns:
list of integers [batch, height, width, channels]
"""
# A simple abstraction to provide names for each dimension. This abstraction
# should make it simpler to switch dimensions in the future (e.g. if we ever
# want to switch height and width.)
return images.get_shape().as_list()
def _Check3DImage(image):
"""Assert that we are working with properly shaped image.
Args:
image: 3-D Tensor of shape [height, width, channels]
Raises:
ValueError: if image.shape is not a [3] vector.
"""
if not image.get_shape().is_fully_defined():
raise ValueError('\'image\' must be fully defined.')
if image.get_shape().ndims != 3:
raise ValueError('\'image\' must be three-dimensional.')
if not all(x > 0 for x in image.get_shape()):
raise ValueError('all dims of \'image.shape\' must be > 0: %s' %
image.get_shape())
def _CheckAtLeast3DImage(image):
"""Assert that we are working with properly shaped image.
Args:
image: >= 3-D Tensor of size [*, height, width, depth]
Raises:
ValueError: if image.shape is not a [>= 3] vector.
"""
if not image.get_shape().is_fully_defined():
raise ValueError('\'image\' must be fully defined.')
if image.get_shape().ndims < 3:
raise ValueError('\'image\' must be at least three-dimensional.')
if not all(x > 0 for x in image.get_shape()):
raise ValueError('all dims of \'image.shape\' must be > 0: %s' %
image.get_shape())
def random_flip_up_down(image, seed=None):
"""Randomly flips an image vertically (upside down).
With a 1 in 2 chance, outputs the contents of `image` flipped along the first
dimension, which is `height`. Otherwise output the image as-is.
Args:
image: A 3-D tensor of shape `[height, width, channels].`
seed: A Python integer. Used to create a random seed. See
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
for behavior.
Returns:
A 3-D tensor of the same type and shape as `image`.
Raises:
ValueError: if the shape of `image` not supported.
"""
_Check3DImage(image)
uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed)
mirror = math_ops.less(array_ops.pack([uniform_random, 1.0, 1.0]), 0.5)
return array_ops.reverse(image, mirror)
def random_flip_left_right(image, seed=None):
"""Randomly flip an image horizontally (left to right).
With a 1 in 2 chance, outputs the contents of `image` flipped along the
second dimension, which is `width`. Otherwise output the image as-is.
Args:
image: A 3-D tensor of shape `[height, width, channels].`
seed: A Python integer. Used to create a random seed. See
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
for behavior.
Returns:
A 3-D tensor of the same type and shape as `image`.
Raises:
ValueError: if the shape of `image` not supported.
"""
_Check3DImage(image)
uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed)
mirror = math_ops.less(array_ops.pack([1.0, uniform_random, 1.0]), 0.5)
return array_ops.reverse(image, mirror)
def flip_left_right(image):
"""Flip an image horizontally (left to right).
Outputs the contents of `image` flipped along the second dimension, which is
`width`.
See also `reverse()`.
Args:
image: A 3-D tensor of shape `[height, width, channels].`
Returns:
A 3-D tensor of the same type and shape as `image`.
Raises:
ValueError: if the shape of `image` not supported.
"""
_Check3DImage(image)
return array_ops.reverse(image, [False, True, False])
def flip_up_down(image):
"""Flip an image horizontally (upside down).
Outputs the contents of `image` flipped along the first dimension, which is
`height`.
See also `reverse()`.
Args:
image: A 3-D tensor of shape `[height, width, channels].`
Returns:
A 3-D tensor of the same type and shape as `image`.
Raises:
ValueError: if the shape of `image` not supported.
"""
_Check3DImage(image)
return array_ops.reverse(image, [True, False, False])
def transpose_image(image):
"""Transpose an image by swapping the first and second dimension.
See also `transpose()`.
Args:
image: 3-D tensor of shape `[height, width, channels]`
Returns:
A 3-D tensor of shape `[width, height, channels]`
Raises:
ValueError: if the shape of `image` not supported.
"""
_Check3DImage(image)
return array_ops.transpose(image, [1, 0, 2], name='transpose_image')
def pad_to_bounding_box(image, offset_height, offset_width, target_height,
target_width):
"""Pad `image` with zeros to the specified `height` and `width`.
Adds `offset_height` rows of zeros on top, `offset_width` columns of
zeros on the left, and then pads the image on the bottom and right
with zeros until it has dimensions `target_height`, `target_width`.
This op does nothing if `offset_*` is zero and the image already has size
`target_height` by `target_width`.
Args:
image: 3-D tensor with shape `[height, width, channels]`
offset_height: Number of rows of zeros to add on top.
offset_width: Number of columns of zeros to add on the left.
target_height: Height of output image.
target_width: Width of output image.
Returns:
3-D tensor of shape `[target_height, target_width, channels]`
Raises:
ValueError: If the shape of `image` is incompatible with the `offset_*` or
`target_*` arguments
"""
_Check3DImage(image)
height, width, depth = _ImageDimensions(image)
if target_width < width:
raise ValueError('target_width must be >= width')
if target_height < height:
raise ValueError('target_height must be >= height')
after_padding_width = target_width - offset_width - width
after_padding_height = target_height - offset_height - height
if after_padding_width < 0:
raise ValueError('target_width not possible given '
'offset_width and image width')
if after_padding_height < 0:
raise ValueError('target_height not possible given '
'offset_height and image height')
# Do not pad on the depth dimensions.
if (offset_width or offset_height or after_padding_width or
after_padding_height):
paddings = [[offset_height, after_padding_height],
[offset_width, after_padding_width], [0, 0]]
padded = array_ops.pad(image, paddings)
padded.set_shape([target_height, target_width, depth])
else:
padded = image
return padded
def crop_to_bounding_box(image, offset_height, offset_width, target_height,
target_width):
"""Crops an image to a specified bounding box.
This op cuts a rectangular part out of `image`. The top-left corner of the
returned image is at `offset_height, offset_width` in `image`, and its
lower-right corner is at
`offset_height + target_height, offset_width + target_width`.
Args:
image: 3-D tensor with shape `[height, width, channels]`
offset_height: Vertical coordinate of the top-left corner of the result in
the input.
offset_width: Horizontal coordinate of the top-left corner of the result in
the input.
target_height: Height of the result.
target_width: Width of the result.
Returns:
3-D tensor of image with shape `[target_height, target_width, channels]`
Raises:
ValueError: If the shape of `image` is incompatible with the `offset_*` or
`target_*` arguments
"""
_Check3DImage(image)
height, width, _ = _ImageDimensions(image)
if offset_width < 0:
raise ValueError('offset_width must be >= 0.')
if offset_height < 0:
raise ValueError('offset_height must be >= 0.')
if width < (target_width + offset_width):
raise ValueError('width must be >= target + offset.')
if height < (target_height + offset_height):
raise ValueError('height must be >= target + offset.')
cropped = array_ops.slice(image, [offset_height, offset_width, 0],
[target_height, target_width, -1])
return cropped
def resize_image_with_crop_or_pad(image, target_height, target_width):
"""Crops and/or pads an image to a target width and height.
Resizes an image to a target width and height by either centrally
cropping the image or padding it evenly with zeros.
If `width` or `height` is greater than the specified `target_width` or
`target_height` respectively, this op centrally crops along that dimension.
If `width` or `height` is smaller than the specified `target_width` or
`target_height` respectively, this op centrally pads with 0 along that
dimension.
Args:
image: 3-D tensor of shape [height, width, channels]
target_height: Target height.
target_width: Target width.
Raises:
ValueError: if `target_height` or `target_width` are zero or negative.
Returns:
Cropped and/or padded image of shape
`[target_height, target_width, channels]`
"""
_Check3DImage(image)
original_height, original_width, _ = _ImageDimensions(image)
if target_width <= 0:
raise ValueError('target_width must be > 0.')
if target_height <= 0:
raise ValueError('target_height must be > 0.')
offset_crop_width = 0
offset_pad_width = 0
if target_width < original_width:
offset_crop_width = (original_width - target_width) // 2
elif target_width > original_width:
offset_pad_width = (target_width - original_width) // 2
offset_crop_height = 0
offset_pad_height = 0
if target_height < original_height:
offset_crop_height = (original_height - target_height) // 2
elif target_height > original_height:
offset_pad_height = (target_height - original_height) // 2
# Maybe crop if needed.
cropped = crop_to_bounding_box(image, offset_crop_height, offset_crop_width,
min(target_height, original_height),
min(target_width, original_width))
# Maybe pad if needed.
resized = pad_to_bounding_box(cropped, offset_pad_height, offset_pad_width,
target_height, target_width)
if resized.get_shape().ndims is None:
raise ValueError('resized contains no shape.')
if not resized.get_shape()[0].is_compatible_with(target_height):
raise ValueError('resized height is not correct.')
if not resized.get_shape()[1].is_compatible_with(target_width):
raise ValueError('resized width is not correct.')
return resized
class ResizeMethod(object):
BILINEAR = 0
NEAREST_NEIGHBOR = 1
BICUBIC = 2
AREA = 3
def resize_images(images, new_height, new_width, method=ResizeMethod.BILINEAR):
"""Resize `images` to `new_width`, `new_height` using the specified `method`.
Resized images will be distorted if their original aspect ratio is not
the same as `new_width`, `new_height`. To avoid distortions see
[`resize_image_with_crop_or_pad`](#resize_image_with_crop_or_pad).
`method` can be one of:
* <b>`ResizeMethod.BILINEAR`</b>: [Bilinear interpolation.]
(https://en.wikipedia.org/wiki/Bilinear_interpolation)
* <b>`ResizeMethod.NEAREST_NEIGHBOR`</b>: [Nearest neighbor interpolation.]
(https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation)
* <b>`ResizeMethod.BICUBIC`</b>: [Bicubic interpolation.]
(https://en.wikipedia.org/wiki/Bicubic_interpolation)
* <b>`ResizeMethod.AREA`</b>: Area interpolation.
Args:
images: 4-D Tensor of shape `[batch, height, width, channels]` or
3-D Tensor of shape `[height, width, channels]`.
new_height: integer.
new_width: integer.
method: ResizeMethod. Defaults to `ResizeMethod.BILINEAR`.
Raises:
ValueError: if the shape of `images` is incompatible with the
shape arguments to this function
ValueError: if an unsupported resize method is specified.
Returns:
If `images` was 4-D, a 4-D float Tensor of shape
`[batch, new_height, new_width, channels]`.
If `images` was 3-D, a 3-D float Tensor of shape
`[new_height, new_width, channels]`.
"""
if images.get_shape().ndims is None:
raise ValueError('\'images\' contains no shape.')
# TODO(shlens): Migrate this functionality to the underlying Op's.
is_batch = True
if len(images.get_shape()) == 3:
is_batch = False
images = array_ops.expand_dims(images, 0)
_, height, width, depth = _ImageDimensions(images)
if width == new_width and height == new_height:
return images
if method == ResizeMethod.BILINEAR:
images = gen_image_ops.resize_bilinear(images, [new_height, new_width])
elif method == ResizeMethod.NEAREST_NEIGHBOR:
images = gen_image_ops.resize_nearest_neighbor(images, [new_height,
new_width])
elif method == ResizeMethod.BICUBIC:
images = gen_image_ops.resize_bicubic(images, [new_height, new_width])
elif method == ResizeMethod.AREA:
images = gen_image_ops.resize_area(images, [new_height, new_width])
else:
raise ValueError('Resize method is not implemented.')
if not is_batch:
images = array_ops.squeeze(images, squeeze_dims=[0])
return images
def per_image_whitening(image):
"""Linearly scales `image` to have zero mean and unit norm.
This op computes `(x - mean) / adjusted_stddev`, where `mean` is the average
of all values in image, and
`adjusted_stddev = max(stddev, 1.0/srqt(image.NumElements()))`.
`stddev` is the standard deviation of all values in `image`. It is capped
away from zero to protect against division by 0 when handling uniform images.
Note that this implementation is limited:
* It only whitens based on the statistics of an individual image.
* It does not take into account the covariance structure.
Args:
image: 3-D tensor of shape `[height, width, channels]`.
Returns:
The whitened image with same shape as `image`.
Raises:
ValueError: if the shape of 'image' is incompatible with this function.
"""
_Check3DImage(image)
height, width, depth = _ImageDimensions(image)
num_pixels = height * width * depth
image = math_ops.cast(image, dtype=dtypes.float32)
image_mean = math_ops.reduce_mean(image)
variance = (math_ops.reduce_mean(math_ops.square(image)) -
math_ops.square(image_mean))
stddev = math_ops.sqrt(variance)
# Apply a minimum normalization that protects us against uniform images.
min_stddev = constant_op.constant(1.0 / math.sqrt(num_pixels))
pixel_value_scale = math_ops.maximum(stddev, min_stddev)
pixel_value_offset = image_mean
image = math_ops.sub(image, pixel_value_offset)
image = math_ops.div(image, pixel_value_scale)
return image
def random_brightness(image, max_delta, seed=None):
"""Adjust the brightness of images by a random factor.
Equivalent to `adjust_brightness()` using a `delta` randomly picked in the
interval `[-max_delta, max_delta)`.
Note that `delta` is picked as a float. Because for integer type images,
the brightness adjusted result is rounded before casting, integer images may
have modifications in the range `[-max_delta,max_delta]`.
Args:
image: 3-D tensor of shape `[height, width, channels]`.
max_delta: float, must be non-negative.
seed: A Python integer. Used to create a random seed. See
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
for behavior.
Returns:
3-D tensor of images of shape `[height, width, channels]`
Raises:
ValueError: if `max_delta` is negative.
"""
_Check3DImage(image)
if max_delta < 0:
raise ValueError('max_delta must be non-negative.')
delta = random_ops.random_uniform([], -max_delta, max_delta, seed=seed)
return adjust_brightness(image, delta)
def random_contrast(image, lower, upper, seed=None):
"""Adjust the contrase of an image by a random factor.
Equivalent to `adjust_constrast()` but uses a `contrast_factor` randomly
picked in the interval `[lower, upper]`.
Args:
image: 3-D tensor of shape `[height, width, channels]`.
lower: float. Lower bound for the random contrast factor.
upper: float. Upper bound for the random contrast factor.
seed: A Python integer. Used to create a random seed. See
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
for behavior.
Returns:
3-D tensor of shape `[height, width, channels]`.
Raises:
ValueError: if `upper <= lower` or if `lower < 0`.
"""
_Check3DImage(image)
if upper <= lower:
raise ValueError('upper must be > lower.')
if lower < 0:
raise ValueError('lower must be non-negative.')
# Generate an a float in [lower, upper]
contrast_factor = random_ops.random_uniform([], lower, upper, seed=seed)
return adjust_contrast(image, contrast_factor)
def adjust_brightness(image, delta, min_value=None, max_value=None):
"""Adjust the brightness of RGB or Grayscale images.
The value `delta` is added to all components of the tensor `image`. `image`
and `delta` are cast to `float` before adding, and the resulting values are
clamped to `[min_value, max_value]`. Finally, the result is cast back to
`images.dtype`.
If `min_value` or `max_value` are not given, they are set to the minimum and
maximum allowed values for `image.dtype` respectively.
Args:
image: A tensor.
delta: A scalar. Amount to add to the pixel values.
min_value: Minimum value for output.
max_value: Maximum value for output.
Returns:
A tensor of the same shape and type as `image`.
"""
if min_value is None:
min_value = image.dtype.min
if max_value is None:
max_value = image.dtype.max
with ops.op_scope([image, delta, min_value, max_value], None,
'adjust_brightness') as name:
adjusted = math_ops.add(
math_ops.cast(image, dtypes.float32),
math_ops.cast(delta, dtypes.float32),
name=name)
if image.dtype.is_integer:
rounded = math_ops.round(adjusted)
else:
rounded = adjusted
clipped = clip_ops.clip_by_value(rounded, float(min_value),
float(max_value))
output = math_ops.cast(clipped, image.dtype)
return output
def adjust_contrast(images, contrast_factor, min_value=None, max_value=None):
"""Adjust contrast of RGB or grayscale images.
`images` is a tensor of at least 3 dimensions. The last 3 dimensions are
interpreted as `[height, width, channels]`. The other dimensions only
represent a collection of images, such as `[batch, height, width, channels].`
Contrast is adjusted independently for each channel of each image.
For each channel, this Op first computes the mean of the image pixels in the
channel and then adjusts each component `x` of each pixel to
`(x - mean) * contrast_factor + mean`.
The adjusted values are then clipped to fit in the `[min_value, max_value]`
interval. If `min_value` or `max_value` is not given, it is replaced with the
minimum and maximum values for the data type of `images` respectively.
The contrast-adjusted image is always computed as `float`, and it is
cast back to its original type after clipping.
Args:
images: Images to adjust. At least 3-D.
contrast_factor: A float multiplier for adjusting contrast.
min_value: Minimum value for clipping the adjusted pixels.
max_value: Maximum value for clipping the adjusted pixels.
Returns:
The constrast-adjusted image or images.
Raises:
ValueError: if the arguments are invalid.
"""
_CheckAtLeast3DImage(images)
# If these are None, the min/max should be a nop, but still prevent overflows
# from the cast back to images.dtype at the end of adjust_contrast.
if min_value is None:
min_value = images.dtype.min
if max_value is None:
max_value = images.dtype.max
with ops.op_scope(
[images, contrast_factor, min_value,
max_value], None, 'adjust_contrast') as name:
adjusted = gen_image_ops.adjust_contrast(images,
contrast_factor=contrast_factor,
min_value=min_value,
max_value=max_value,
name=name)
if images.dtype.is_integer:
return math_ops.cast(math_ops.round(adjusted), images.dtype)
else:
return math_ops.cast(adjusted, images.dtype)
ops.RegisterShape('AdjustContrast')(
common_shapes.unchanged_shape_with_rank_at_least(3))
@ops.RegisterShape('ResizeBilinear')
@ops.RegisterShape('ResizeNearestNeighbor')
@ops.RegisterShape('ResizeBicubic')
@ops.RegisterShape('ResizeArea')
def _ResizeShape(op):
"""Shape function for the resize_bilinear and resize_nearest_neighbor ops."""
input_shape = op.inputs[0].get_shape().with_rank(4)
size = tensor_util.ConstantValue(op.inputs[1])
if size is not None:
height = size[0]
width = size[1]
else:
height = None
width = None
return [tensor_shape.TensorShape(
[input_shape[0], height, width, input_shape[3]])]
@ops.RegisterShape('DecodeJpeg')
@ops.RegisterShape('DecodePng')
def _ImageDecodeShape(op):
"""Shape function for image decoding ops."""
unused_input_shape = op.inputs[0].get_shape().merge_with(
tensor_shape.scalar())
channels = op.get_attr('channels') or None
return [tensor_shape.TensorShape([None, None, channels])]
@ops.RegisterShape('EncodeJpeg')
@ops.RegisterShape('EncodePng')
def _ImageEncodeShape(op):
"""Shape function for image encoding ops."""
unused_input_shape = op.inputs[0].get_shape().with_rank(3)
return [tensor_shape.scalar()]
@ops.RegisterShape('RandomCrop')
def _random_cropShape(op):
"""Shape function for the random_crop op."""
input_shape = op.inputs[0].get_shape().with_rank(3)
unused_size_shape = op.inputs[1].get_shape().merge_with(
tensor_shape.vector(2))
size = tensor_util.ConstantValue(op.inputs[1])
if size is not None:
height = size[0]
width = size[1]
else:
height = None
width = None
channels = input_shape[2]
return [tensor_shape.TensorShape([height, width, channels])]
def random_crop(image, size, seed=None, name=None):
"""Randomly crops `image` to size `[target_height, target_width]`.
The offset of the output within `image` is uniformly random. `image` always
fully contains the result.
Args:
image: 3-D tensor of shape `[height, width, channels]`
size: 1-D tensor with two elements, specifying target `[height, width]`
seed: A Python integer. Used to create a random seed. See
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
for behavior.
name: A name for this operation (optional).
Returns:
A cropped 3-D tensor of shape `[target_height, target_width, channels]`.
"""
seed1, seed2 = random_seed.get_seed(seed)
return gen_image_ops.random_crop(image, size, seed=seed1, seed2=seed2,
name=name)
def convert_image_dtype(image, dtype, name=None):
"""Convert `image` to `dtype`, scaling its values if needed.
Images that are represented using floating point values are expected to have
values in the range [0,1). Image data stored in integer data types are
expected to have values in the range `[0,MAX]`, wbere `MAX` is the largest
positive representable number for the data type.
This op converts between data types, scaling the values appropriately before
casting.
Note that for floating point inputs, this op expects values to lie in [0,1).
Conversion of an image containing values outside that range may lead to
overflow errors when converted to integer `Dtype`s.
Args:
image: An image.
dtype: A `DType` to convert `image` to.
name: A name for this operation (optional).
Returns:
`image`, converted to `dtype`.
"""
if dtype == image.dtype:
return image
with ops.op_scope([image], name, 'convert_image') as name:
# Both integer: use integer multiplication in the larger range
if image.dtype.is_integer and dtype.is_integer:
scale_in = image.dtype.max
scale_out = dtype.max
if scale_in > scale_out:
# Scaling down, scale first, then cast. The scaling factor will
# cause in.max to be mapped to above out.max but below out.max+1,
# so that the output is safely in the supported range.
scale = (scale_in + 1) // (scale_out + 1)
scaled = math_ops.div(image, scale)
return math_ops.cast(scaled, dtype)
else:
# Scaling up, cast first, then scale. The scale will not map in.max to
# out.max, but converting back and forth should result in no change.
cast = math_ops.cast(image, dtype)
scale = (scale_out + 1) // (scale_in + 1)
return math_ops.mul(cast, scale)
elif image.dtype.is_floating and dtype.is_floating:
# Both float: Just cast, no possible overflows in the allowed ranges.
return math_ops.cast(image, dtype)
else:
if image.dtype.is_integer:
# Converting to float: first cast, then scale
cast = math_ops.cast(image, dtype)
scale = 1. / image.dtype.max
return math_ops.mul(cast, scale)
else:
# Converting from float: first scale, then cast
scale = dtype.max + 0.5 # avoid rounding problems in the cast
scaled = math_ops.mul(image, scale)
return math_ops.cast(scaled, dtype)