Added get variable utils to tf.estimator.Estimator.

PiperOrigin-RevId: 171052121
This commit is contained in:
Mustafa Ispir 2017-10-04 13:14:04 -07:00 committed by TensorFlower Gardener
parent 083bd5dde5
commit d66e77f7c3
13 changed files with 24 additions and 333 deletions

View File

@ -1,155 +0,0 @@
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Demonstrates a regression on Boston housing data.
This example demonstrates how to run experiments with TF Boosted Trees on
a regression dataset. We split all the data into 20% test and 80% train,
and are using l2 loss and l2 regularization.
Example Usage:
python tensorflow/contrib/boosted_trees/examples/boston.py \
--batch_size=404 --output_dir="/tmp/boston" --depth=4 --learning_rate=0.1 \
--num_eval_steps=1 --num_trees=500 --l2=4 \
--vmodule=training_ops=1
When training is done, mean squared error on eval data is reported.
Point tensorboard to the directory for the run to see how the training
progresses:
tensorboard --logdir=/tmp/boston
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import tensorflow as tf
from tensorflow.contrib.boosted_trees.estimator_batch.estimator import GradientBoostedDecisionTreeRegressor
from tensorflow.contrib.boosted_trees.proto import learner_pb2
from tensorflow.contrib.layers.python.layers import feature_column
from tensorflow.contrib.learn import learn_runner
_TEST_SPLIT_RATIO = 0.2
_TEST_SPLIT_SEED = 42
_BOSTON_NUM_FEATURES = 13
# Main config - creates a TF Boosted Trees Estimator based on flags.
def _get_tfbt(output_dir, feature_cols):
"""Configures TF Boosted Trees estimator based on flags."""
learner_config = learner_pb2.LearnerConfig()
learner_config.learning_rate_tuner.fixed.learning_rate = FLAGS.learning_rate
learner_config.regularization.l1 = 0.0
# Set the regularization per instance in such a way that
# regularization for the full training data is equal to l2 flag.
learner_config.regularization.l2 = FLAGS.l2 / FLAGS.batch_size
learner_config.constraints.max_tree_depth = FLAGS.depth
learner_config.growing_mode = learner_pb2.LearnerConfig.WHOLE_TREE
run_config = tf.contrib.learn.RunConfig(save_checkpoints_secs=300)
# Create a TF Boosted trees regression estimator.
estimator = GradientBoostedDecisionTreeRegressor(
learner_config=learner_config,
# For the WHOLE_TREE strategy, set the examples_per_layer to be equal to
# batch size.
examples_per_layer=FLAGS.batch_size,
feature_columns=feature_cols,
label_dimension=1,
model_dir=output_dir,
num_trees=FLAGS.num_trees,
center_bias=False,
config=run_config)
return estimator
def _make_experiment_fn(output_dir):
"""Creates experiment for gradient boosted decision trees."""
(x_train, y_train), (x_test,
y_test) = tf.keras.datasets.boston_housing.load_data()
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": x_train},
y=y_train,
batch_size=FLAGS.batch_size,
num_epochs=None,
shuffle=True)
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": x_test}, y=y_test, num_epochs=1, shuffle=False)
feature_columns = [
feature_column.real_valued_column("x", dimension=_BOSTON_NUM_FEATURES)
]
return tf.contrib.learn.Experiment(
estimator=_get_tfbt(output_dir, feature_columns),
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
train_steps=None,
eval_steps=FLAGS.num_eval_steps,
eval_metrics=None)
def main(unused_argv):
learn_runner.run(
experiment_fn=_make_experiment_fn,
output_dir=FLAGS.output_dir,
schedule="train_and_evaluate")
if __name__ == "__main__":
tf.logging.set_verbosity(tf.logging.INFO)
parser = argparse.ArgumentParser()
# Define the list of flags that users can change.
parser.add_argument(
"--batch_size",
type=int,
default=1000,
help="The batch size for reading data.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Choose the dir for the output.")
parser.add_argument(
"--num_eval_steps",
type=int,
default=1,
help="The number of steps to run evaluation for.")
# Flags for gradient boosted trees config.
parser.add_argument(
"--depth", type=int, default=4, help="Maximum depth of weak learners.")
parser.add_argument(
"--l2", type=float, default=1.0, help="l2 regularization per batch.")
parser.add_argument(
"--learning_rate",
type=float,
default=0.1,
help="Learning rate (shrinkage weight) with which each new tree is added."
)
parser.add_argument(
"--num_trees",
type=int,
default=None,
required=True,
help="Number of trees to grow before stopping.")
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

View File

@ -129,8 +129,8 @@ def _get_tfbt(output_dir):
def _make_experiment_fn(output_dir): def _make_experiment_fn(output_dir):
"""Creates experiment for gradient boosted decision trees.""" """Creates experiment for gradient boosted decision trees."""
data = tf.contrib.learn.datasets.mnist.load_mnist() data = tf.contrib.learn.datasets.mnist.load_mnist()
train_input_fn = get_input_fn(data.train, FLAGS.batch_size) train_input_fn = get_input_fn(data.train, batch_size=256)
eval_input_fn = get_input_fn(data.validation, FLAGS.eval_batch_size) eval_input_fn = get_input_fn(data.validation, batch_size=5000)
return tf.contrib.learn.Experiment( return tf.contrib.learn.Experiment(
estimator=_get_tfbt(output_dir), estimator=_get_tfbt(output_dir),

View File

@ -10,9 +10,8 @@ load(":src/gen/gen_ops.bzl", "tf_java_op_gen_srcjar")
load( load(
"//tensorflow:tensorflow.bzl", "//tensorflow:tensorflow.bzl",
"tf_binary_additional_srcs", "tf_binary_additional_srcs",
"tf_cc_binary",
"tf_copts", "tf_copts",
"tf_custom_op_library", "tf_cc_binary",
"tf_java_test", "tf_java_test",
) )
@ -181,16 +180,10 @@ tf_java_test(
], ],
) )
tf_custom_op_library(
name = "my_test_op.so",
srcs = ["src/test/native/my_test_op.cc"],
)
tf_java_test( tf_java_test(
name = "TensorFlowTest", name = "TensorFlowTest",
size = "small", size = "small",
srcs = ["src/test/java/org/tensorflow/TensorFlowTest.java"], srcs = ["src/test/java/org/tensorflow/TensorFlowTest.java"],
data = [":my_test_op.so"],
javacopts = JAVACOPTS, javacopts = JAVACOPTS,
test_class = "org.tensorflow.TensorFlowTest", test_class = "org.tensorflow.TensorFlowTest",
deps = [ deps = [

View File

@ -29,36 +29,6 @@ public final class TensorFlow {
*/ */
public static native byte[] registeredOpList(); public static native byte[] registeredOpList();
/**
* Load the dynamic library in filename and register the operations and kernels present in that
* library.
*
* @param filename Path of the dynamic library containing operations and kernels to load.
* @return Serialized bytes of the <a
* href="https://www.tensorflow.org/code/tensorflow/core/framework/op_def.proto">OpList</a>
* protocol buffer message defining the operations defined in the library.
* @throws UnsatisfiedLinkError if filename cannot be loaded.
*/
public static byte[] loadLibrary(String filename) {
long h = 0;
try {
h = libraryLoad(filename);
} catch (RuntimeException e) {
throw new UnsatisfiedLinkError(e.getMessage());
}
try {
return libraryOpList(h);
} finally {
libraryDelete(h);
}
}
private static native long libraryLoad(String filename);
private static native void libraryDelete(long handle);
private static native byte[] libraryOpList(long handle);
private TensorFlow() {} private TensorFlow() {}
/** Load the TensorFlow runtime C library. */ /** Load the TensorFlow runtime C library. */

View File

@ -14,10 +14,7 @@ limitations under the License.
==============================================================================*/ ==============================================================================*/
#include "tensorflow/java/src/main/native/tensorflow_jni.h" #include "tensorflow/java/src/main/native/tensorflow_jni.h"
#include <limits>
#include "tensorflow/c/c_api.h" #include "tensorflow/c/c_api.h"
#include "tensorflow/java/src/main/native/exception_jni.h"
JNIEXPORT jstring JNICALL Java_org_tensorflow_TensorFlow_version(JNIEnv* env, JNIEXPORT jstring JNICALL Java_org_tensorflow_TensorFlow_version(JNIEnv* env,
jclass clazz) { jclass clazz) {
@ -33,35 +30,3 @@ Java_org_tensorflow_TensorFlow_registeredOpList(JNIEnv* env, jclass clazz) {
TF_DeleteBuffer(buf); TF_DeleteBuffer(buf);
return ret; return ret;
} }
JNIEXPORT jlong JNICALL Java_org_tensorflow_TensorFlow_libraryLoad(
JNIEnv* env, jclass clazz, jstring filename) {
TF_Status* status = TF_NewStatus();
const char* cname = env->GetStringUTFChars(filename, nullptr);
TF_Library* h = TF_LoadLibrary(cname, status);
throwExceptionIfNotOK(env, status);
env->ReleaseStringUTFChars(filename, cname);
TF_DeleteStatus(status);
return reinterpret_cast<jlong>(h);
}
JNIEXPORT void JNICALL Java_org_tensorflow_TensorFlow_libraryDelete(
JNIEnv* env, jclass clazz, jlong handle) {
if (handle != 0) {
TF_DeleteLibraryHandle(reinterpret_cast<TF_Library*>(handle));
}
}
JNIEXPORT jbyteArray JNICALL Java_org_tensorflow_TensorFlow_libraryOpList(
JNIEnv* env, jclass clazz, jlong handle) {
TF_Buffer buf = TF_GetOpList(reinterpret_cast<TF_Library*>(handle));
if (buf.length > std::numeric_limits<jint>::max()) {
throwException(env, kIndexOutOfBoundsException,
"Serialized OpList is too large for a byte[] array");
return nullptr;
}
auto ret_len = static_cast<jint>(buf.length);
jbyteArray ret = env->NewByteArray(ret_len);
env->SetByteArrayRegion(ret, 0, ret_len, static_cast<const jbyte*>(buf.data));
return ret;
}

View File

@ -27,7 +27,7 @@ extern "C" {
* Method: version * Method: version
* Signature: ()Ljava/lang/String; * Signature: ()Ljava/lang/String;
*/ */
JNIEXPORT jstring JNICALL Java_org_tensorflow_TensorFlow_version(JNIEnv *, JNIEXPORT jstring JNICALL Java_org_tensorflow_TensorFlow_version(JNIEnv*,
jclass); jclass);
/* /*
@ -36,33 +36,7 @@ JNIEXPORT jstring JNICALL Java_org_tensorflow_TensorFlow_version(JNIEnv *,
* Signature: ()[B * Signature: ()[B
*/ */
JNIEXPORT jbyteArray JNICALL JNIEXPORT jbyteArray JNICALL
Java_org_tensorflow_TensorFlow_registeredOpList(JNIEnv *, jclass); Java_org_tensorflow_TensorFlow_registeredOpList(JNIEnv*, jclass);
/*
* Class: org_tensorflow_TensorFlow
* Method: libraryLoad
* Signature: (Ljava/lang/String;)J
*/
JNIEXPORT jlong JNICALL Java_org_tensorflow_TensorFlow_libraryLoad(JNIEnv *,
jclass,
jstring);
/*
* Class: org_tensorflow_TensorFlow
* Method: libraryDelete
* Signature: (J)V
*/
JNIEXPORT void JNICALL Java_org_tensorflow_TensorFlow_libraryDelete(JNIEnv *,
jclass,
jlong);
/*
* Class: org_tensorflow_TensorFlow
* Method: libraryOpList
* Signature: (J)[B
*/
JNIEXPORT jbyteArray JNICALL
Java_org_tensorflow_TensorFlow_libraryOpList(JNIEnv *, jclass, jlong);
#ifdef __cplusplus #ifdef __cplusplus
} // extern "C" } // extern "C"

View File

@ -16,7 +16,6 @@ limitations under the License.
package org.tensorflow; package org.tensorflow;
import static org.junit.Assert.assertTrue; import static org.junit.Assert.assertTrue;
import static org.junit.Assert.fail;
import org.junit.Test; import org.junit.Test;
import org.junit.runner.RunWith; import org.junit.runner.RunWith;
@ -37,26 +36,4 @@ public class TensorFlowTest {
// was not sorted out. Revisit? Till then, at least exercise the code. // was not sorted out. Revisit? Till then, at least exercise the code.
assertTrue(TensorFlow.registeredOpList().length > 0); assertTrue(TensorFlow.registeredOpList().length > 0);
} }
@Test
public void loadLibrary() {
// TODO(ashankar): This tell will fail when built with --config=monolithic.
// Figure out how we can ignore the test in that case.
try (Graph g = new Graph()) {
// Build a graph with an unrecognized operation.
try {
g.opBuilder("MyTest", "MyTest").build();
fail("should not be able to construct graphs with unregistered ops");
} catch (IllegalArgumentException e) {
// expected exception
}
// Load the library containing the operation.
byte[] opList = TensorFlow.loadLibrary("tensorflow/java/my_test_op.so");
assertTrue(opList.length > 0);
// Now graph building should succeed.
g.opBuilder("MyTest", "MyTest").build();
}
}
} }

View File

@ -1,21 +0,0 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/core/framework/common_shape_fns.h"
#include "tensorflow/core/framework/op.h"
REGISTER_OP("MyTest")
.Doc("Custom operation for testing.")
.SetShapeFn(tensorflow::shape_inference::UnknownShape);

View File

@ -168,31 +168,27 @@ def make_tensor(v, arg_name):
def args_to_matching_eager(l, ctx, default_dtype=None): def args_to_matching_eager(l, ctx, default_dtype=None):
"""Convert sequence `l` to eager same-type Tensors.""" """Convert sequence `l` to eager same-type Tensors."""
EagerTensor = ops.EagerTensor # pylint: disable=invalid-name
if all(isinstance(x, EagerTensor) for x in l):
return l[0].dtype, l
# TODO(josh11b): Could we do a better job if we also passed in the # TODO(josh11b): Could we do a better job if we also passed in the
# allowed dtypes when that was known? # allowed dtypes when that was known?
# Is some input already a Tensor with a dtype? # Is some input already a Tensor with a dtype?
dtype = None dtype = None
for t in l: for t in l:
if isinstance(t, EagerTensor): if isinstance(t, ops.EagerTensor):
dtype = t.dtype dtype = t.dtype
break break
internal_convert_to_tensor = ops.internal_convert_to_tensor
if dtype is None: if dtype is None:
# Infer a dtype based on the first value, and use that dtype for the # Infer a dtype based on the first value, and use that dtype for the
# remaining values. # remaining values.
ret = [] ret = []
for t in l: for t in l:
ret.append(internal_convert_to_tensor( ret.append(ops.internal_convert_to_tensor(
t, dtype, preferred_dtype=default_dtype, ctx=ctx)) t, dtype, preferred_dtype=default_dtype, ctx=ctx))
if dtype is None: if dtype is None:
dtype = ret[-1].dtype dtype = ret[-1].dtype
else: else:
ret = [internal_convert_to_tensor(t, dtype, ctx=ctx) for t in l] ret = [ops.internal_convert_to_tensor(t, dtype, ctx=ctx) for t in l]
return dtype, ret return dtype, ret

View File

@ -112,10 +112,8 @@ class Layer(object):
self._per_input_losses = {} self._per_input_losses = {}
self._per_input_updates = {} self._per_input_updates = {}
self._dtype = None if dtype is None else dtypes.as_dtype(dtype).name self._dtype = None if dtype is None else dtypes.as_dtype(dtype).name
call_fn_args = estimator_util.fn_args(self.call) self._compute_previous_mask = ('mask' in estimator_util.fn_args(self.call)
self._compute_previous_mask = ('mask' in call_fn_args or or hasattr(self, 'compute_mask'))
hasattr(self, 'compute_mask'))
self._call_has_scope_arg = 'scope' in call_fn_args
# These lists will be filled via successive calls # These lists will be filled via successive calls
# to self._add_inbound_node(). # to self._add_inbound_node().
@ -557,15 +555,7 @@ class Layer(object):
self.build(input_shapes[0]) self.build(input_shapes[0])
else: else:
self.build(input_shapes) self.build(input_shapes)
try: if 'scope' in estimator_util.fn_args(self.call):
# Note: not all sub-classes of Layer call Layer.__init__ (especially
# the ones under tensorflow/python/keras). Hence we recompute this
# attribute here if it is not set.
# TODO(agarwal): Fix the sub-classes and avoid this complexity.
call_has_scope_arg = self._call_has_scope_arg
except AttributeError:
call_has_scope_arg = 'scope' in estimator_util.fn_args(self.call)
if call_has_scope_arg:
kwargs['scope'] = scope kwargs['scope'] = scope
# Check input assumptions set after layer building, e.g. input shape. # Check input assumptions set after layer building, e.g. input shape.
if in_graph_mode: if in_graph_mode:
@ -1443,10 +1433,8 @@ class Network(Layer):
self._activity_regularizer = None self._activity_regularizer = None
self._scope = next(vs.variable_scope(None, default_name=base_name).gen) self._scope = next(vs.variable_scope(None, default_name=base_name).gen)
self._base_name = base_name self._base_name = base_name
call_fn_args = estimator_util.fn_args(self.call) self._compute_previous_mask = ('mask' in estimator_util.fn_args(self.call)
self._compute_previous_mask = ('mask' in call_fn_args or or hasattr(self, 'compute_mask'))
hasattr(self, 'compute_mask'))
self._call_has_scope_arg = 'scope' in call_fn_args
# This acts just like the `trainable` attribute of any layer instance. # This acts just like the `trainable` attribute of any layer instance.
# It does not affect users of the underlying layers, only users of the # It does not affect users of the underlying layers, only users of the

View File

@ -330,7 +330,7 @@ class BatchNormalization(base.Layer):
lambda: self._one_minus_decay, lambda: self._one_minus_decay,
lambda: 0.) lambda: 0.)
else: else:
one_minus_decay = ops.convert_to_tensor(self._one_minus_decay) one_minus_decay = self._one_minus_decay
if training_value or training_value is None: if training_value or training_value is None:
mean_update = self._assign_moving_average(self.moving_mean, mean, mean_update = self._assign_moving_average(self.moving_mean, mean,
one_minus_decay) one_minus_decay)

View File

@ -2317,10 +2317,6 @@ def conj(x, name=None):
Raises: Raises:
TypeError: If `x` is not a numeric tensor. TypeError: If `x` is not a numeric tensor.
""" """
if isinstance(x, ops.Tensor):
dt = x.dtype
if dt.is_floating or dt.is_integer:
return x
with ops.name_scope(name, "Conj", [x]) as name: with ops.name_scope(name, "Conj", [x]) as name:
x = ops.convert_to_tensor(x, name="x") x = ops.convert_to_tensor(x, name="x")
if x.dtype.is_complex or x.dtype == dtypes.variant: if x.dtype.is_complex or x.dtype == dtypes.variant:

View File

@ -540,8 +540,16 @@ class ResourceVariable(variables.Variable):
the read operation. the read operation.
""" """
with ops.name_scope("Read"): with ops.name_scope("Read"):
# Ensure we read the variable in the same device as the handle. # In graph mode, ensure we read the variable in the same device as the
with ops.device(self._handle_device): # handle. In eager mode, however, this sometimes tries to read a GPU
# variable in the CPU because the handle is host memory. For now, then, we
# need to skip the device block in eager. TODO(apassos): eager should have
# separate notions of device and memory, so handle.device can be GPU while
# handle.memory_space is always CPU.
if context.in_graph_mode():
with ops.device(self._handle_device):
value = self._read_variable_op()
else:
value = self._read_variable_op() value = self._read_variable_op()
# Return an identity so it can get placed on whatever device the context # Return an identity so it can get placed on whatever device the context
# specifies instead of the device where the variable is. # specifies instead of the device where the variable is.