Merge branch 'terrytangyuan-multGPU'

This commit is contained in:
Illia Polosukhin 2015-12-07 22:52:38 -08:00
commit cff8e6e57e
3 changed files with 67 additions and 2 deletions

View File

@ -106,6 +106,27 @@ score = metrics.accuracy_score(classifier.predict(iris.data), iris.target)
print("Accuracy: %f" % score)
```
### Custom model with multiple GPUs
To use multiple GPUs to build a custom model, everything else is the same as the example above
except that in the definition of custom model you'll need to specify the device:
```Python
import tensorflow as tf
def my_model(X, y):
"""
This is DNN with 10, 20, 10 hidden layers, and dropout of 0.5 probability.
Note: If you want to run this example with multiple GPUs, Cuda Toolkit 7.0 and
CUDNN 6.5 V2 from NVIDIA need to be installed beforehand.
"""
with tf.device('/gpu:1'):
layers = skflow.ops.dnn(X, [10, 20, 10], keep_prob=0.5)
with tf.device('/gpu:2'):
return skflow.models.logistic_regression(layers, y)
```
## Coming soon
* Easy way to handle categorical variables

42
examples/multiple_gpu.py Normal file
View File

@ -0,0 +1,42 @@
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import skflow
import tensorflow as tf
from sklearn import datasets, metrics
iris = datasets.load_iris()
X_train, X_test, y_train, y_test = cross_validation.train_test_split(iris.data, iris.target,
test_size=0.2, random_state=42)
random.seed(42)
def my_model(X, y):
"""
This is DNN with 10, 20, 10 hidden layers, and dropout of 0.5 probability.
Note: If you want to run this example with multiple GPUs, Cuda Toolkit 7.0 and
CUDNN 6.5 V2 from NVIDIA need to be installed beforehand.
"""
with tf.device('/gpu:1'):
layers = skflow.ops.dnn(X, [10, 20, 10], keep_prob=0.5)
with tf.device('/gpu:2'):
return skflow.models.logistic_regression(layers, y)
classifier = skflow.TensorFlowEstimator(model_fn=my_model, n_classes=3)
classifier.fit(X_train, y_train)
score = metrics.accuracy_score(classifier.predict(X_test), y_test)
print('Accuracy: {0:f}'.format(score))

View File

@ -46,7 +46,7 @@ class TensorFlowEstimator(BaseEstimator):
"""
def __init__(self, model_fn, n_classes, tf_master="", batch_size=32, steps=50, optimizer="SGD",
learning_rate=0.1, tf_random_seed=42, continue_training=False):
learning_rate=0.1, tf_random_seed=42, continue_training=False, log_device_placement=True):
self.n_classes = n_classes
self.tf_master = tf_master
self.batch_size = batch_size
@ -56,6 +56,7 @@ class TensorFlowEstimator(BaseEstimator):
self.tf_random_seed = tf_random_seed
self.model_fn = model_fn
self.continue_training = continue_training
self.log_device_placement = log_device_placement
self._initialized = False
def _setup_data_feeder(self, X, y):
@ -93,7 +94,8 @@ class TensorFlowEstimator(BaseEstimator):
# Create trainer and augment graph with gradients and optimizer.
self._trainer = TensorFlowTrainer(self._model_loss,
self._global_step, self.optimizer, self.learning_rate)
self._session = tf.Session(self.tf_master)
self._session = tf.Session(self.tf_master,
config=tf.ConfigProto(log_device_placement=self.log_device_placement))
def fit(self, X, y):
"""Builds a neural network model given provided `model_fn` and training