mirror of
https://github.com/zebrajr/tensorflow.git
synced 2025-12-07 12:20:24 +01:00
Go: Update generated wrapper functions for TensorFlow ops.
PiperOrigin-RevId: 165748384
This commit is contained in:
parent
65f87c967c
commit
bbc0b84715
|
|
@ -17790,28 +17790,31 @@ func MatrixSolveLsFast(value bool) MatrixSolveLsAttr {
|
|||
// Solves one or more linear least-squares problems.
|
||||
//
|
||||
// `matrix` is a tensor of shape `[..., M, N]` whose inner-most 2 dimensions
|
||||
// form matrices of size `[M, N]`. Rhs is a tensor of shape `[..., M, K]`.
|
||||
// form real or complex matrices of size `[M, N]`. `Rhs` is a tensor of the same
|
||||
// type as `matrix` and shape `[..., M, K]`.
|
||||
// The output is a tensor shape `[..., N, K]` where each output matrix solves
|
||||
// each of the equations matrix[..., :, :] * output[..., :, :] = rhs[..., :, :]
|
||||
// each of the equations
|
||||
// `matrix[..., :, :]` * `output[..., :, :]` = `rhs[..., :, :]`
|
||||
// in the least squares sense.
|
||||
//
|
||||
// matrix and right-hand sides in the batch:
|
||||
// We use the following notation for (complex) matrix and right-hand sides
|
||||
// in the batch:
|
||||
//
|
||||
// `matrix`=\\(A \in \Re^{m \times n}\\),
|
||||
// `rhs`=\\(B \in \Re^{m \times k}\\),
|
||||
// `output`=\\(X \in \Re^{n \times k}\\),
|
||||
// `l2_regularizer`=\\(\lambda\\).
|
||||
// `matrix`=\\(A \in \mathbb{C}^{m \times n}\\),
|
||||
// `rhs`=\\(B \in \mathbb{C}^{m \times k}\\),
|
||||
// `output`=\\(X \in \mathbb{C}^{n \times k}\\),
|
||||
// `l2_regularizer`=\\(\lambda \in \mathbb{R}\\).
|
||||
//
|
||||
// If `fast` is `True`, then the solution is computed by solving the normal
|
||||
// equations using Cholesky decomposition. Specifically, if \\(m \ge n\\) then
|
||||
// \\(X = (A^T A + \lambda I)^{-1} A^T B\\), which solves the least-squares
|
||||
// \\(X = (A^H A + \lambda I)^{-1} A^H B\\), which solves the least-squares
|
||||
// problem \\(X = \mathrm{argmin}_{Z \in \Re^{n \times k} } ||A Z - B||_F^2 +
|
||||
// \lambda ||Z||_F^2\\). If \\(m \lt n\\) then `output` is computed as
|
||||
// \\(X = A^T (A A^T + \lambda I)^{-1} B\\), which (for \\(\lambda = 0\\)) is the
|
||||
// \\(X = A^H (A A^H + \lambda I)^{-1} B\\), which (for \\(\lambda = 0\\)) is the
|
||||
// minimum-norm solution to the under-determined linear system, i.e.
|
||||
// \\(X = \mathrm{argmin}_{Z \in \Re^{n \times k} } ||Z||_F^2 \\), subject to
|
||||
// \\(A Z = B\\). Notice that the fast path is only numerically stable when
|
||||
// \\(A\\) is numerically full rank and has a condition number
|
||||
// \\(X = \mathrm{argmin}_{Z \in \mathbb{C}^{n \times k} } ||Z||_F^2 \\),
|
||||
// subject to \\(A Z = B\\). Notice that the fast path is only numerically stable
|
||||
// when \\(A\\) is numerically full rank and has a condition number
|
||||
// \\(\mathrm{cond}(A) \lt \frac{1}{\sqrt{\epsilon_{mach} } }\\) or\\(\lambda\\) is
|
||||
// sufficiently large.
|
||||
//
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user