diff --git a/RELEASE.md b/RELEASE.md index 9136fd3de7d..f1e4aeaab37 100644 --- a/RELEASE.md +++ b/RELEASE.md @@ -47,6 +47,10 @@ `SidecarEvaluator` evaluator. The evaluator regularly evaluates the model and exports it if the user-defined comparison function determines that it is an improvement. + * Added warmup capabilities to `tf.keras.optimizers.schedules.CosineDecay` + learning rate scheduler. You can now specify an initial and target + learning rate, and our scheduler will perform a linear interpolation + between the two after which it will begin a decay phase. * `tf.function`: * ConcreteFunction (`tf.types.experimental.ConcreteFunction`) as generated diff --git a/tensorflow/tools/api/golden/v2/tensorflow.optimizers.schedules.-cosine-decay.pbtxt b/tensorflow/tools/api/golden/v2/tensorflow.optimizers.schedules.-cosine-decay.pbtxt index 004d74073c6..851e2059c8d 100644 --- a/tensorflow/tools/api/golden/v2/tensorflow.optimizers.schedules.-cosine-decay.pbtxt +++ b/tensorflow/tools/api/golden/v2/tensorflow.optimizers.schedules.-cosine-decay.pbtxt @@ -5,7 +5,7 @@ tf_class { is_instance: "" member_method { name: "__init__" - argspec: "args=[\'self\', \'initial_learning_rate\', \'decay_steps\', \'alpha\', \'name\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\'], " + argspec: "args=[\'self\', \'initial_learning_rate\', \'decay_steps\', \'alpha\', \'name\', \'warmup_target\', \'warmup_steps\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'None\', \'0\'], " } member_method { name: "from_config"