Support SQRT operator in XNNPACK delegate

PiperOrigin-RevId: 320429761
Change-Id: I70673fc5ecacb4b1f7ea039267c1560d84a767e9
This commit is contained in:
Marat Dukhan 2020-07-09 10:53:03 -07:00 committed by TensorFlower Gardener
parent 5491487f9a
commit a297145b87
6 changed files with 189 additions and 6 deletions

View File

@ -634,6 +634,21 @@ cc_test(
], ],
) )
cc_test(
name = "sqrt_test",
srcs = ["sqrt_test.cc"],
linkopts = select({
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
"//conditions:default": [],
}),
deps = [
":test_main",
":unary_elementwise_tester",
":xnnpack_delegate_test_mode",
"@com_google_googletest//:gtest",
],
)
cc_test( cc_test(
name = "square_test", name = "square_test",
srcs = ["square_test.cc"], srcs = ["square_test.cc"],

View File

@ -224,6 +224,10 @@ Below is the list of current operators and limitations:
* Inputs and outputs must be in 32-bit floating-point format. * Inputs and outputs must be in 32-bit floating-point format.
* Only `beta = 1.0` is supported. * Only `beta = 1.0` is supported.
### `SQRT`
* Inputs and outputs must be in 32-bit floating-point format.
### `SQUARE` ### `SQUARE`
* Inputs and outputs must be in 32-bit floating-point format. * Inputs and outputs must be in 32-bit floating-point format.

View File

@ -0,0 +1,120 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <cstdint>
#include <functional>
#include <memory>
#include <random>
#include <gtest/gtest.h>
#include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h"
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
namespace tflite {
namespace xnnpack {
TEST(Sqrt, 4D) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto height = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
UnaryElementwiseTester()
.Shape({batch, height, width, channels})
.Test(BuiltinOperator_SQRT, xnnpack_delegate.get());
}
TEST(Sqrt, 3D) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
UnaryElementwiseTester()
.Shape({batch, width, channels})
.Test(BuiltinOperator_SQRT, xnnpack_delegate.get());
}
TEST(Sqrt, 2D) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto channels = shape_rng();
UnaryElementwiseTester()
.Shape({batch, channels})
.Test(BuiltinOperator_SQRT, xnnpack_delegate.get());
}
TEST(Sqrt, 1D) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
UnaryElementwiseTester().Shape({batch}).Test(BuiltinOperator_SQRT,
xnnpack_delegate.get());
}
TEST(Sqrt, MultiThreading) {
TfLiteXNNPackDelegateOptions delegate_options =
TfLiteXNNPackDelegateOptionsDefault();
delegate_options.num_threads = 2;
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto height = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
UnaryElementwiseTester()
.Shape({batch, height, width, channels})
.Test(BuiltinOperator_SQRT, xnnpack_delegate.get());
}
} // namespace xnnpack
} // namespace tflite

View File

@ -37,8 +37,15 @@ void UnaryElementwiseTester::Test(tflite::BuiltinOperator unary_op,
TfLiteDelegate* delegate) const { TfLiteDelegate* delegate) const {
std::random_device random_device; std::random_device random_device;
auto rng = std::mt19937(random_device()); auto rng = std::mt19937(random_device());
auto input_rng = std::bind( std::uniform_real_distribution<float> input_distribution(-15.0f, 15.0f);
std::uniform_real_distribution<float>(-15.0f, 15.0f), std::ref(rng)); switch (unary_op) {
case BuiltinOperator_SQRT:
input_distribution = std::uniform_real_distribution<float>(0.0f, 10.0f);
break;
default:
break;
}
auto input_rng = std::bind(input_distribution, std::ref(rng));
std::vector<char> buffer = CreateTfLiteModel(unary_op); std::vector<char> buffer = CreateTfLiteModel(unary_op);
const Model* model = GetModel(buffer.data()); const Model* model = GetModel(buffer.data());
@ -96,6 +103,7 @@ void UnaryElementwiseTester::Test(tflite::BuiltinOperator unary_op,
case BuiltinOperator_RELU6: case BuiltinOperator_RELU6:
case BuiltinOperator_ROUND: case BuiltinOperator_ROUND:
case BuiltinOperator_SQUARE: case BuiltinOperator_SQUARE:
case BuiltinOperator_SQRT:
for (size_t i = 0; i < Size(); i++) { for (size_t i = 0; i < Size(); i++) {
ASSERT_EQ(default_output_data[i], delegate_output_data[i]); ASSERT_EQ(default_output_data[i], delegate_output_data[i]);
} }

View File

@ -913,6 +913,9 @@ class Subgraph {
context->tensors, softmax_params, context->tensors, softmax_params,
xnnpack_tensors); xnnpack_tensors);
} }
case kTfLiteBuiltinSqrt:
return VisitSqrtNode(subgraph, logging_context, node_index, node,
context->tensors, xnnpack_tensors);
case kTfLiteBuiltinSquare: case kTfLiteBuiltinSquare:
return VisitSquareNode(subgraph, logging_context, node_index, node, return VisitSquareNode(subgraph, logging_context, node_index, node,
context->tensors, xnnpack_tensors); context->tensors, xnnpack_tensors);
@ -2449,6 +2452,39 @@ class Subgraph {
return kTfLiteOk; return kTfLiteOk;
} }
static TfLiteStatus VisitSqrtNode(
xnn_subgraph_t subgraph, TfLiteContext* logging_context, int node_index,
TfLiteNode* node, const TfLiteTensor* tensors,
const std::vector<uint32_t>& xnnpack_tensors) {
TF_LITE_ENSURE_STATUS(
CheckNumInputsAndOutputs(logging_context, node, 1, 1, node_index));
const TfLiteTensor& input_tensor = tensors[node->inputs->data[0]];
TF_LITE_ENSURE_STATUS(CheckTensorFloatType(
logging_context, input_tensor, node->inputs->data[0], node_index));
TF_LITE_ENSURE_STATUS(CheckTensorNonDynamicAllocation(
logging_context, input_tensor, node->inputs->data[0], node_index));
const TfLiteTensor& output_tensor = tensors[node->outputs->data[0]];
TF_LITE_ENSURE_STATUS(CheckTensorFloatType(
logging_context, output_tensor, node->outputs->data[0], node_index));
TF_LITE_ENSURE_STATUS(CheckTensorNonDynamicAllocation(
logging_context, output_tensor, node->outputs->data[0], node_index));
if (subgraph != nullptr) {
const xnn_status status = xnn_define_square_root(
subgraph, /*input_id=*/xnnpack_tensors[node->inputs->data[0]],
/*output_id=*/xnnpack_tensors[node->outputs->data[0]], /*flags=*/0);
if (status != xnn_status_success) {
TF_LITE_KERNEL_LOG(logging_context, "failed to delegate SQRT node #%d",
node_index);
return kTfLiteError;
}
}
return kTfLiteOk;
}
static TfLiteStatus VisitSquaredDifferenceNode( static TfLiteStatus VisitSquaredDifferenceNode(
xnn_subgraph_t subgraph, TfLiteContext* logging_context, int node_index, xnn_subgraph_t subgraph, TfLiteContext* logging_context, int node_index,
TfLiteNode* node, const TfLiteTensor* tensors, TfLiteNode* node, const TfLiteTensor* tensors,

View File

@ -164,11 +164,11 @@ def tf_repositories(path_prefix = "", tf_repo_name = ""):
tf_http_archive( tf_http_archive(
name = "XNNPACK", name = "XNNPACK",
sha256 = "2527a30464b43bd03f137b2c455a0381e49eae63d09cfeee128a717dfbe962d5", sha256 = "e37a92154c2ff72c3ebf97247617ce2e159ccc23e648fd62ded44a71c3d68c6a",
strip_prefix = "XNNPACK-8b283aa30a3186c6e640aed520543e9c067132d2", strip_prefix = "XNNPACK-51a01c66c78334c3d5abf4034e9a8a550a8ad4ad",
urls = [ urls = [
"https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/XNNPACK/archive/8b283aa30a3186c6e640aed520543e9c067132d2.zip", "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/XNNPACK/archive/51a01c66c78334c3d5abf4034e9a8a550a8ad4ad.zip",
"https://github.com/google/XNNPACK/archive/8b283aa30a3186c6e640aed520543e9c067132d2.zip", "https://github.com/google/XNNPACK/archive/51a01c66c78334c3d5abf4034e9a8a550a8ad4ad.zip",
], ],
) )